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Hello world

using System;

class Hello
{
    static void Main() {
        Console.WriteLine("Hello, World");
    }
}

C# (pronounced "See Sharp") is a simple, modern, object-oriented, and type-safe programming language. C# has

its roots in the C family of languages and will be immediately familiar to C, C++, and Java programmers. C# is

standardized by ECMA International as the ECMA-334ECMA-334  standard and by ISO/IEC as the ISO/IEC 23270ISO/IEC 23270  standard.

Microsoft's C# compiler for the .NET Framework is a conforming implementation of both of these standards.

C# is an object-oriented language, but C# further includes support for component-orientedcomponent-oriented programming.

Contemporary software design increasingly relies on software components in the form of self-contained and self-

describing packages of functionality. Key to such components is that they present a programming model with

properties, methods, and events; they have attributes that provide declarative information about the component;

and they incorporate their own documentation. C# provides language constructs to directly support these concepts,

making C# a very natural language in which to create and use software components.

Several C# features aid in the construction of robust and durable applications: Garbage collectionGarbage collection automatically

reclaims memory occupied by unused objects; exception handlingexception handling provides a structured and extensible approach

to error detection and recovery; and the type-safetype-safe design of the language makes it impossible to read from

uninitialized variables, to index arrays beyond their bounds, or to perform unchecked type casts.

C# has a unified type systemunified type system. All C# types, including primitive types such as int  and double , inherit from a

single root object  type. Thus, all types share a set of common operations, and values of any type can be stored,

transported, and operated upon in a consistent manner. Furthermore, C# supports both user-defined reference

types and value types, allowing dynamic allocation of objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in a compatible manner, much emphasis has been

placed on versioningversioning in C#'s design. Many programming languages pay little attention to this issue, and, as a

result, programs written in those languages break more often than necessary when newer versions of dependent

libraries are introduced. Aspects of C#'s design that were directly influenced by versioning considerations include

the separate virtual  and override  modifiers, the rules for method overload resolution, and support for explicit

interface member declarations.

The rest of this chapter describes the essential features of the C# language. Although later chapters describe rules

and exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and brevity

at the expense of completeness. The intent is to provide the reader with an introduction to the language that will

facilitate the writing of early programs and the reading of later chapters.

The "Hello, World" program is traditionally used to introduce a programming language. Here it is in C#:

C# source files typically have the file extension .cs . Assuming that the "Hello, World" program is stored in the file 

hello.cs , the program can be compiled with the Microsoft C# compiler using the command line

https://github.com/dotnet/csharplang/blob/master/spec/introduction.md


csc hello.cs

Hello, World

Program structure

which produces an executable assembly named hello.exe . The output produced by this application when it is run

is

The "Hello, World" program starts with a using  directive that references the System  namespace. Namespaces

provide a hierarchical means of organizing C# programs and libraries. Namespaces contain types and other

namespaces—for example, the System  namespace contains a number of types, such as the Console  class

referenced in the program, and a number of other namespaces, such as IO  and Collections . A using  directive

that references a given namespace enables unqualified use of the types that are members of that namespace.

Because of the using  directive, the program can use Console.WriteLine  as shorthand for 

System.Console.WriteLine .

The Hello  class declared by the "Hello, World" program has a single member, the method named Main . The Main

method is declared with the static  modifier. While instance methods can reference a particular enclosing object

instance using the keyword this , static methods operate without reference to a particular object. By convention, a

static method named Main  serves as the entry point of a program.

The output of the program is produced by the WriteLine  method of the Console  class in the System  namespace.

This class is provided by the .NET Framework class libraries, which, by default, are automatically referenced by the

Microsoft C# compiler. Note that C# itself does not have a separate runtime library. Instead, the .NET Framework is

the runtime library of C#.

The key organizational concepts in C# are programsprograms , namespacesnamespaces , typestypes , membersmembers , and assembliesassemblies . C#

programs consist of one or more source files. Programs declare types, which contain members and can be

organized into namespaces. Classes and interfaces are examples of types. Fields, methods, properties, and events

are examples of members. When C# programs are compiled, they are physically packaged into assemblies.

Assemblies typically have the file extension .exe  or .dll , depending on whether they implement applicationsapplications

or librar ieslibrar ies .

The example



using System;

namespace Acme.Collections
{
    public class Stack
    {
        Entry top;

        public void Push(object data) {
            top = new Entry(top, data);
        }

        public object Pop() {
            if (top == null) throw new InvalidOperationException();
            object result = top.data;
            top = top.next;
            return result;
        }

        class Entry
        {
            public Entry next;
            public object data;
    
            public Entry(Entry next, object data) {
                this.next = next;
                this.data = data;
            }
        }
    }
}

csc /t:library acme.cs

declares a class named Stack  in a namespace called Acme.Collections . The fully qualified name of this class is 

Acme.Collections.Stack . The class contains several members: a field named top , two methods named Push  and 

Pop , and a nested class named Entry . The Entry  class further contains three members: a field named next , a

field named data , and a constructor. Assuming that the source code of the example is stored in the file acme.cs ,

the command line

compiles the example as a library (code without a Main  entry point) and produces an assembly named acme.dll .

Assemblies contain executable code in the form of Intermediate LanguageIntermediate Language (IL) instructions, and symbolic

information in the form of metadatametadata. Before it is executed, the IL code in an assembly is automatically converted to

processor-specific code by the Just-In-Time (JIT) compiler of .NET Common Language Runtime.

Because an assembly is a self-describing unit of functionality containing both code and metadata, there is no need

for #include  directives and header files in C#. The public types and members contained in a particular assembly

are made available in a C# program simply by referencing that assembly when compiling the program. For

example, this program uses the Acme.Collections.Stack  class from the acme.dll  assembly:



using System;
using Acme.Collections;

class Test
{
    static void Main() {
        Stack s = new Stack();
        s.Push(1);
        s.Push(10);
        s.Push(100);
        Console.WriteLine(s.Pop());
        Console.WriteLine(s.Pop());
        Console.WriteLine(s.Pop());
    }
}

csc /r:acme.dll test.cs

100
10
1

Types and variables

C AT EGO RYC AT EGO RY DESC RIP T IO NDESC RIP T IO N

Value types Simple types Signed integral: sbyte , short , int , 

long

Unsigned integral: byte , ushort , 

uint , ulong

If the program is stored in the file test.cs , when test.cs  is compiled, the acme.dll  assembly can be referenced

using the compiler's /r  option:

This creates an executable assembly named test.exe , which, when run, produces the output:

C# permits the source text of a program to be stored in several source files. When a multi-file C# program is

compiled, all of the source files are processed together, and the source files can freely reference each other—

conceptually, it is as if all the source files were concatenated into one large file before being processed. Forward

declarations are never needed in C# because, with very few exceptions, declaration order is insignificant. C# does

not limit a source file to declaring only one public type nor does it require the name of the source file to match a

type declared in the source file.

