
Developing Windows Service Applications 1

Introduction to Windows Service Applications 3

Walkthrough Creating a Windows Service Application in the Component Desig 6

Service Application Programming Architecture 18

How to Create Windows Services 21

How to Write Services Programmatically 24

How to Add Installers to Your Service 26

How to Specify the Security Context for Services 28

How to Install and Uninstall Services 30

How to Start Services 32

How to Pause a Windows Service 35

How to Continue a Windows Service 37

How to Debug Windows Service Applications 39

How to Log Information About Services 43

Troubleshooting Debugging Windows Services 46

Troubleshooting Service Application Won't Install 47

Developing Windows Service Applications

Using Microsoft Visual Studio or the Microsoft .NET Framework SDK, you can easily create services by creating an

application that is installed as a service. This type of application is called a Windows service. With framework features, you

can create services, install them, and start, stop, and otherwise control their behavior.

Warning

The Windows service template for C++ was not included in Visual Studio 2010. To create a Windows service, you can

either create a service in managed code in Visual C# or Visual Basic, which could interoperate with existing C++ code if

required, or you can create a Windows service in native C++ by using the ATL Project Wizard.

In This Section

Introduction to Windows Service Applications

Provides an overview of Windows service applications, the lifetime of a service, and how service applications differ

from other common project types.

Walkthrough: Creating a Windows Service Application in the Component Designer

Provides an example of creating a service in Visual Basic and Visual C#.

Service Application Programming Architecture

Explains the language elements used in service programming.

How to: Create Windows Services

Describes the process of creating and configuring Windows services using the Windows service project template.

Related Sections

ServiceBase

Describes the major features of the ServiceBase class, which is used to create services.

ServiceProcessInstaller

Describes the features of the ServiceProcessInstaller class, which is used along with the ServiceInstaller class to install

and uninstall your services.

ServiceInstaller

Describes the features of the ServiceInstaller class, which is used along with the ServiceProcessInstaller class to install

and uninstall your service.

NIB Creating Projects from Templates

Describes the projects types used in this chapter and how to choose between them.

.NET Framework (current version)

Developing Windows Service Applications https://msdn.microsoft.com/en-us/library/y817hyb6(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:43

© 2016 Microsoft

Developing Windows Service Applications https://msdn.microsoft.com/en-us/library/y817hyb6(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:43

Introduction to Windows Service
Applications

Microsoft Windows services, formerly known as NT services, enable you to create long-running executable applications that

run in their own Windows sessions. These services can be automatically started when the computer boots, can be paused

and restarted, and do not show any user interface. These features make services ideal for use on a server or whenever you

need long-running functionality that does not interfere with other users who are working on the same computer. You can

also run services in the security context of a specific user account that is different from the logged-on user or the default

computer account. For more information about services and Windows sessions, see the Windows SDK documentation in the

MSDN Library.

You can easily create services by creating an application that is installed as a service. For example, suppose you want to

monitor performance counter data and react to threshold values. You could write a Windows Service application that listens

to the performance counter data, deploy the application, and begin collecting and analyzing data.

You create your service as a Microsoft Visual Studio project, defining code within it that controls what commands can be

sent to the service and what actions should be taken when those commands are received. Commands that can be sent to a

service include starting, pausing, resuming, and stopping the service; you can also execute custom commands.

After you create and build the application, you can install it by running the command-line utility InstallUtil.exe and passing

the path to the service's executable file. You can then use the Services Control Manager to start, stop, pause, resume, and

configure your service. You can also accomplish many of these same tasks in the Services node in Server Explorer or by

using the ServiceController class.

Service Applications vs. Other Visual Studio Applications
Service applications function differently from many other project types in several ways:

The compiled executable file that a service application project creates must be installed on the server before the

project can function in a meaningful way. You cannot debug or run a service application by pressing F5 or F11; you

cannot immediately run a service or step into its code. Instead, you must install and start your service, and then

attach a debugger to the service's process. For more information, see How to: Debug Windows Service

Applications.

Unlike some types of projects, you must create installation components for service applications. The installation

components install and register the service on the server and create an entry for your service with the Windows

Services Control Manager. For more information, see How to: Add Installers to Your Service Application.

The Main method for your service application must issue the Run command for the services your project contains.

The Run method loads the services into the Services Control Manager on the appropriate server. If you use the

Windows Services project template, this method is written for you automatically. Note that loading a service is

not the same thing as starting the service. See "Service Lifetime" below for more information.

Windows Service applications run in a different window station than the interactive station of the logged-on user.

.NET Framework (current version)

Introduction to Windows Service Applications https://msdn.microsoft.com/en-us/library/d56de412(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:43

A window station is a secure object that contains a Clipboard, a set of global atoms, and a group of desktop

objects. Because the station of the Windows service is not an interactive station, dialog boxes raised from within a

Windows service application will not be seen and may cause your program to stop responding. Similarly, error

messages should be logged in the Windows event log rather than raised in the user interface.

The Windows service classes supported by the .NET Framework do not support interaction with interactive

stations, that is, the logged-on user. The .NET Framework also does not include classes that represent stations and

desktops. If your Windows service must interact with other stations, you will need to access the unmanaged

Windows API. For more information, see the Windows SDK documentation.

The interaction of the Windows service with the user or other stations must be carefully designed to include

scenarios such as there being no logged on user, or the user having an unexpected set of desktop objects. In some

cases, it may be more appropriate to write a Windows application that runs under the control of the user.

Windows service applications run in their own security context and are started before the user logs into the

Windows computer on which they are installed. You should plan carefully what user account to run the service

within; a service running under the system account has more permissions and privileges than a user account.

Service Lifetime
A service goes through several internal states in its lifetime. First, the service is installed onto the system on which it will

run. This process executes the installers for the service project and loads the service into the Services Control Manager

for that computer. The Services Control Manager is the central utility provided by Windows to administer services.

After the service has been loaded, it must be started. Starting the service allows it to begin functioning. You can start a

service from the Services Control Manager, from Server Explorer, or from code by calling the Start method. The Start

method passes processing to the application's OnStart method and processes any code you have defined there.

A running service can exist in this state indefinitely until it is either stopped or paused or until the computer shuts down. A

service can exist in one of three basic states: Running, Paused, or Stopped. The service can also report the state of a

pending command: ContinuePending, PausePending, StartPending, or StopPending. These statuses indicate that a

command has been issued, such as a command to pause a running service, but has not been carried out yet. You can

query the Status to determine what state a service is in, or use the WaitForStatus to carry out an action when any of these

states occurs.

You can pause, stop, or resume a service from the Services Control Manager, from Server Explorer, or by calling

methods in code. Each of these actions can call an associated procedure in the service (OnStop, OnPause, or OnContinue),

in which you can define additional processing to be performed when the service changes state.

Types of Services
There are two types of services you can create in Visual Studio using the .NET Framework. Services that are the only

service in a process are assigned the type Win32OwnProcess. Services that share a process with another service are

assigned the type Win32ShareProcess. You can retrieve the service type by querying the ServiceType property.

You might occasionally see other service types if you query existing services that were not created in Visual Studio. For

more information on these, see the ServiceType.