There are two kinds of types in C#: value typesvalue types  and reference typesreference types . Variables of value types directly contain

their data whereas variables of reference types store references to their data, the latter being known as objects.

With reference types, it is possible for two variables to reference the same object and thus possible for operations

on one variable to affect the object referenced by the other variable. With value types, the variables each have their

own copy of the data, and it is not possible for operations on one to affect the other (except in the case of ref  and 

out  parameter variables).

C#'s value types are further divided into simple typessimple types , enum typesenum types , struct typesstruct types , and nullable typesnullable types , and C#'s

reference types are further divided into class typesclass types , interface typesinterface types , array typesarray types , and delegate typesdelegate types .

The following table provides an overview of C#'s type system.



Unicode characters: char

IEEE floating point: float , double

High-precision decimal: decimal

Boolean: bool

Enum types User-defined types of the form 
enum E {...}

Struct types User-defined types of the form 
struct S {...}

Nullable types Extensions of all other value types with
a null  value

Reference types Class types Ultimate base class of all other types: 
object

Unicode strings: string

User-defined types of the form 
class C {...}

Interface types User-defined types of the form 
interface I {...}

Array types Single- and multi-dimensional, for
example, int[]  and int[,]

Delegate types User-defined types of the form e.g. 
delegate int D(...)
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Signed integral 8 sbyte -128...127

The eight integral types provide support for 8-bit, 16-bit, 32-bit, and 64-bit values in signed or unsigned form.

The two floating point types, float  and double , are represented using the 32-bit single-precision and 64-bit

double-precision IEEE 754 formats.

The decimal  type is a 128-bit data type suitable for financial and monetary calculations.

C#'s bool  type is used to represent boolean values—values that are either true  or false .

Character and string processing in C# uses Unicode encoding. The char  type represents a UTF-16 code unit, and

the string  type represents a sequence of UTF-16 code units.

The following table summarizes C#'s numeric types.



16 short -32,768...32,767

32 int -
2,147,483,648...2,147,483,6
47

64 long -
9,223,372,036,854,775,808..
.9,223,372,036,854,775,807

Unsigned integral 8 byte 0...255

16 ushort 0...65,535

32 uint 0...4,294,967,295

64 ulong 0...18,446,744,073,709,551,
615

Floating point 32 float 1.5 × 10^−45 to
3.4 × 10^38, 7-digit
precision

64 double 5.0 × 10^−324 to
1.7 × 10^308, 15-digit
precision

Decimal 128 decimal 1.0 × 10^−28 to
7.9 × 10^28, 28-digit
precision

C AT EGO RYC AT EGO RY B IT SB IT S T Y P ET Y P E RA N GE/ P REC ISIO NRA N GE/ P REC ISIO N

C# programs use type declarationstype declarations  to create new types. A type declaration specifies the name and the members

of the new type. Five of C#'s categories of types are user-definable: class types, struct types, interface types, enum

types, and delegate types.

A class type defines a data structure that contains data members (fields) and function members (methods,

properties, and others). Class types support single inheritance and polymorphism, mechanisms whereby derived

classes can extend and specialize base classes.

A struct type is similar to a class type in that it represents a structure with data members and function members.

However, unlike classes, structs are value types and do not require heap allocation. Struct types do not support

user-specified inheritance, and all struct types implicitly inherit from type object .

An interface type defines a contract as a named set of public function members. A class or struct that implements

an interface must provide implementations of the interface's function members. An interface may inherit from

multiple base interfaces, and a class or struct may implement multiple interfaces.

A delegate type represents references to methods with a particular parameter list and return type. Delegates make

it possible to treat methods as entities that can be assigned to variables and passed as parameters. Delegates are

similar to the concept of function pointers found in some other languages, but unlike function pointers, delegates

are object-oriented and type-safe.

Class, struct, interface and delegate types all support generics, whereby they can be parameterized with other types.

An enum type is a distinct type with named constants. Every enum type has an underlying type, which must be one



using System;

class Test
{
    static void Main() {
        int i = 123;
        object o = i;          // Boxing
        int j = (int)o;        // Unboxing
    }
}

T Y P E  O F  VA RIA B L ET Y P E  O F  VA RIA B L E P O SSIB L E  C O N T EN T SP O SSIB L E  C O N T EN T S

Non-nullable value type A value of that exact type

Nullable value type A null value or a value of that exact type

object A null reference, a reference to an object of any reference type,
or a reference to a boxed value of any value type

Class type A null reference, a reference to an instance of that class type,
or a reference to an instance of a class derived from that class
type

Interface type A null reference, a reference to an instance of a class type that
implements that interface type, or a reference to a boxed value
of a value type that implements that interface type

of the eight integral types. The set of values of an enum type is the same as the set of values of the underlying type.

C# supports single- and multi-dimensional arrays of any type. Unlike the types listed above, array types do not

have to be declared before they can be used. Instead, array types are constructed by following a type name with

square brackets. For example, int[]  is a single-dimensional array of int , int[,]  is a two-dimensional array of 

int , and int[][]  is a single-dimensional array of single-dimensional arrays of int .

Nullable types also do not have to be declared before they can be used. For each non-nullable value type T  there

is a corresponding nullable type T? , which can hold an additional value null . For instance, int?  is a type that

can hold any 32 bit integer or the value null .

C#'s type system is unified such that a value of any type can be treated as an object. Every type in C# directly or

indirectly derives from the object  class type, and object  is the ultimate base class of all types. Values of reference

types are treated as objects simply by viewing the values as type object . Values of value types are treated as

objects by performing boxingboxing and unboxingunboxing operations. In the following example, an int  value is converted to 

object  and back again to int .

When a value of a value type is converted to type object , an object instance, also called a "box," is allocated to

hold the value, and the value is copied into that box. Conversely, when an object  reference is cast to a value type, a

check is made that the referenced object is a box of the correct value type, and, if the check succeeds, the value in

the box is copied out.

C#'s unified type system effectively means that value types can become objects "on demand." Because of the

unification, general-purpose libraries that use type object  can be used with both reference types and value types.

There are several kinds of var iablesvar iables  in C#, including fields, array elements, local variables, and parameters.

Variables represent storage locations, and every variable has a type that determines what values can be stored in

the variable, as shown by the following table.



Array type A null reference, a reference to an instance of that array type,
or a reference to an instance of a compatible array type

Delegate type A null reference or a reference to an instance of that delegate
type

T Y P E  O F  VA RIA B L ET Y P E  O F  VA RIA B L E P O SSIB L E  C O N T EN T SP O SSIB L E  C O N T EN T S

Expressions

C AT EGO RYC AT EGO RY EXP RESSIO NEXP RESSIO N DESC RIP T IO NDESC RIP T IO N

Primary x.m Member access

x(...) Method and delegate invocation

x[...] Array and indexer access

x++ Post-increment

x-- Post-decrement

new T(...) Object and delegate creation

new T(...){...} Object creation with initializer

new {...} Anonymous object initializer

new T[...] Array creation

typeof(T) Obtain System.Type  object for T

checked(x) Evaluate expression in checked context

unchecked(x) Evaluate expression in unchecked
context

default(T) Obtain default value of type T

ExpressionsExpressions  are constructed from operandsoperands  and operatorsoperators . The operators of an expression indicate which

operations to apply to the operands. Examples of operators include + , - , * , / , and new . Examples of operands

include literals, fields, local variables, and expressions.

When an expression contains multiple operators, the precedenceprecedence of the operators controls the order in which the

individual operators are evaluated. For example, the expression x + y * z  is evaluated as x + (y * z)  because

the *  operator has higher precedence than the +  operator.

Most operators can be overloadedoverloaded. Operator overloading permits user-defined operator implementations to be

specified for operations where one or both of the operands are of a user-defined class or struct type.

The following table summarizes C#'s operators, listing the operator categories in order of precedence from highest

to lowest. Operators in the same category have equal precedence.



delegate {...} Anonymous function (anonymous
method)

Unary +x Identity

-x Negation

!x Logical negation

~x Bitwise negation

++x Pre-increment

--x Pre-decrement

(T)x Explicitly convert x  to type T

await x Asynchronously wait for x  to

complete

Multiplicative x * y Multiplication

x / y Division

x % y Remainder

Additive x + y Addition, string concatenation, delegate
combination

x - y Subtraction, delegate removal

Shift x << y Shift left

x >> y Shift right

Relational and type testing x < y Less than

x > y Greater than

x <= y Less than or equal

x >= y Greater than or equal

x is T Return true  if x  is a T , false

otherwise

x as T Return x  typed as T , or null  if x

is not a T

C AT EGO RYC AT EGO RY EXP RESSIO NEXP RESSIO N DESC RIP T IO NDESC RIP T IO N



Equality x == y Equal

x != y Not equal

Logical AND x & y Integer bitwise AND, boolean logical
AND

Logical XOR x ^ y Integer bitwise XOR, boolean logical
XOR

Logical OR x | y Integer bitwise OR, boolean logical OR

Conditional AND x && y Evaluates y  only if x  is true

Conditional OR x || y Evaluates y  only if x  is false

Null coalescing x ?? y Evaluates to y  if x  is null , to x

otherwise

Conditional x ? y : z Evaluates y  if x  is true , z  if x  is

false

Assignment or anonymous function x = y Assignment

x op= y Compound assignment; supported
operators are *=  /=  %=  +=  -=  

<<=  >>=  &=  ^=  |=

(T x) => y Anonymous function (lambda
expression)

C AT EGO RYC AT EGO RY EXP RESSIO NEXP RESSIO N DESC RIP T IO NDESC RIP T IO N

Statements
The actions of a program are expressed using statementsstatements . C# supports several different kinds of statements, a

number of which are defined in terms of embedded statements.

A blockblock permits multiple statements to be written in contexts where a single statement is allowed. A block consists

of a list of statements written between the delimiters {  and } .

Declaration statementsDeclaration statements  are used to declare local variables and constants.

Expression statementsExpression statements  are used to evaluate expressions. Expressions that can be used as statements include

method invocations, object allocations using the new  operator, assignments using =  and the compound

assignment operators, increment and decrement operations using the ++  and --  operators and await

expressions.

Selection statementsSelection statements  are used to select one of a number of possible statements for execution based on the value

of some expression. In this group are the if  and switch  statements.

Iteration statementsIteration statements  are used to repeatedly execute an embedded statement. In this group are the while , do , 

for , and foreach  statements.

Jump statementsJump statements  are used to transfer control. In this group are the break , continue , goto , throw , return , and 



static void Main() {
   int a;
   int b = 2, c = 3;
   a = 1;
   Console.WriteLine(a + b + c);
}

static void Main() {
    const float pi = 3.1415927f;
    const int r = 25;
    Console.WriteLine(pi * r * r);
}

static void Main() {
    int i;
    i = 123;                // Expression statement
    Console.WriteLine(i);   // Expression statement
    i++;                    // Expression statement
    Console.WriteLine(i);   // Expression statement
}

static void Main(string[] args) {
    if (args.Length == 0) {
        Console.WriteLine("No arguments");
    }
    else {
        Console.WriteLine("One or more arguments");
    }
}

yield  statements.

The try ... catch  statement is used to catch exceptions that occur during execution of a block, and the try ...

finally  statement is used to specify finalization code that is always executed, whether an exception occurred or

not.

The checked  and unchecked  statements are used to control the overflow checking context for integral-type

arithmetic operations and conversions.

The lock  statement is used to obtain the mutual-exclusion lock for a given object, execute a statement, and then

release the lock.

The using  statement is used to obtain a resource, execute a statement, and then dispose of that resource.

Below are examples of each kind of statement

Local var iable declarationsLocal var iable declarations

Local constant declarationLocal constant declaration

Expression statementExpression statement

if  statement statement

switch  statement statement



static void Main(string[] args) {
    int n = args.Length;
    switch (n) {
        case 0:
            Console.WriteLine("No arguments");
            break;
        case 1:
            Console.WriteLine("One argument");
            break;
        default:
            Console.WriteLine("{0} arguments", n);
            break;
    }
}

static void Main(string[] args) {
    int i = 0;
    while (i < args.Length) {
        Console.WriteLine(args[i]);
        i++;
    }
}

static void Main() {
    string s;
    do {
        s = Console.ReadLine();
        if (s != null) Console.WriteLine(s);
    } while (s != null);
}

static void Main(string[] args) {
    for (int i = 0; i < args.Length; i++) {
        Console.WriteLine(args[i]);
    }
}

static void Main(string[] args) {
    foreach (string s in args) {
        Console.WriteLine(s);
    }
}

while  statement statement

do  statement statement

for  statement statement

foreach  statement statement

break  statement statement



static void Main() {
    while (true) {
        string s = Console.ReadLine();
        if (s == null) break;
        Console.WriteLine(s);
    }
}

static void Main(string[] args) {
    for (int i = 0; i < args.Length; i++) {
        if (args[i].StartsWith("/")) continue;
        Console.WriteLine(args[i]);
    }
}

static void Main(string[] args) {
    int i = 0;
    goto check;
    loop:
    Console.WriteLine(args[i++]);
    check:
    if (i < args.Length) goto loop;
}

static int Add(int a, int b) {
    return a + b;
}

static void Main() {
    Console.WriteLine(Add(1, 2));
    return;
}

static IEnumerable<int> Range(int from, int to) {
    for (int i = from; i < to; i++) {
        yield return i;
    }
    yield break;
}

static void Main() {
    foreach (int x in Range(-10,10)) {
        Console.WriteLine(x);
    }
}

continue  statement statement

goto  statement statement

return  statement statement

yield  statement statement

throw  and  and try  statements statements



static double Divide(double x, double y) {
    if (y == 0) throw new DivideByZeroException();
    return x / y;
}

static void Main(string[] args) {
    try {
        if (args.Length != 2) {
            throw new Exception("Two numbers required");
        }
        double x = double.Parse(args[0]);
        double y = double.Parse(args[1]);
        Console.WriteLine(Divide(x, y));
    }
    catch (Exception e) {
        Console.WriteLine(e.Message);
    }
    finally {
        Console.WriteLine("Good bye!");
    }
}

static void Main() {
    int i = int.MaxValue;
    checked {
        Console.WriteLine(i + 1);        // Exception
    }
    unchecked {
        Console.WriteLine(i + 1);        // Overflow
    }
}

class Account
{
    decimal balance;
    public void Withdraw(decimal amount) {
        lock (this) {
            if (amount > balance) {
                throw new Exception("Insufficient funds");
            }
            balance -= amount;
        }
    }
}

static void Main() {
    using (TextWriter w = File.CreateText("test.txt")) {
        w.WriteLine("Line one");
        w.WriteLine("Line two");
        w.WriteLine("Line three");
    }
}