Introduction to Windows Service Applications https://msdn.microsoft.com/en-us/library/d56de412(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:43

Services and the ServiceController Component
The ServiceController component is used to connect to an installed service and manipulate its state; using a

ServiceController component, you can start and stop a service, pause and continue its functioning, and send custom

commands to a service. However, you do not need to use a ServiceController component when you create a service

application. In fact, in most cases your ServiceController component should exist in a separate application from the

Windows service application that defines your service.

For more information, see ServiceController.

Requirements

Services must be created in a Windows Service application project or another .NET Framework–enabled project

that creates an .exe file when built and inherits from the ServiceBase class.

Projects containing Windows services must have installation components for the project and its services. This can

be easily accomplished from the Properties window. For more information, see How to: Add Installers to Your

Service Application.

See Also
Developing Windows Service Applications

Service Application Programming Architecture

How to: Create Windows Services

How to: Install and Uninstall Services

How to: Start Services

How to: Debug Windows Service Applications

Walkthrough: Creating a Windows Service Application in the Component Designer

How to: Add Installers to Your Service Application

© 2016 Microsoft

Introduction to Windows Service Applications https://msdn.microsoft.com/en-us/library/d56de412(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:43

Walkthrough: Creating a Windows Service
Application in the Component Designer

This article demonstrates how to create a simple Windows Service application in Visual Studio that writes messages to an

event log. Here are the basic steps that you perform to create and use your service:

Creating a Service by using the Windows Service project template, and configure it. This template creates a class for

you that inherits from System.ServiceProcess.ServiceBase and writes much of the basic service code, such as the code

to start the service.

1.

Adding Features to the Service for the OnStart and OnStop procedures, and override any other methods that you

want to redefine.

2.

Setting Service Status. By default, services created with System.ServiceProcess.ServiceBase implement only a subset of

the available status flags. If your service takes a long time to start up, pause, or stop, you can implement status values

such as Start Pending or Stop Pending to indicate that it's working on an operation.

3.

Adding Installers to the Service for your service application.4.

(Optional) Set Startup Parameters, specify default startup arguments, and enable users to override default settings

when they start your service manually.

5.

Building the Service.6.

Installing the Service on the local machine.7.

Access the Windows Service Control Manager and Starting and Running the Service.8.

Uninstalling a Windows Service.9.

Warning

The Windows Services project template that is required for this walkthrough is not available in the Express edition of

Visual Studio.

Note

Your computer might show different names or locations for some of the Visual Studio user interface elements in the

following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.

For more information, see Personalizing the Visual Studio IDE.

.NET Framework (current version)

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

1 of 12 05.09.2016 2:44

Creating a Service
To begin, you create the project and set values that are required for the service to function correctly.

To create and configure your service

In Visual Studio, on the menu bar, choose File, New, Project.

The New Project dialog box opens.

1.

In the list of Visual Basic or Visual C# project templates, choose Windows Service, and name the project

MyNewService. Choose OK.

The project template automatically adds a component class named Service1 that inherits from

System.ServiceProcess.ServiceBase.

2.

On the Edit menu, choose Find and Replace, Find in Files (Keyboard: Ctrl+Shift+F). Change all occurrences of

Service1 to MyNewService. You’ll find instances in Service1.cs, Program.cs, and Service1.Designer.cs (or their .vb

equivalents).

3.

In the Properties window for Service1.cs [Design] or Service1.vb [Design], set the ServiceName and the

(Name) property for Service1 to MyNewService, if it's not already set.

4.

In Solution Explorer, rename Service1.cs to MyNewService.cs, or Service1.vb to MyNewService.vb.5.

Adding Features to the Service
In this section, you add a custom event log to the Windows service. Event logs are not associated in any way with

Windows services. Here the EventLog component is used as an example of the type of component you could add to a

Windows service.

To add custom event log functionality to your service

In Solution Explorer, open the context menu for MyNewService.cs or MyNewService.vb, and then choose

View Designer.

1.

From the Components section of the Toolbox, drag an EventLog component to the designer.2.

In Solution Explorer, open the context menu for MyNewService.cs or MyNewService.vb, and then choose

View Code.

3.

Add a declaration for the eventLog object in the MyNewService class, right after the line that declares the

components variable:

4.

Private components As System.ComponentModel.IContainer

Private EventLog1 As System.Diagnostics.EventLog

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

2 of 12 05.09.2016 2:44

Add or edit the constructor to define a custom event log:5.

To define what occurs when the service starts

In the Code Editor, locate the OnStart method that was automatically overridden when you created the project,

and replace the code with the following. This adds an entry to the event log when the service starts running:

A service application is designed to be long-running, so it usually polls or monitors something in the system. The

monitoring is set up in the OnStart method. However, OnStart doesn’t actually do the monitoring. The OnStart

method must return to the operating system after the service's operation has begun. It must not loop forever or

block. To set up a simple polling mechanism, you can use the System.Timers.Timer component as follows: In the

OnStart method, set parameters on the component, and then set the Enabled property to true. The timer raises

events in your code periodically, at which time your service could do its monitoring. You can use the following

code to do this:

Add code to handle the timer event:

' To access the constructor in Visual Basic, select New from the

' method name drop‐down list.

Public Sub New()

MyBase.New()

 InitializeComponent()

Me.EventLog1 = New System.Diagnostics.EventLog

If Not System.Diagnostics.EventLog.SourceExists("MySource") Then

 System.Diagnostics.EventLog.CreateEventSource("MySource",

"MyNewLog")

End If

 EventLog1.Source = "MySource"

 EventLog1.Log = "MyNewLog"

End Sub

' To access the OnStart in Visual Basic, select OnStart from the

' method name drop‐down list.

Protected Overrides Sub OnStart(ByVal args() As String)

 EventLog1.WriteEntry("In OnStart")

End Sub

' Set up a timer to trigger every minute.

Dim timer As System.Timers.Timer = New System.Timers.Timer()

timer.Interval = 60000 ' 60 seconds

AddHandler timer.Elapsed, AddressOf Me.OnTimer

timer.Start()

VB

VB

VB

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

3 of 12 05.09.2016 2:44

You might want to perform tasks by using background worker threads instead of running all your work on the

main thread. For an example of this, see the System.ServiceProcess.ServiceBase reference page.

To define what occurs when the service is stopped

Replace the code for the OnStop method with the following. This adds an entry to the event log when the service is

stopped:

In the next section, you can override the OnPause, OnContinue, and OnShutdown methods to define additional

processing for your component.

To define other actions for the service

Locate the method that you want to handle, and override it to define what you want to occur.

The following code shows how you can override the OnContinue method:

Some custom actions have to occur when a Windows service is installed by the Installer class. Visual Studio can create

these installers specifically for a Windows service and add them to your project.

Setting Service Status
Services report their status to the Service Control Manager, so that users can tell whether a service is functioning correctly.

By default, services that inherit from ServiceBase report a limited set of status settings, including Stopped, Paused, and

Running. If a service takes a little while to start up, it might be helpful to report a Start Pending status. You can also

implement the Start Pending and Stop Pending status settings by adding code that calls into the Windows

SetServiceStatus function.

Private Sub OnTimer(sender As Object, e As Timers.ElapsedEventArgs)

' TODO: Insert monitoring activities here.

 eventLog1.WriteEntry("Monitoring the System", EventLogEntryType.Information,

eventId)

 eventId = eventId + 1

End Sub

Protected Overrides Sub OnStop()

 EventLog1.WriteEntry("In OnStop.")

End Sub

Protected Overrides Sub OnContinue()

 EventLog1.WriteEntry("In OnContinue.")