Classes and objects

checked  and  and unchecked  statements statements

lock  statement statement

using  statement statement



public class Point
{
    public int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

Point p1 = new Point(0, 0);
Point p2 = new Point(10, 20);

MembersMembers

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

Constants Constant values associated with the class

Fields Variables of the class

Methods Computations and actions that can be performed by the class

Properties Actions associated with reading and writing named properties
of the class

Indexers Actions associated with indexing instances of the class like an
array

Events Notifications that can be generated by the class

Operators Conversions and expression operators supported by the class

ClassesClasses  are the most fundamental of C#'s types. A class is a data structure that combines state (fields) and actions

(methods and other function members) in a single unit. A class provides a definition for dynamically created

instancesinstances  of the class, also known as objectsobjects . Classes support inheritanceinheritance and polymorphismpolymorphism , mechanisms

whereby derived classesderived classes  can extend and specialize base classesbase classes .

New classes are created using class declarations. A class declaration starts with a header that specifies the

attributes and modifiers of the class, the name of the class, the base class (if given), and the interfaces implemented

by the class. The header is followed by the class body, which consists of a list of member declarations written

between the delimiters {  and } .

The following is a declaration of a simple class named Point :

Instances of classes are created using the new  operator, which allocates memory for a new instance, invokes a

constructor to initialize the instance, and returns a reference to the instance. The following statements create two 

Point  objects and store references to those objects in two variables:

The memory occupied by an object is automatically reclaimed when the object is no longer in use. It is neither

necessary nor possible to explicitly deallocate objects in C#.

The members of a class are either static membersstatic members  or instance membersinstance members . Static members belong to classes, and

instance members belong to objects (instances of classes).

The following table provides an overview of the kinds of members a class can contain.



Constructors Actions required to initialize instances of the class or the class
itself

Destructors Actions to perform before instances of the class are
permanently discarded

Types Nested types declared by the class

M EM B ERM EM B ER DESC RIP T IO NDESC RIP T IO N

AccessibilityAccessibility

A C C ESSIB IL IT YA C C ESSIB IL IT Y M EA N IN GM EA N IN G

public Access not limited

protected Access limited to this class or classes derived from this class

internal Access limited to this program

protected internal Access limited to this program or classes derived from this
class

private Access limited to this class

Type parametersType parameters

public class Pair<TFirst,TSecond>
{
    public TFirst First;
    public TSecond Second;
}

Pair<int,string> pair = new Pair<int,string> { First = 1, Second = "two" };
int i = pair.First;     // TFirst is int
string s = pair.Second; // TSecond is string

Base classesBase classes

Each member of a class has an associated accessibility, which controls the regions of program text that are able to

access the member. There are five possible forms of accessibility. These are summarized in the following table.

A class definition may specify a set of type parameters by following the class name with angle brackets enclosing a

list of type parameter names. The type parameters can the be used in the body of the class declarations to define

the members of the class. In the following example, the type parameters of Pair  are TFirst  and TSecond :

A class type that is declared to take type parameters is called a generic class type. Struct, interface and delegate

types can also be generic.

When the generic class is used, type arguments must be provided for each of the type parameters:

A generic type with type arguments provided, like Pair<int,string>  above, is called a constructed type.

A class declaration may specify a base class by following the class name and type parameters with a colon and the

name of the base class. Omitting a base class specification is the same as deriving from type object . In the

following example, the base class of Point3D  is Point , and the base class of Point  is object :



public class Point
{
    public int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

public class Point3D: Point
{
    public int z;

    public Point3D(int x, int y, int z): base(x, y) {
        this.z = z;
    }
}

Point a = new Point(10, 20);
Point b = new Point3D(10, 20, 30);

FieldsFields

public class Color
{
    public static readonly Color Black = new Color(0, 0, 0);
    public static readonly Color White = new Color(255, 255, 255);
    public static readonly Color Red = new Color(255, 0, 0);
    public static readonly Color Green = new Color(0, 255, 0);
    public static readonly Color Blue = new Color(0, 0, 255);
    private byte r, g, b;

    public Color(byte r, byte g, byte b) {
        this.r = r;
        this.g = g;
        this.b = b;
    }
}

A class inherits the members of its base class. Inheritance means that a class implicitly contains all members of its

base class, except for the instance and static constructors, and the destructors of the base class. A derived class can

add new members to those it inherits, but it cannot remove the definition of an inherited member. In the previous

example, Point3D  inherits the x  and y  fields from Point , and every Point3D  instance contains three fields, x , 

y , and z .

An implicit conversion exists from a class type to any of its base class types. Therefore, a variable of a class type can

reference an instance of that class or an instance of any derived class. For example, given the previous class

declarations, a variable of type Point  can reference either a Point  or a Point3D :

A field is a variable that is associated with a class or with an instance of a class.

A field declared with the static  modifier defines a static fieldstatic field. A static field identifies exactly one storage location.

No matter how many instances of a class are created, there is only ever one copy of a static field.

A field declared without the static  modifier defines an instance fieldinstance field. Every instance of a class contains a

separate copy of all the instance fields of that class.

In the following example, each instance of the Color  class has a separate copy of the r , g , and b  instance fields,

but there is only one copy of the Black , White , Red , Green , and Blue  static fields:



MethodsMethods

ParametersParameters

using System;

class Test
{
    static void Swap(ref int x, ref int y) {
        int temp = x;
        x = y;
        y = temp;
    }

    static void Main() {
        int i = 1, j = 2;
        Swap(ref i, ref j);
        Console.WriteLine("{0} {1}", i, j);            // Outputs "2 1"
    }
}

As shown in the previous example, read-only fieldsread-only fields  may be declared with a readonly  modifier. Assignment to a 

readonly  field can only occur as part of the field's declaration or in a constructor in the same class.

A methodmethod is a member that implements a computation or action that can be performed by an object or class.

Static methodsStatic methods  are accessed through the class. Instance methodsInstance methods  are accessed through instances of the class.

Methods have a (possibly empty) list of parametersparameters , which represent values or variable references passed to the

method, and a return typereturn type, which specifies the type of the value computed and returned by the method. A

method's return type is void  if it does not return a value.

Like types, methods may also have a set of type parameters, for which type arguments must be specified when the

method is called. Unlike types, the type arguments can often be inferred from the arguments of a method call and

need not be explicitly given.

The signaturesignature of a method must be unique in the class in which the method is declared. The signature of a method

consists of the name of the method, the number of type parameters and the number, modifiers, and types of its

parameters. The signature of a method does not include the return type.

Parameters are used to pass values or variable references to methods. The parameters of a method get their actual

values from the argumentsarguments  that are specified when the method is invoked. There are four kinds of parameters:

value parameters, reference parameters, output parameters, and parameter arrays.

A value parametervalue parameter  is used for input parameter passing. A value parameter corresponds to a local variable that

gets its initial value from the argument that was passed for the parameter. Modifications to a value parameter do

not affect the argument that was passed for the parameter.

Value parameters can be optional, by specifying a default value so that corresponding arguments can be omitted.

A reference parameterreference parameter  is used for both input and output parameter passing. The argument passed for a

reference parameter must be a variable, and during execution of the method, the reference parameter represents

the same storage location as the argument variable. A reference parameter is declared with the ref  modifier. The

following example shows the use of ref  parameters.

An output parameteroutput parameter  is used for output parameter passing. An output parameter is similar to a reference

parameter except that the initial value of the caller-provided argument is unimportant. An output parameter is

declared with the out  modifier. The following example shows the use of out  parameters.



using System;

class Test
{
    static void Divide(int x, int y, out int result, out int remainder) {
        result = x / y;
        remainder = x % y;
    }

    static void Main() {
        int res, rem;
        Divide(10, 3, out res, out rem);
        Console.WriteLine("{0} {1}", res, rem);    // Outputs "3 1"
    }
}

public class Console
{
    public static void Write(string fmt, params object[] args) {...}
    public static void WriteLine(string fmt, params object[] args) {...}
    ...
}

Console.WriteLine("x={0} y={1} z={2}", x, y, z);

string s = "x={0} y={1} z={2}";
object[] args = new object[3];
args[0] = x;
args[1] = y;
args[2] = z;
Console.WriteLine(s, args);

Method body and local variablesMethod body and local variables

A parameter arrayparameter array  permits a variable number of arguments to be passed to a method. A parameter array is

declared with the params  modifier. Only the last parameter of a method can be a parameter array, and the type of a

parameter array must be a single-dimensional array type. The Write  and WriteLine  methods of the 

System.Console  class are good examples of parameter array usage. They are declared as follows.

Within a method that uses a parameter array, the parameter array behaves exactly like a regular parameter of an

array type. However, in an invocation of a method with a parameter array, it is possible to pass either a single

argument of the parameter array type or any number of arguments of the element type of the parameter array. In

the latter case, an array instance is automatically created and initialized with the given arguments. This example

is equivalent to writing the following.

A method's body specifies the statements to execute when the method is invoked.

A method body can declare variables that are specific to the invocation of the method. Such variables are called

local var iableslocal var iables . A local variable declaration specifies a type name, a variable name, and possibly an initial value.

The following example declares a local variable i  with an initial value of zero and a local variable j  with no initial

value.



using System;

class Squares
{
    static void Main() {
        int i = 0;
        int j;
        while (i < 10) {
            j = i * i;
            Console.WriteLine("{0} x {0} = {1}", i, j);
            i = i + 1;
        }
    }
}

Static and instance methodsStatic and instance methods

class Entity
{
    static int nextSerialNo;
    int serialNo;

    public Entity() {
        serialNo = nextSerialNo++;
    }

    public int GetSerialNo() {
        return serialNo;
    }

    public static int GetNextSerialNo() {
        return nextSerialNo;
    }

    public static void SetNextSerialNo(int value) {
        nextSerialNo = value;
    }
}

C# requires a local variable to be definitely assigneddefinitely assigned before its value can be obtained. For example, if the

declaration of the previous i  did not include an initial value, the compiler would report an error for the

subsequent usages of i  because i  would not be definitely assigned at those points in the program.

A method can use return  statements to return control to its caller. In a method returning void , return

statements cannot specify an expression. In a method returning non- void , return  statements must include an

expression that computes the return value.

A method declared with a static  modifier is a static methodstatic method. A static method does not operate on a specific

instance and can only directly access static members.

A method declared without a static  modifier is an instance methodinstance method. An instance method operates on a specific

instance and can access both static and instance members. The instance on which an instance method was invoked

can be explicitly accessed as this . It is an error to refer to this  in a static method.

The following Entity  class has both static and instance members.

Each Entity  instance contains a serial number (and presumably some other information that is not shown here).

The Entity  constructor (which is like an instance method) initializes the new instance with the next available serial

number. Because the constructor is an instance member, it is permitted to access both the serialNo  instance field

and the nextSerialNo  static field.



using System;

class Test
{
    static void Main() {
        Entity.SetNextSerialNo(1000);
        Entity e1 = new Entity();
        Entity e2 = new Entity();
        Console.WriteLine(e1.GetSerialNo());           // Outputs "1000"
        Console.WriteLine(e2.GetSerialNo());           // Outputs "1001"
        Console.WriteLine(Entity.GetNextSerialNo());   // Outputs "1002"
    }
}

Virtual, override, and abstract methodsVirtual, override, and abstract methods

The GetNextSerialNo  and SetNextSerialNo  static methods can access the nextSerialNo  static field, but it would be

an error for them to directly access the serialNo  instance field.

The following example shows the use of the Entity  class.

Note that the SetNextSerialNo  and GetNextSerialNo  static methods are invoked on the class whereas the 

GetSerialNo  instance method is invoked on instances of the class.

When an instance method declaration includes a virtual  modifier, the method is said to be a vir tual methodvir tual method.

When no virtual  modifier is present, the method is said to be a non-vir tual methodnon-vir tual method.

When a virtual method is invoked, the run-time typerun-time type of the instance for which that invocation takes place

determines the actual method implementation to invoke. In a nonvirtual method invocation, the compile-timecompile-time

typetype of the instance is the determining factor.

A virtual method can be overr iddenoverr idden in a derived class. When an instance method declaration includes an 

override  modifier, the method overrides an inherited virtual method with the same signature. Whereas a virtual

method declaration introduces a new method, an override method declaration specializes an existing inherited

virtual method by providing a new implementation of that method.

An abstractabstract method is a virtual method with no implementation. An abstract method is declared with the 

abstract  modifier and is permitted only in a class that is also declared abstract . An abstract method must be

overridden in every non-abstract derived class.