End Sub

VB

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

4 of 12 05.09.2016 2:44

To implement service pending status

Add a using statement or Imports declaration to the System.Runtime.InteropServices namespace in the

MyNewService.cs or MyNewService.vb file:

1.

Add the following code to MyNewService.cs to declare the ServiceState values and to add a structure for the

status, which you'll use in a platform invoke call:

2.

Now, in the MyNewService class, declare the SetServiceStatus function by using platform invoke:3.

To implement the Start Pending status, add the following code to the beginning of the OnStart method:4.

Imports System.Runtime.InteropServices

Public Enum ServiceState

 SERVICE_STOPPED = 1

 SERVICE_START_PENDING = 2

 SERVICE_STOP_PENDING = 3

 SERVICE_RUNNING = 4

 SERVICE_CONTINUE_PENDING = 5

 SERVICE_PAUSE_PENDING = 6

 SERVICE_PAUSED = 7

End Enum

<StructLayout(LayoutKind.Sequential)>

Public Structure ServiceStatus

Public dwServiceType As Long

Public dwCurrentState As ServiceState

Public dwControlsAccepted As Long

Public dwWin32ExitCode As Long

Public dwServiceSpecificExitCode As Long

Public dwCheckPoint As Long

Public dwWaitHint As Long

End Structure

Declare Auto Function SetServiceStatus Lib "advapi32.dll" (ByVal handle As IntPtr,

ByRef serviceStatus As ServiceStatus) As Boolean

VB

VB

VB

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

5 of 12 05.09.2016 2:44

Add code to set the status to Running at the end of the OnStart method.5.

(Optional) Repeat this procedure for the OnStop method.6.

Caution

The Service Control Manager uses the dwWaitHint and dwCheckpoint members of the SERVICE_STATUS structure to

determine how much time to wait for a Windows Service to start or shut down. If your OnStart and OnStop methods

run long, your service can request more time by calling SetServiceStatus again with an incremented dwCheckPoint

value.

Adding Installers to the Service
Before you can run a Windows Service, you need to install it, which registers it with the Service Control Manager. You can

add installers to your project that handle the registration details.

To create the installers for your service

In Solution Explorer, open the context menu for MyNewService.cs or MyNewService.vb, and then choose

View Designer.

1.

Click the background of the designer to select the service itself, instead of any of its contents.2.

Open the context menu for the designer window (if you’re using a pointing device, right-click inside the window),

and then choose Add Installer.

By default, a component class that contains two installers is added to your project. The component is named

3.

' Update the service state to Start Pending.

Dim serviceStatus As ServiceStatus = New ServiceStatus()

serviceStatus.dwCurrentState = ServiceState.SERVICE_START_PENDING

serviceStatus.dwWaitHint = 100000

SetServiceStatus(Me.ServiceHandle, serviceStatus)

// Update the service state to Running.

serviceStatus.dwCurrentState = ServiceState.SERVICE_RUNNING;

SetServiceStatus(this.ServiceHandle, ref serviceStatus);

' Update the service state to Running.

serviceStatus.dwCurrentState = ServiceState.SERVICE_RUNNING

SetServiceStatus(Me.ServiceHandle, serviceStatus)

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

6 of 12 05.09.2016 2:44

ProjectInstaller, and the installers it contains are the installer for your service and the installer for the service's

associated process.

In Design view for ProjectInstaller, choose serviceInstaller1 for a Visual C# project, or ServiceInstaller1 for a

Visual Basic project.

4.

In the Properties window, make sure the ServiceName property is set to MyNewService.5.

Set the Description property to some text, such as "A sample service". This text appears in the Services window

and helps the user identify the service and understand what it’s used for.

6.

Set the DisplayName property to the text that you want to appear in the Services window in the Name column.

For example, you can enter "MyNewService Display Name". This name can be different from the ServiceName

property, which is the name used by the system (for example, when you use the net start command to start your

service).

7.

Set the StartType property to Automatic.8.

In the designer, choose serviceProcessInstaller1 for a Visual C# project, or ServiceProcessInstaller1 for a Visual

Basic project. Set the Account property to LocalSystem. This will cause the service to be installed and to run on a

local service account.

 Security Note

The LocalSystem account has broad permissions, including the ability to write to the event log. Use this account

with caution, because it might increase your risk of attacks from malicious software. For other tasks, consider

using the LocalService account, which acts as a non-privileged user on the local computer and presents

anonymous credentials to any remote server. This example fails if you try to use the LocalService account,

because it needs permission to write to the event log.

9.

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

7 of 12 05.09.2016 2:44

For more information about installers, see How to: Add Installers to Your Service Application.

Set Startup Parameters
A Windows Service, like any other executable, can accept command-line arguments, or startup parameters. When you add

code to process startup parameters, users can start your service with their own custom startup parameters by using the

Services window in the Windows Control Panel. However, these startup parameters are not persisted the next time the

service starts. To set startup parameters permanently, you can set them in the registry, as shown in this procedure.

Note

Before you decide to add startup parameters, consider whether that is the best way to pass information to your

service. Although startup parameters are easy to use and to parse, and users can easily override them, they might be

harder for users to discover and use without documentation. Generally, if your service requires more than just a few

startup parameters, you should consider using the registry or a configuration file instead. Every Windows Service has

an entry in the registry under HKLM\System\CurrentControlSet\services. Under the service's key, you can use the

Parameters subkey to store information that your service can access. You can use application configuration files for a

Windows Service the same way you do for other types of programs. For example code, see AppSettings.

Adding startup parameters

In the Main method in Program.cs or in MyNewService.Designer.vb, add an argument for the command line:1.

Change the MyNewService constructor as follows:

This code sets the event source and log name according to the supplied startup parameters, or uses default values

2.

Shared Sub Main(ByVal cmdArgs() As String) Dim ServicesToRun() As

System.ServiceProcess.ServiceBase ServicesToRun = New

System.ServiceProcess.ServiceBase() {New MyNewServiceVB(cmdArgs)}

System.ServiceProcess.ServiceBase.Run(ServicesToRun) End Sub

Public Sub New(ByVal cmdArgs() As String) InitializeComponent() Dim

eventSourceName As String = "MySource" Dim logName As String =

"MyNewLog" If (cmdArgs.Count() > 0) Then eventSourceName =

cmdArgs(0) End If If (cmdArgs.Count() > 1) Then logName =

cmdArgs(1) End If eventLog1 = New

System.Diagnostics.EventLog() If (Not

System.Diagnostics.EventLog.SourceExists(eventSourceName)) Then

System.Diagnostics.EventLog.CreateEventSource(eventSourceName,

logName) End If eventLog1.Source = eventSourceName

eventLog1.Log = logName End Sub

VB

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

8 of 12 05.09.2016 2:44

if no arguments are supplied.

To specify the command-line arguments, add the following code to the ProjectInstaller class in

ProjectInstaller.cs or ProjectInstaller.vb:

This code modifies the ImagePath registry key, which typically contains the full path to the executable for the

Windows Service, by adding the default parameter values. The quotation marks around the path (and around each

individual parameter) are required for the service to start up correctly. To change the startup parameters for this

Windows Service, users can change the parameters given in the ImagePath registry key, although the better way is

to change it programmatically and expose the functionality to users in a friendly way (for example, in a

management or configuration utility).

3.