The following example declares an abstract class, Expression , which represents an expression tree node, and three

derived classes, Constant , VariableReference , and Operation , which implement expression tree nodes for

constants, variable references, and arithmetic operations. (This is similar to, but not to be confused with the

expression tree types introduced in Expression tree types).



using System;
using System.Collections;

public abstract class Expression
{
    public abstract double Evaluate(Hashtable vars);
}

public class Constant: Expression
{
    double value;

    public Constant(double value) {
        this.value = value;
    }

    public override double Evaluate(Hashtable vars) {
        return value;
    }
}

public class VariableReference: Expression
{
    string name;

    public VariableReference(string name) {
        this.name = name;
    }

    public override double Evaluate(Hashtable vars) {
        object value = vars[name];
        if (value == null) {
            throw new Exception("Unknown variable: " + name);
        }
        return Convert.ToDouble(value);
    }
}

public class Operation: Expression
{
    Expression left;
    char op;
    Expression right;

    public Operation(Expression left, char op, Expression right) {
        this.left = left;
        this.op = op;
        this.right = right;
    }

    public override double Evaluate(Hashtable vars) {
        double x = left.Evaluate(vars);
        double y = right.Evaluate(vars);
        switch (op) {
            case '+': return x + y;
            case '-': return x - y;
            case '*': return x * y;
            case '/': return x / y;
        }
        throw new Exception("Unknown operator");
    }
}

The previous four classes can be used to model arithmetic expressions. For example, using instances of these

classes, the expression x + 3  can be represented as follows.



Expression e = new Operation(
    new VariableReference("x"),
    '+',
    new Constant(3));

using System;
using System.Collections;

class Test
{
    static void Main() {
        Expression e = new Operation(
            new VariableReference("x"),
            '*',
            new Operation(
                new VariableReference("y"),
                '+',
                new Constant(2)
            )
        );
        Hashtable vars = new Hashtable();
        vars["x"] = 3;
        vars["y"] = 5;
        Console.WriteLine(e.Evaluate(vars));        // Outputs "21"
        vars["x"] = 1.5;
        vars["y"] = 9;
        Console.WriteLine(e.Evaluate(vars));        // Outputs "16.5"
    }
}

Method overloadingMethod overloading

The Evaluate  method of an Expression  instance is invoked to evaluate the given expression and produce a 

double  value. The method takes as an argument a Hashtable  that contains variable names (as keys of the entries)

and values (as values of the entries). The Evaluate  method is a virtual abstract method, meaning that non-abstract

derived classes must override it to provide an actual implementation.

A Constant 's implementation of Evaluate  simply returns the stored constant. A VariableReference 's

implementation looks up the variable name in the hashtable and returns the resulting value. An Operation 's

implementation first evaluates the left and right operands (by recursively invoking their Evaluate  methods) and

then performs the given arithmetic operation.

The following program uses the Expression  classes to evaluate the expression x * (y + 2)  for different values of 

x  and y .

Method overloadingoverloading permits multiple methods in the same class to have the same name as long as they have

unique signatures. When compiling an invocation of an overloaded method, the compiler uses overloadoverload

resolutionresolution to determine the specific method to invoke. Overload resolution finds the one method that best

matches the arguments or reports an error if no single best match can be found. The following example shows

overload resolution in effect. The comment for each invocation in the Main  method shows which method is

actually invoked.



class Test
{
    static void F() {
        Console.WriteLine("F()");
    }

    static void F(object x) {
        Console.WriteLine("F(object)");
    }

    static void F(int x) {
        Console.WriteLine("F(int)");
    }

    static void F(double x) {
        Console.WriteLine("F(double)");
    }

    static void F<T>(T x) {
        Console.WriteLine("F<T>(T)");
    }

    static void F(double x, double y) {
        Console.WriteLine("F(double, double)");
    }

    static void Main() {
        F();                 // Invokes F()
        F(1);                // Invokes F(int)
        F(1.0);              // Invokes F(double)
        F("abc");            // Invokes F(object)
        F((double)1);        // Invokes F(double)
        F((object)1);        // Invokes F(object)
        F<int>(1);           // Invokes F<T>(T)
        F(1, 1);             // Invokes F(double, double)
    }
}

Other function membersOther function members

public class List<T> {
    // Constant...
    const int defaultCapacity = 4;

    // Fields...
    T[] items;
    int count;

    // Constructors...
    public List(int capacity = defaultCapacity) {
        items = new T[capacity];
    }

    // Properties...
    public int Count {

As shown by the example, a particular method can always be selected by explicitly casting the arguments to the

exact parameter types and/or explicitly supplying type arguments.

Members that contain executable code are collectively known as the function membersfunction members  of a class. The preceding

section describes methods, which are the primary kind of function members. This section describes the other kinds

of function members supported by C#: constructors, properties, indexers, events, operators, and destructors.

The following code shows a generic class called List<T> , which implements a growable list of objects. The class

contains several examples of the most common kinds of function members.



        get { return count; }
    }
    public int Capacity {
        get {
            return items.Length;
        }
        set {
            if (value < count) value = count;
            if (value != items.Length) {
                T[] newItems = new T[value];
                Array.Copy(items, 0, newItems, 0, count);
                items = newItems;
            }
        }
    }

    // Indexer...
    public T this[int index] {
        get {
            return items[index];
        }
        set {
            items[index] = value;
            OnChanged();
        }
    }

    // Methods...
    public void Add(T item) {
        if (count == Capacity) Capacity = count * 2;
        items[count] = item;
        count++;
        OnChanged();
    }
    protected virtual void OnChanged() {
        if (Changed != null) Changed(this, EventArgs.Empty);
    }
    public override bool Equals(object other) {
        return Equals(this, other as List<T>);
    }
    static bool Equals(List<T> a, List<T> b) {
        if (a == null) return b == null;
        if (b == null || a.count != b.count) return false;
        for (int i = 0; i < a.count; i++) {
            if (!object.Equals(a.items[i], b.items[i])) {
                return false;
            }
        }
        return true;
    }

    // Event...
    public event EventHandler Changed;

    // Operators...
    public static bool operator ==(List<T> a, List<T> b) {
        return Equals(a, b);
    }
    public static bool operator !=(List<T> a, List<T> b) {
        return !Equals(a, b);
    }
}

ConstructorsConstructors

C# supports both instance and static constructors. An instance constructorinstance constructor  is a member that implements the

actions required to initialize an instance of a class. A static constructorstatic constructor  is a member that implements the actions

required to initialize a class itself when it is first loaded.



List<string> list1 = new List<string>();
List<string> list2 = new List<string>(10);

PropertiesProperties

List<string> names = new List<string>();
names.Capacity = 100;            // Invokes set accessor
int i = names.Count;             // Invokes get accessor
int j = names.Capacity;          // Invokes get accessor

IndexersIndexers

A constructor is declared like a method with no return type and the same name as the containing class. If a

constructor declaration includes a static  modifier, it declares a static constructor. Otherwise, it declares an

instance constructor.

Instance constructors can be overloaded. For example, the List<T>  class declares two instance constructors, one

with no parameters and one that takes an int  parameter. Instance constructors are invoked using the new

operator. The following statements allocate two List<string>  instances using each of the constructors of the List

class.

Unlike other members, instance constructors are not inherited, and a class has no instance constructors other than

those actually declared in the class. If no instance constructor is supplied for a class, then an empty one with no

parameters is automatically provided.