Building the Service

To build your service project

In Solution Explorer, open the context menu for your project, and then choose Properties. The property pages

for your project appear.

1.

On the Application tab, in the Startup object list, choose MyNewService.Program.2.

In Solution Explorer, open the context menu for your project, and then choose Build to build the project

(Keyboard: Ctrl+Shift+B).

3.

Installing the Service
Now that you've built the Windows service, you can install it. To install a Windows service, you must have administrative

credentials on the computer on which you're installing it.

To install a Windows Service

In Windows 7 and Windows Server, open the Developer Command Prompt under Visual Studio Tools in the

Start menu. In Windows 8 or Windows 8.1, choose the Visual Studio Tools tile on the Start screen, and then run

Developer Command Prompt with administrative credentials. (If you’re using a mouse, right-click on Developer

Command Prompt, and then choose Run as Administrator.)

1.

In the Command Prompt window, navigate to the folder that contains your project's output. For example, under

your My Documents folder, navigate to Visual Studio 2013\Projects\MyNewService\bin\Debug.

2.

Protected Overrides Sub OnBeforeInstall(ByVal savedState As IDictionary)

Dim parameter As String = "MySource1"" ""MyLogFile1"

Context.Parameters("assemblypath") = """" + Context.Parameters("assemblypath") +

""" """ + parameter + """" MyBase.OnBeforeInstall(savedState) End Sub

VB

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

9 of 12 05.09.2016 2:44

Enter the following command:

If the service installs successfully, installutil.exe will report success. If the system could not find InstallUtil.exe, make

sure that it exists on your computer. This tool is installed with the .NET Framework to the folder

%WINDIR%\Microsoft.NET\Framework[64]\framework_version. For example, the default path for the 32-bit

version of the .NET Framework 4, 4.5, 4.5.1, and 4.5.2 is C:\Windows\Microsoft.NET\Framework\v4.0.30319

\InstallUtil.exe.

If the installutil.exe process reports failure, check the install log to find out why. By default the log is in the same

folder as the service executable. The installation can fail if the RunInstallerAttribute Class is not present on the

ProjectInstaller class, or else the attribute is not set to true, or else the ProjectInstaller class is not public.

For more information, see How to: Install and Uninstall Services.

3.

Starting and Running the Service

To start and stop your service

In Windows, open the Start screen or Start menu, and type services.msc.

You should now see MyNewService listed in the Services window.

1.

In the Services window, open the shortcut menu for your service, and then choose Start.2.

Open the shortcut menu for the service, and then choose Stop.3.

(Optional) From the command line, you can use the commands net start ServiceName and net4.

installutil.exe MyNewService.exe

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

10 of 12 05.09.2016 2:44

stop ServiceName to start and stop your service.

To verify the event log output of your service

In Visual Studio, open Server Explorer (Keyboard: Ctrl+Alt+S), and access the Event Logs node for the local

computer.

1.

Locate the listing for MyNewLog (or MyLogFile1, if you used the optional procedure to add command-line

arguments) and expand it. You should see entries for the two actions (start and stop) your service has performed.

2.

Uninstalling a Windows Service

To uninstall your service

Open a developer command prompt with administrative credentials.1.

In the Command Prompt window, navigate to the folder that contains your project's output. For example, under

your My Documents folder, navigate to Visual Studio 2013\Projects\MyNewService\bin\Debug.

2.

Enter the following command:3.

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

11 of 12 05.09.2016 2:44

If the service uninstalls successfully, installutil.exe will report that your service was successfully removed. For more

information, see How to: Install and Uninstall Services.

Next Steps
You can create a standalone setup program that others can use to install your Windows service, but it requires additional

steps. ClickOnce doesn't support Windows services, so you can't use the Publish Wizard. You can use a full edition of

InstallShield, which Microsoft doesn't provide. For more information about InstallShield, see InstallShield Limited Edition.

You can also use the Windows Installer XML Toolset to create an installer for a Windows service.

You might explore the use of a ServiceController component, which enables you to send commands to the service you have

installed.

You can use an installer to create an event log when the application is installed instead of creating the event log when the

application runs. Additionally, the event log will be deleted by the installer when the application is uninstalled. For more

information, see the EventLogInstaller reference page.

See Also
Developing Windows Service Applications

Introduction to Windows Service Applications

How to: Debug Windows Service Applications

How to: Access and Initialize Server Explorer/Database Explorer

Services (Windows)

© 2016 Microsoft

installutil.exe /u MyNewService.exe

Walkthrough: Creating a Windows Service Application in the Component... https://msdn.microsoft.com/en-us/library/zt39148a(d=printer,v=vs.110).aspx

12 of 12 05.09.2016 2:44

Service Application Programming
Architecture

Windows Service applications are based on a class that inherits from the System.ServiceProcess.ServiceBase class. You

override methods from this class and define functionality for them to determine how your service behaves.

The main classes involved in service creation are:

System.ServiceProcess.ServiceBase — You override methods from the ServiceBase class when creating a service and

define the code to determine how your service functions in this inherited class.

System.ServiceProcess.ServiceProcessInstaller and System.ServiceProcess.ServiceInstaller —You use these classes to

install and uninstall your service.

In addition, a class named ServiceController can be used to manipulate the service itself. This class is not involved in the

creation of a service, but can be used to start and stop the service, pass commands to it, and return a series of enumerations.

Defining Your Service's Behavior
In your service class, you override base class functions that determine what happens when the state of your service is

changed in the Services Control Manager. The ServiceBase class exposes the following methods, which you can override

to add custom behavior.

Method Override to

OnStart Indicate what actions should be taken when your service starts running. You must write code in

this procedure for your service to perform useful work.

OnPause Indicate what should happen when your service is paused.

OnStop Indicate what should happen when your service stops running.

OnContinue Indicate what should happen when your service resumes normal functioning after being

paused.

OnShutdown Indicate what should happen just prior to your system shutting down, if your service is running

at that time.

OnCustomCommand Indicate what should happen when your service receives a custom command. For more

information on custom commands, see MSDN online.

.NET Framework (current version)

Service Application Programming Architecture https://msdn.microsoft.com/en-us/library/yzk7ksy2(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:44

OnPowerEvent Indicate how the service should respond when a power management event is received, such as

a low battery or suspended operation.

Note

These methods represent states that the service moves through in its lifetime; the service transitions from one state to

the next. For example, you will never get the service to respond to an OnContinue command before OnStart has been

called.

There are several other properties and methods that are of interest. These include:

The Run method on the ServiceBase class. This is the main entry point for the service. When you create a service

using the Windows Service template, code is inserted in your application's Main method to run the service. This

code looks like this:

Note

These examples use an array of type ServiceBase, into which each service your application contains can be

added, and then all of the services can be run together. If you are only creating a single service, however, you

might choose not to use the array and simply declare a new object inheriting from ServiceBase and then run it.

For an example, see How to: Write Services Programmatically.

A series of properties on the ServiceBase class. These determine what methods can be called on your service. For

example, when the CanStop property is set to true, the OnStop method on your service can be called. When the

CanPauseAndContinue property is set to true, the OnPause and OnContinue methods can be called. When you set

one of these properties to true, you should then override and define processing for the associated methods.

Note

Your service must override at least OnStart and OnStop to be useful.

You can also use a component called the ServiceController to communicate with and control the behavior of an existing

service.

See Also

Dim ServicesToRun() As System.ServiceProcess.ServiceBase

ServicesToRun =

New System.ServiceProcess.ServiceBase() {New Service1()}

System.ServiceProcess.ServiceBase.Run(ServicesToRun)

VB

Service Application Programming Architecture https://msdn.microsoft.com/en-us/library/yzk7ksy2(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:44

Introduction to Windows Service Applications

How to: Create Windows Services

© 2016 Microsoft

Service Application Programming Architecture https://msdn.microsoft.com/en-us/library/yzk7ksy2(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:44

How to: Create Windows Services

When you create a service, you can use a Visual Studio project template called Windows Service. This template

automatically does much of the work for you by referencing the appropriate classes and namespaces, setting up the

inheritance from the base class for services, and overriding several of the methods you're likely to want to override.

Warning

The Windows Services project template is not available in the Express edition of Visual Studio.

At a minimum, to create a functional service you must:

Set the ServiceName property.

Create the necessary installers for your service application.

Override and specify code for the OnStart and OnStop methods to customize the ways in which your service behaves.

To create a Windows Service application

Create a Windows Service project.

Note

For instructions on writing a service without using the template, see How to: Write Services Programmatically.

1.

In the Properties window, set the ServiceName property for your service.2.

.NET Framework (current version)

How to: Create Windows Services https://msdn.microsoft.com/en-us/library/9k985bc9(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:45

Note

The value of the ServiceName property must always match the name recorded in the installer classes. If you change

this property, you must update the ServiceName property of installer classes as well.

Set any of the following properties to determine how your service will function.

Property Setting

CanStop True to indicate that the service will accept requests to stop running; false to prevent

the service from being stopped.

CanShutdown True to indicate that the service wants to receive notification when the computer on

which it lives shuts down, enabling it to call the OnShutdown procedure.

CanPauseAndContinue True to indicate that the service will accept requests to pause or to resume running;

false to prevent the service from being paused and resumed.

CanHandlePowerEvent True to indicate that the service can handle notification of changes to the computer's

power status; false to prevent the service from being notified of these changes.

AutoLog True to write informational entries to the Application event log when your service

performs an action; false to disable this functionality. For more information, see How to:

Log Information About Services.

3.

How to: Create Windows Services https://msdn.microsoft.com/en-us/library/9k985bc9(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:45

Note

By default, AutoLog is set to true.

Note

When CanStop or CanPauseAndContinue are set to false, the Service Control Manager will disable the

corresponding menu options to stop, pause, or continue the service.

Access the Code Editor and fill in the processing you want for the OnStart and OnStop procedures.4.

Override any other methods for which you want to define functionality.5.

Add the necessary installers for your service application. For more information, see How to: Add Installers to Your

Service Application.

6.

Build your project by selecting Build Solution from the Build menu.

Note

Do not press F5 to run your project — you cannot run a service project in this way.

7.

Install the service. For more information, see How to: Install and Uninstall Services.8.

See Also
Introduction to Windows Service Applications

How to: Write Services Programmatically

How to: Add Installers to Your Service Application

How to: Log Information About Services

How to: Start Services

How to: Specify the Security Context for Services

How to: Install and Uninstall Services

Walkthrough: Creating a Windows Service Application in the Component Designer

© 2016 Microsoft

How to: Create Windows Services https://msdn.microsoft.com/en-us/library/9k985bc9(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:45

How to: Write Services Programmatically

If you choose not to use the Windows Service project template, you can write your own services by setting up the

inheritance and other infrastructure elements yourself. When you create a service programmatically, you must perform

several steps that the template would otherwise handle for you:

You must set up your service class to inherit from the ServiceBase class.

You must create a Main method for your service project that defines the services to run and calls the Run method on

them.

You must override the OnStart and OnStop procedures and fill in any code you want them to run.

To write a service programmatically

Create an empty project and create a reference to the necessary namespaces by following these steps:

In Solution Explorer, right-click the References node and click Add Reference.a.

On the .NET Framework tab, scroll to System.dll and click Select.b.

Scroll to System.ServiceProcess.dll and click Select.c.

Click OK.d.

1.

Add a class and configure it to inherit from ServiceBase:2.

Add the following code to configure your service class:3.

Create a Main method for your class, and use it to define the service your class will contain; userService1 is the4.

.NET Framework (current version)

Public Class UserService1

Inherits System.ServiceProcess.ServiceBase

End Class

Public Sub New()

Me.ServiceName = "MyService2"

Me.CanStop = True

Me.CanPauseAndContinue = True

Me.AutoLog = True

End Sub

VB

VB

How to: Write Services Programmatically https://msdn.microsoft.com/en-us/library/76477d2t(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:45

name of the class:

Override the OnStart method, and define any processing you want to occur when your service is started.5.

Override any other methods you want to define custom processing for, and write code to determine the actions the

service should take in each case.

6.

Add the necessary installers for your service application. For more information, see How to: Add Installers to Your

Service Application.

7.

Build your project by selecting Build Solution from the Build menu.

Note

Do not press F5 to run your project — you cannot run a service project in this way.

8.

Create a setup project and the custom actions to install your service. For an example, see Walkthrough: Creating a

Windows Service Application in the Component Designer.

9.

Install the service. For more information, see How to: Install and Uninstall Services.10.

See Also
Introduction to Windows Service Applications

How to: Create Windows Services

How to: Add Installers to Your Service Application

How to: Log Information About Services

Walkthrough: Creating a Windows Service Application in the Component Designer

© 2016 Microsoft

Shared Sub Main()

 System.ServiceProcess.ServiceBase.Run(New UserService1)

End Sub

Protected Overrides Sub OnStart(ByVal args() As String)

' Insert code here to define processing.

End Sub

VB

VB

How to: Write Services Programmatically https://msdn.microsoft.com/en-us/library/76477d2t(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:45

How to: Add Installers to Your Service
Application

Visual Studio ships installation components that can install resources associated with your service applications. Installation

components register an individual service on the system to which it is being installed and let the Services Control Manager

know that the service exists. When you work with a service application, you can select a link in the Properties window to

automatically add the appropriate installers to your project.

Note

Property values for your service are copied from the service class to the installer class. If you update the property values

on the service class, they are not automatically updated in the installer.

When you add an installer to your project, a new class (which, by default, is named ProjectInstaller) is created in the

project, and instances of the appropriate installation components are created within it. This class acts as a central point for

all of the installation components your project needs. For example, if you add a second service to your application and click

the Add Installer link, a second installer class is not created; instead, the necessary additional installation component for the

second service is added to the existing class.

You do not need to do any special coding within the installers to make your services install correctly. However, you may

occasionally need to modify the contents of the installers if you need to add special functionality to the installation process.

Note

The dialog boxes and menu commands you see might differ from those described in Help depending on your active

settings or edition. To change your settings, choose Import and Export Settings on the Tools menu. For more

information, see Customizing Development Settings in Visual Studio.

To add installers to your service application

In Solution Explorer, access Design view for the service for which you want to add an installation component.1.

Click the background of the designer to select the service itself, rather than any of its contents.2.

With the designer in focus, right-click, and then click Add Installer.

A new class, ProjectInstaller, and two installation components, ServiceProcessInstaller and ServiceInstaller, are

added to your project, and property values for the service are copied to the components.

3.

Click the ServiceInstaller component and verify that the value of the ServiceName property is set to the same value as4.