Proper tiesProper ties  are a natural extension of fields. Both are named members with associated types, and the syntax for

accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.

Instead, properties have accessorsaccessors  that specify the statements to be executed when their values are read or

written.

A property is declared like a field, except that the declaration ends with a get  accessor and/or a set  accessor

written between the delimiters {  and }  instead of ending in a semicolon. A property that has both a get

accessor and a set  accessor is a read-write proper tyread-write proper ty , a property that has only a get  accessor is a read-onlyread-only

proper typroper ty , and a property that has only a set  accessor is a write-only proper tywrite-only proper ty .

A get  accessor corresponds to a parameterless method with a return value of the property type. Except as the

target of an assignment, when a property is referenced in an expression, the get  accessor of the property is

invoked to compute the value of the property.

A set  accessor corresponds to a method with a single parameter named value  and no return type. When a

property is referenced as the target of an assignment or as the operand of ++  or -- , the set  accessor is invoked

with an argument that provides the new value.

The List<T>  class declares two properties, Count  and Capacity , which are read-only and read-write, respectively.

The following is an example of use of these properties.

Similar to fields and methods, C# supports both instance properties and static properties. Static properties are

declared with the static  modifier, and instance properties are declared without it.

The accessor(s) of a property can be virtual. When a property declaration includes a virtual , abstract , or 

override  modifier, it applies to the accessor(s) of the property.

An indexerindexer  is a member that enables objects to be indexed in the same way as an array. An indexer is declared like

a property except that the name of the member is this  followed by a parameter list written between the

delimiters [  and ] . The parameters are available in the accessor(s) of the indexer. Similar to properties, indexers

can be read-write, read-only, and write-only, and the accessor(s) of an indexer can be virtual.



List<string> names = new List<string>();
names.Add("Liz");
names.Add("Martha");
names.Add("Beth");
for (int i = 0; i < names.Count; i++) {
    string s = names[i];
    names[i] = s.ToUpper();
}

EventsEvents

using System;

class Test
{
    static int changeCount;

    static void ListChanged(object sender, EventArgs e) {
        changeCount++;
    }

    static void Main() {
        List<string> names = new List<string>();
        names.Changed += new EventHandler(ListChanged);
        names.Add("Liz");
        names.Add("Martha");
        names.Add("Beth");
        Console.WriteLine(changeCount);        // Outputs "3"
    }
}

OperatorsOperators

The List  class declares a single read-write indexer that takes an int  parameter. The indexer makes it possible to

index List  instances with int  values. For example

Indexers can be overloaded, meaning that a class can declare multiple indexers as long as the number or types of

their parameters differ.

An eventevent is a member that enables a class or object to provide notifications. An event is declared like a field except

that the declaration includes an event  keyword and the type must be a delegate type.

Within a class that declares an event member, the event behaves just like a field of a delegate type (provided the

event is not abstract and does not declare accessors). The field stores a reference to a delegate that represents the

event handlers that have been added to the event. If no event handles are present, the field is null .

The List<T>  class declares a single event member called Changed , which indicates that a new item has been added

to the list. The Changed  event is raised by the OnChanged  virtual method, which first checks whether the event is 

null  (meaning that no handlers are present). The notion of raising an event is precisely equivalent to invoking the

delegate represented by the event—thus, there are no special language constructs for raising events.

Clients react to events through event handlersevent handlers . Event handlers are attached using the +=  operator and removed

using the -=  operator. The following example attaches an event handler to the Changed  event of a List<string> .

For advanced scenarios where control of the underlying storage of an event is desired, an event declaration can

explicitly provide add  and remove  accessors, which are somewhat similar to the set  accessor of a property.

An operatoroperator  is a member that defines the meaning of applying a particular expression operator to instances of a

class. Three kinds of operators can be defined: unary operators, binary operators, and conversion operators. All

operators must be declared as public  and static .



using System;

class Test
{
    static void Main() {
        List<int> a = new List<int>();
        a.Add(1);
        a.Add(2);
        List<int> b = new List<int>();
        b.Add(1);
        b.Add(2);
        Console.WriteLine(a == b);        // Outputs "True"
        b.Add(3);
        Console.WriteLine(a == b);        // Outputs "False"
    }
}

DestructorsDestructors

Structs

The List<T>  class declares two operators, operator==  and operator!= , and thus gives new meaning to

expressions that apply those operators to List  instances. Specifically, the operators define equality of two 

List<T>  instances as comparing each of the contained objects using their Equals  methods. The following example

uses the ==  operator to compare two List<int>  instances.

The first Console.WriteLine  outputs True  because the two lists contain the same number of objects with the same

values in the same order. Had List<T>  not defined operator== , the first Console.WriteLine  would have output 

False  because a  and b  reference different List<int>  instances.

A destructordestructor  is a member that implements the actions required to destruct an instance of a class. Destructors

cannot have parameters, they cannot have accessibility modifiers, and they cannot be invoked explicitly. The

destructor for an instance is invoked automatically during garbage collection.

The garbage collector is allowed wide latitude in deciding when to collect objects and run destructors. Specifically,

the timing of destructor invocations is not deterministic, and destructors may be executed on any thread. For these

and other reasons, classes should implement destructors only when no other solutions are feasible.

The using  statement provides a better approach to object destruction.

Like classes, structsstructs  are data structures that can contain data members and function members, but unlike classes,

structs are value types and do not require heap allocation. A variable of a struct type directly stores the data of the

struct, whereas a variable of a class type stores a reference to a dynamically allocated object. Struct types do not

support user-specified inheritance, and all struct types implicitly inherit from type object .

Structs are particularly useful for small data structures that have value semantics. Complex numbers, points in a

coordinate system, or key-value pairs in a dictionary are all good examples of structs. The use of structs rather than

classes for small data structures can make a large difference in the number of memory allocations an application

performs. For example, the following program creates and initializes an array of 100 points. With Point

implemented as a class, 101 separate objects are instantiated—one for the array and one each for the 100

elements.



class Point
{
    public int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

class Test
{
    static void Main() {
        Point[] points = new Point[100];
        for (int i = 0; i < 100; i++) points[i] = new Point(i, i);
    }
}

struct Point
{
    public int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

Point a = new Point(10, 10);
Point b = a;
a.x = 20;
Console.WriteLine(b.x);

Arrays

An alternative is to make Point  a struct.

Now, only one object is instantiated—the one for the array—and the Point  instances are stored in-line in the array.

Struct constructors are invoked with the new  operator, but that does not imply that memory is being allocated.

Instead of dynamically allocating an object and returning a reference to it, a struct constructor simply returns the

struct value itself (typically in a temporary location on the stack), and this value is then copied as necessary.

With classes, it is possible for two variables to reference the same object and thus possible for operations on one

variable to affect the object referenced by the other variable. With structs, the variables each have their own copy of

the data, and it is not possible for operations on one to affect the other. For example, the output produced by the

following code fragment depends on whether Point  is a class or a struct.