.NET Framework (current version)

How to: Add Installers to Your Service Application https://msdn.microsoft.com/en-us/library/ddhy0byf(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:46

the ServiceName property on the service itself.

To determine how your service will be started, click the ServiceInstaller component and set the StartType property to

the appropriate value.

Value Result

Manual The service must be manually started after installation. For more information, see How to: Start

Services.

Automatic The service will start by itself whenever the computer reboots.

Disabled The service cannot be started.

5.

To determine the security context in which your service will run, click the ServiceProcessInstaller component and set

the appropriate property values. For more information, see How to: Specify the Security Context for Services.

6.

Override any methods for which you need to perform custom processing.7.

Perform steps 1 through 7 for each additional service in your project.

Note

For each additional service in your project, you must add an additional ServiceInstaller component to the project's

ProjectInstaller class. The ServiceProcessInstaller component added in step three works with all of the individual

service installers in the project.

8.

See Also
Introduction to Windows Service Applications

How to: Install and Uninstall Services

How to: Start Services

How to: Specify the Security Context for Services

© 2016 Microsoft

How to: Add Installers to Your Service Application https://msdn.microsoft.com/en-us/library/ddhy0byf(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:46

How to: Specify the Security Context for
Services

By default, services run in a different security context than that of the logged-in user. Services run in the context of the

default system account, called LocalSystem, which gives them different access privileges to system resources than the user.

You can change this behavior to specify a different user account under which your service should run.

You set the security context by manipulating the Account property for the process within which the service runs. This

property allows you to set the service to one of four account types:

User, which causes the system to prompt for a valid user name and password when the service is installed and runs in

the context of an account specified by a single user on the network;

LocalService, which runs in the context of an account that acts as a non-privileged user on the local computer, and

presents anonymous credentials to any remote server;

LocalSystem, which runs in the context of an account that provides extensive local privileges, and presents the

computer's credentials to any remote server;

NetworkService, which runs in the context of an account that acts as a non-privileged user on the local computer,

and presents the computer's credentials to any remote server.

For more information, see the ServiceAccount enumeration.

To specify the security context for a service

After creating your service, add the necessary installers for it. For more information, see How to: Add Installers to Your

Service Application.

1.

In the designer, access the ProjectInstaller class and click the service process installer for the service you are

working with.

Note

For every service application, there are at least two installation components in the ProjectInstaller class —

one that installs the processes for all services in the project, and one installer for each service the application

contains. In this instance, you want to select ServiceProcessInstaller.

2.

In the Properties window, set the Account to the appropriate value.3.

.NET Framework (current version)

How to: Specify the Security Context for Services https://msdn.microsoft.com/en-us/library/0x72fzyf(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:46

See Also
Introduction to Windows Service Applications

How to: Add Installers to Your Service Application

How to: Create Windows Services

© 2016 Microsoft

How to: Specify the Security Context for Services https://msdn.microsoft.com/en-us/library/0x72fzyf(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:46

How to: Install and Uninstall Services

If you’re developing a Windows Service by using the .NET Framework, you can quickly install your service application by

using a command-line utility called InstallUtil.exe. If you’re a developer who wants to release a Windows Service that users

can install and uninstall you should use InstallShield. See 121be21b-b916-43e2-8f10-8b080516d2a0.

Warning

If you want to uninstall a service from your computer, don’t follow the steps in this article. Instead, find out which

program or software package installed the service, and then choose Add/Remove Programs in Control Panel to

uninstall that program. Note that many services are integral parts of Windows; if you remove them, you might cause

system instability.

In order to use the steps in this article, you first need to add a service installer to your Windows Service. See Walkthrough:

Creating a Windows Service Application in the Component Designer.

Windows Service projects cannot be run directly from the Visual Studio development environment by pressing F5. This is

because the service in the project must be installed before you can run the project.

Tip

You can launch Server Explorer and verify that your service has been installed or uninstalled. For more information, see

How to: Access and Initialize Server Explorer/Database Explorer.

To install your service manually

On the Windows Start menu or Start screen, choose Visual Studio , Visual Studio Tools, Developer Command

Prompt.

A Visual Studio command prompt appears.

1.

Access the directory where your project's compiled executable file is located.2.

Run InstallUtil.exe from the command prompt with your project's executable as a parameter:

If you’re using the Visual Studio command prompt, InstallUtil.exe should be on the system path. If not, you can add it

to the path, or use the fully qualified path to invoke it. This tool is installed with the .NET Framework, and its path is

3.

.NET Framework (current version)

installutil <yourproject>.exe

How to: Install and Uninstall Services https://msdn.microsoft.com/en-us/library/sd8zc8ha(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:47

%WINDIR%\Microsoft.NET\Framework[64]\<framework_version>. For example, for the 32-bit version of the

.NET Framework 4 or 4.5.*, if your Windows installation directory is C:\Windows, the path is C:\Windows

\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe. For the 64-bit version of the .NET Framework 4 or

4.5.*, the default path is C:\Windows\Microsoft.NET\Framework64\v4.0.30319\InstallUtil.exe.

To uninstall your service manually

On the Windows Start menu or Start screen, choose Visual Studio, Visual Studio Tools, Developer Command

Prompt.

A Visual Studio command prompt appears.

1.

Run InstallUtil.exe from the command prompt with your project's output as a parameter:2.

Sometimes, after the executable for a service is deleted, the service might still be present in the registry. In that case,

use the command sc delete to remove the entry for the service from the registry.

3.

See Also
Introduction to Windows Service Applications

How to: Create Windows Services

How to: Add Installers to Your Service Application

Installutil.exe (Installer Tool)

© 2016 Microsoft

installutil /u <yourproject>.exe

How to: Install and Uninstall Services https://msdn.microsoft.com/en-us/library/sd8zc8ha(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:47

How to: Start Services

After a service is installed, it must be started. Starting calls the OnStart method on the service class. Usually, the OnStart

method defines the useful work the service will perform. After a service starts, it remains active until it is manually paused or

stopped.

Services can be set up to start automatically or manually. A service that starts automatically will be started when the

computer on which it is installed is rebooted or first turned on. A user must start a service that starts manually.

Note

By default, services created with Visual Studio are set to start manually.

There are several ways you can manually start a service — from Server Explorer, from the Services Control Manager, or

from code using a component called the ServiceController.

You set the StartType property on the ServiceInstaller class to determine whether a service should be started manually or

automatically.

To specify how a service should start

After creating your service, add the necessary installers for it. For more information, see How to: Add Installers to Your

Service Application.

1.

In the designer, click the service installer for the service you are working with.2.

In the Properties window, set the StartType property to one of the following:

To have your service install Set this value

When the computer is restarted Automatic

When an explicit user action starts the service Manual

Tip

To prevent your service from being started at all, you can set the StartType property to Disabled. You might do

this if you are going to reboot a server several times and want to save time by preventing the services that would

normally start from starting up.

3.

.NET Framework (current version)

How to: Start Services https://msdn.microsoft.com/en-us/library/htkdfk18(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:47

Note

These and other properties can be changed after your service is installed.

There are several ways you can start a service that has its StartType process set to Manual — from Server Explorer,

from the Windows Services Control Manager, or from code. It is important to note that not all of these methods

actually start the service in the context of the Services Control Manager; Server Explorer and programmatic

methods of starting the service actually manipulate the controller.

To manually start a service from Server Explorer

In Server Explorer, add the server you want if it is not already listed. For more information, see How to: Access and

Initialize Server Explorer/Database Explorer.

1.

Expand the Services node, and then locate the service you want to start.2.

Right-click the name of the service, and click Start.3.

To manually start a service from Services Control Manager

Open the Services Control Manager by doing one of the following:

In Windows XP and 2000 Professional, right-click My Computer on the desktop, and then click Manage. In

the dialog box that appears, expand the Services and Applications node.

- or -

In Windows Server 2003 and Windows 2000 Server, click Start, point to Programs, click Administrative

Tools, and then click Services.

Note

In Windows NT version 4.0, you can open this dialog box from Control Panel.

You should now see your service listed in the Services section of the window.

1.

Select your service in the list, right-click it, and then click Start.2.

To manually start a service from code

Create an instance of the ServiceController class, and configure it to interact with the service you want to administer.1.

Call the Start method to start the service.2.

How to: Start Services https://msdn.microsoft.com/en-us/library/htkdfk18(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:47

See Also
Introduction to Windows Service Applications

How to: Create Windows Services

How to: Add Installers to Your Service Application

How to: Access and Initialize Server Explorer/Database Explorer

© 2016 Microsoft

How to: Start Services https://msdn.microsoft.com/en-us/library/htkdfk18(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:47

How to: Pause a Windows Service (Visual
Basic)

This example uses the ServiceController component to pause the IIS Admin service on the local computer.

Example

This code example is also available as an IntelliSense code snippet. In the code snippet picker, it is located in Windows

Operating System > Windows Services. For more information, see Code Snippets.

Compiling the Code
This example requires:

A project reference to System.serviceprocess.dll.

Access to the members of the System.ServiceProcess namespace. Add an Imports statement if you are not fully

qualifying member names in your code. For more information, see Imports Statement (.NET Namespace and Type).

Robust Programming
The MachineName property of the ServiceController class is the local computer by default. To reference Windows services

on another computer, change the MachineName property to the name of that computer.

The following conditions may cause an exception:

The service cannot be paused. (InvalidOperationException Class)

An error occurred when accessing a system API. (Win32Exception Class)

.NET Framework (current version)

Dim theController As System.ServiceProcess.ServiceController

theController = New System.ServiceProcess.ServiceController("IISAdmin")

' Pauses the service.

theController.Pause()

VB

VB

How to: Pause a Windows Service (Visual Basic) https://msdn.microsoft.com/en-us/library/a4s1c36s(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:48

.NET Framework Security
Control of services on the computer may be restricted by using the ServiceControllerPermissionAccess Enumeration to set

permissions in the ServiceControllerPermission Class.

Access to service information may be restricted by using the PermissionState Enumeration to set permissions in the

SecurityPermission Class.

See Also
ServiceController

ServiceControllerStatus

WaitForStatus

How to: Continue a Windows Service (Visual Basic)

© 2016 Microsoft

How to: Pause a Windows Service (Visual Basic) https://msdn.microsoft.com/en-us/library/a4s1c36s(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:48

How to: Continue a Windows Service (Visual
Basic)

This example uses the ServiceController component to continue the IIS Admin service on the local computer.

Example

This code example is also available as an IntelliSense code snippet. In the code snippet picker, it is located in Windows

Operating System > Windows Services. For more information, see Code Snippets.

Compiling the Code
This example requires:

A project reference to System.serviceprocess.dll.

Access to the members of the System.ServiceProcess namespace. Add an Imports statement if you are not fully

qualifying member names in your code. For more information, see Imports Statement (.NET Namespace and Type).

Robust Programming
The MachineName property of the ServiceController class is the local computer by default. To reference Windows services

on another computer, change the MachineName property to the name of that computer.

You cannot call the Continue method on a service until the service controller status is Paused.

The following conditions may cause an exception:

.NET Framework (current version)

Dim theController As System.ServiceProcess.ServiceController

theController = New System.ServiceProcess.ServiceController("IISAdmin")

' Checks that the service is paused.

If theController.Status =

 System.ServiceProcess.ServiceControllerStatus.Paused Then

' Continues the service.

 theController.Continue()

End If

VB

VB

How to: Continue a Windows Service (Visual Basic) https://msdn.microsoft.com/en-us/library/ydbtkt0h(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:48

The service cannot be resumed. (InvalidOperationException)

An error occurred when accessing a system API. (Win32Exception)

.NET Framework Security
Control of services on the computer may be restricted by using the ServiceControllerPermissionAccess enumeration to set

permissions in the ServiceControllerPermission class.

Access to service information may be restricted by using the PermissionState enumeration to set permissions in the

SecurityPermission class.

See Also
ServiceController

ServiceControllerStatus

How to: Pause a Windows Service (Visual Basic)

© 2016 Microsoft

How to: Continue a Windows Service (Visual Basic) https://msdn.microsoft.com/en-us/library/ydbtkt0h(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:48

How to: Debug Windows Service
Applications

A service must be run from within the context of the Services Control Manager rather than from within Visual Studio. For this

reason, debugging a service is not as straightforward as debugging other Visual Studio application types. To debug a

service, you must start the service and then attach a debugger to the process in which it is running. You can then debug your

application by using all of the standard debugging functionality of Visual Studio.

Caution

You should not attach to a process unless you know what the process is and understand the consequences of attaching to

and possibly killing that process. For example, if you attach to the WinLogon process and then stop debugging, the

system will halt because it can’t operate without WinLogon.

You can attach the debugger only to a running service. The attachment process interrupts the current functioning of your

service; it doesn’t actually stop or pause the service's processing. That is, if your service is running when you begin

debugging, it is still technically in the Started state as you debug it, but its processing has been suspended.

After attaching to the process, you can set breakpoints and use these to debug your code. Once you exit the dialog box you

use to attach to the process, you are effectively in debug mode. You can use the Services Control Manager to start, stop,

pause and continue your service, thus hitting the breakpoints you've set. You can later remove this dummy service after

debugging is successful.

This article covers debugging a service that's running on the local computer, but you can also debug Windows Services that

are running on a remote computer. See Remote Debugging.

Note

Debugging the OnStart method can be difficult because the Services Control Manager imposes a 30-second limit on all

attempts to start a service. For more information, see Troubleshooting: Debugging Windows Services.

Warning

To get meaningful information for debugging, the Visual Studio debugger needs to find symbol files for the binaries that

are being debugged. If you are debugging a service that you built in Visual Studio, the symbol files (.pdb files) are in the

same folder as the executable or library, and the debugger loads them automatically. If you are debugging a service that

you didn't build, you should first find symbols for the service and make sure they can be found by the debugger. See

Specify Symbol (.pdb) and Source Files in the Visual Studio Debugger. If you're debugging a system process or want to

have symbols for system calls in your services, you should add the Microsoft Symbol Servers. See Debugging Symbols.

.NET Framework (current version)

How to: Debug Windows Service Applications https://msdn.microsoft.com/en-us/library/7a50syb3(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 2:48

To debug a service

Build your service in the Debug configuration.1.

Install your service. For more information, see How to: Install and Uninstall Services.2.

Start your service, either from Services Control Manager, Server Explorer, or from code. For more information, see

How to: Start Services.

3.

Start Visual Studio with administrative credentials so you can attach to system processes.4.

(Optional) On the Visual Studio menu bar, choose Tools, Options. In the Options dialog box, choose Debugging,

Symbols, select the Microsoft Symbol Servers check box, and then choose the OK button.

5.

On the menu bar, choose Attach to Process from the Debug or Tools menu. (Keyboard: Ctrl+Alt+P)

The Processes dialog box appears.

6.

Select the Show processes from all users check box.7.

In the Available Processes section, choose the process for your service, and then choose Attach.

Tip

The process will have the same name as the executable file for your service.

The Attach to Process dialog box appears.

8.

Choose the appropriate options, and then choose OK to close the dialog box.

Note

You are now in debug mode.

9.

Set any breakpoints you want to use in your code.10.

Access the Services Control Manager and manipulate your service, sending stop, pause, and continue commands to

hit your breakpoints. For more information about running the Services Control Manager, see How to: Start Services.

Also, see Troubleshooting: Debugging Windows Services.

11.

Debugging Tips for Windows Services
Attaching to the service's process allows you to debug most, but not all, the code for that service. For example, because

the service has already been started, you cannot debug the code in the service's OnStart method or the code in the Main

method that is used to load the service this way. One way to work around this limitation is to create a temporary second

service in your service application that exists only to aid in debugging. You can install both services, and then start this

How to: Debug Windows Service Applications https://msdn.microsoft.com/en-us/library/7a50syb3(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 2:48

dummy service to load the service process. Once the temporary service has started the process, you can use the Debug

menu in Visual Studio to attach to the service process.

Try adding calls to the Sleep method to delay action until you’re able to attach to the process.

Try changing the program to a regular console application. To do this, rewrite the Main method as follows so it can run

both as a Windows Service and as a console application, depending on how it's started.

How to: Run a Windows Service as a console application

Add a method to your service that runs the OnStart and OnStop methods:1.

Rewrite the Main method as follows:2.

In the Application tab of the project's properties, set the Output type to Console Application.3.

Choose Start Debugging (F5).4.

To run the program as a Windows Service again, install it and start it as usual for a Windows Service. It's not

necessary to reverse these changes.

5.

In some cases, such as when you want to debug an issue that occurs only on system startup, you have to use the Windows

debugger. Install Debugging Tools for Windows and see How to debug Windows Services.

See Also
Introduction to Windows Service Applications

internal void TestStartupAndStop(string[] args)

{

 this.OnStart(args);

 Console.ReadLine();

 this.OnStop();

}

static void Main(string[] args)

 {

 if (Environment.UserInteractive)

 {

 MyNewService service1 = new MyNewService(args);

 service1.TestStartupAndStop(args);

 }

 else

 {

 // Put the body of your old Main method here.

 }

How to: Debug Windows Service Applications https://msdn.microsoft.com/en-us/library/7a50syb3(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 2:48

How to: Install and Uninstall Services

How to: Start Services

Debugging a Service

© 2016 Microsoft

How to: Debug Windows Service Applications https://msdn.microsoft.com/en-us/library/7a50syb3(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 2:48

How to: Log Information About Services

By default, all Windows Service projects have the ability to interact with the Application event log and write information and

exceptions to it. You use the AutoLog property to indicate whether you want this functionality in your application. By

default, logging is turned on for any service you create with the Windows Service project template. You can use a static form

of the EventLog class to write service information to a log without having to create an instance of an EventLog component

or manually register a source.

The installer for your service automatically registers each service in your project as a valid source of events with the

Application log on the computer where the service is installed, when logging is turned on. The service logs information each

time the service is started, stopped, paused, resumed, installed, or uninstalled. It also logs any failures that occur. You do not

need to write any code to write entries to the log when using the default behavior; the service handles this for you

automatically.

If you want to write to an event log other than the Application log, you must set the AutoLog property to false, create your

own custom event log within your services code, and register your service as a valid source of entries for that log. You must

then write code to record entries to the log whenever an action you're interested in occurs.

Note

If you use a custom event log and configure your service application to write to it, you must not attempt to access the

event log before setting the service's ServiceName property in your code. The event log needs this property's value to

register your service as a valid source of events.

To enable default event logging for your service

Set the AutoLog property for your component to true.

Note

By default, this property is set to true. You do not need to set this explicitly unless you are building more complex

processing, such as evaluating a condition and then setting the AutoLog property based on the result of that

condition.

To disable event logging for your service

Set the AutoLog property for your component to false.

.NET Framework (current version)

VB

How to: Log Information About Services https://msdn.microsoft.com/en-us/library/f6567h1s(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:49

To set up logging to a custom log

Set the AutoLog property to false.

Note

You must set AutoLog to false in order to use a custom log.

1.

Set up an instance of an EventLog component in your Windows Service application.2.

Create a custom log by calling the CreateEventSource method and specifying the source string and the name of the

log file you want to create.

3.

Set the Source property on the EventLog component instance to the source string you created in step 3.4.

Write your entries by accessing the WriteEntry method on the EventLog component instance.

The following code shows how to set up logging to a custom log.

Note

In this code example, an instance of an EventLog component is named eventLog1 (EventLog1 in Visual Basic). If

you created an instance with another name in step 2, change the code accordingly.

5.

Me.AutoLog = False

Public Sub New()

' Turn off autologging

Me.AutoLog = False

' Create a new event source and specify a log name that

' does not exist to create a custom log

If Not System.Diagnostics.EventLog.SourceExists("MySource") Then

 System.Diagnostics.EventLog.CreateEventSource("MySource",

"MyLog")

End If

' Configure the event log instance to use this source name

 EventLog1.Source = "MySource"

End Sub

Protected Overrides Sub OnStart(ByVal args() As String)

' Write an entry to the log you've created.

VB

VB

How to: Log Information About Services https://msdn.microsoft.com/en-us/library/f6567h1s(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:49

See Also
Introduction to Windows Service Applications

© 2016 Microsoft

 EventLog1.WriteEntry("In Onstart.")

End Sub

How to: Log Information About Services https://msdn.microsoft.com/en-us/library/f6567h1s(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:49

Troubleshooting: Debugging Windows
Services

When you debug a Windows service application, your service and the Windows Service Manager interact. The Service

Manager starts your service by calling the OnStart method, and then waits 30 seconds for the OnStart method to return. If

the method does not return in this time, the manager shows an error that the service cannot be started.

When you debug the OnStart method as described in How to: Debug Windows Service Applications, you must be aware of

this 30-second period. If you place a breakpoint in the OnStart method and do not step through it in 30 seconds, the

manager will not start the service.

See Also

How to: Debug Windows Service Applications

Introduction to Windows Service Applications

© 2016 Microsoft

.NET Framework (current version)

Troubleshooting: Debugging Windows Services https://msdn.microsoft.com/en-us/library/kbe0xeh6(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:49

Troubleshooting: Service Application Won't
Install

If your service application will not install correctly, check to make sure that the ServiceName property for the service class is

set to the same value as is shown in the installer for that service. The value must be the same in both instances in order for

your service to install correctly.

Note

You can also look at the installation logs to get feedback on the installation process.

You should also check to determine whether you have another service with the same name already installed. Service names

must be unique for installation to succeed.

See Also

Introduction to Windows Service Applications

© 2016 Microsoft

.NET Framework (current version)

Troubleshooting: Service Application Won't Install https://msdn.microsoft.com/en-us/library/s0h9wb98(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:50