If Point  is a class, the output is 20  because a  and b  reference the same object. If Point  is a struct, the output is

10  because the assignment of a  to b  creates a copy of the value, and this copy is unaffected by the subsequent

assignment to a.x .

The previous example highlights two of the limitations of structs. First, copying an entire struct is typically less

efficient than copying an object reference, so assignment and value parameter passing can be more expensive with

structs than with reference types. Second, except for ref  and out  parameters, it is not possible to create

references to structs, which rules out their usage in a number of situations.

An arrayarray  is a data structure that contains a number of variables that are accessed through computed indices. The



using System;

class Test
{
    static void Main() {
        int[] a = new int[10];
        for (int i = 0; i < a.Length; i++) {
            a[i] = i * i;
        }
        for (int i = 0; i < a.Length; i++) {
            Console.WriteLine("a[{0}] = {1}", i, a[i]);
        }
    }
}

int[] a1 = new int[10];
int[,] a2 = new int[10, 5];
int[,,] a3 = new int[10, 5, 2];

int[][] a = new int[3][];
a[0] = new int[10];
a[1] = new int[5];
a[2] = new int[20];

variables contained in an array, also called the elementselements  of the array, are all of the same type, and this type is called

the element typeelement type of the array.

Array types are reference types, and the declaration of an array variable simply sets aside space for a reference to

an array instance. Actual array instances are created dynamically at run-time using the new  operator. The new

operation specifies the lengthlength of the new array instance, which is then fixed for the lifetime of the instance. The

indices of the elements of an array range from 0  to Length - 1 . The new  operator automatically initializes the

elements of an array to their default value, which, for example, is zero for all numeric types and null  for all

reference types.

The following example creates an array of int  elements, initializes the array, and prints out the contents of the

array.

This example creates and operates on a single-dimensional arraysingle-dimensional array . C# also supports multi-dimensionalmulti-dimensional

arraysarrays . The number of dimensions of an array type, also known as the rankrank of the array type, is one plus the

number of commas written between the square brackets of the array type. The following example allocates a one-

dimensional, a two-dimensional, and a three-dimensional array.

The a1  array contains 10 elements, the a2  array contains 50 (10 × 5) elements, and the a3  array contains 100

(10 × 5 × 2) elements.

The element type of an array can be any type, including an array type. An array with elements of an array type is

sometimes called a jagged arrayjagged array  because the lengths of the element arrays do not all have to be the same. The

following example allocates an array of arrays of int :

The first line creates an array with three elements, each of type int[]  and each with an initial value of null . The

subsequent lines then initialize the three elements with references to individual array instances of varying lengths.

The new  operator permits the initial values of the array elements to be specified using an array initializerarray initializer , which

is a list of expressions written between the delimiters {  and } . The following example allocates and initializes an 

int[]  with three elements.



int[] a = new int[] {1, 2, 3};

int[] a = {1, 2, 3};

int[] t = new int[3];
t[0] = 1;
t[1] = 2;
t[2] = 3;
int[] a = t;

Interfaces

interface IControl
{
    void Paint();
}

interface ITextBox: IControl
{
    void SetText(string text);
}

interface IListBox: IControl
{
    void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

interface IDataBound
{
    void Bind(Binder b);
}

public class EditBox: IControl, IDataBound
{
    public void Paint() {...}
    public void Bind(Binder b) {...}
}

Note that the length of the array is inferred from the number of expressions between {  and } . Local variable and

field declarations can be shortened further such that the array type does not have to be restated.

Both of the previous examples are equivalent to the following:

An interfaceinterface defines a contract that can be implemented by classes and structs. An interface can contain methods,

properties, events, and indexers. An interface does not provide implementations of the members it defines—it

merely specifies the members that must be supplied by classes or structs that implement the interface.

Interfaces may employ multiple inheritancemultiple inheritance. In the following example, the interface IComboBox  inherits from

both ITextBox  and IListBox .

Classes and structs can implement multiple interfaces. In the following example, the class EditBox  implements

both IControl  and IDataBound .

When a class or struct implements a particular interface, instances of that class or struct can be implicitly converted



EditBox editBox = new EditBox();
IControl control = editBox;
IDataBound dataBound = editBox;

object obj = new EditBox();
IControl control = (IControl)obj;
IDataBound dataBound = (IDataBound)obj;

public class EditBox: IControl, IDataBound
{
    void IControl.Paint() {...}
    void IDataBound.Bind(Binder b) {...}
}

EditBox editBox = new EditBox();
editBox.Paint();                        // Error, no such method
IControl control = editBox;
control.Paint();                        // Ok

Enums

to that interface type. For example

In cases where an instance is not statically known to implement a particular interface, dynamic type casts can be

used. For example, the following statements use dynamic type casts to obtain an object's IControl  and IDataBound

interface implementations. Because the actual type of the object is EditBox , the casts succeed.

In the previous EditBox  class, the Paint  method from the IControl  interface and the Bind  method from the 

IDataBound  interface are implemented using public  members. C# also supports explicit interface memberexplicit interface member

implementationsimplementations , using which the class or struct can avoid making the members public . An explicit interface

member implementation is written using the fully qualified interface member name. For example, the EditBox

class could implement the IControl.Paint  and IDataBound.Bind  methods using explicit interface member

implementations as follows.

Explicit interface members can only be accessed via the interface type. For example, the implementation of 

IControl.Paint  provided by the previous EditBox  class can only be invoked by first converting the EditBox

reference to the IControl  interface type.

An enum typeenum type is a distinct value type with a set of named constants. The following example declares and uses an

enum type named Color  with three constant values, Red , Green , and Blue .



using System;

enum Color
{
    Red,
    Green,
    Blue
}

class Test
{
    static void PrintColor(Color color) {
        switch (color) {
            case Color.Red:
                Console.WriteLine("Red");
                break;
            case Color.Green:
                Console.WriteLine("Green");
                break;
            case Color.Blue:
                Console.WriteLine("Blue");
                break;
            default:
                Console.WriteLine("Unknown color");
                break;
        }
    }

    static void Main() {
        Color c = Color.Red;
        PrintColor(c);
        PrintColor(Color.Blue);
    }
}

enum Alignment: sbyte
{
    Left = -1,
    Center = 0,
    Right = 1
}

int i = (int)Color.Blue;        // int i = 2;
Color c = (Color)2;             // Color c = Color.Blue;

Each enum type has a corresponding integral type called the underlying typeunderlying type of the enum type. An enum type

that does not explicitly declare an underlying type has an underlying type of int . An enum type's storage format

and range of possible values are determined by its underlying type. The set of values that an enum type can take on

is not limited by its enum members. In particular, any value of the underlying type of an enum can be cast to the

enum type and is a distinct valid value of that enum type.

The following example declares an enum type named Alignment  with an underlying type of sbyte .

As shown by the previous example, an enum member declaration can include a constant expression that specifies

the value of the member. The constant value for each enum member must be in the range of the underlying type of

the enum. When an enum member declaration does not explicitly specify a value, the member is given the value

zero (if it is the first member in the enum type) or the value of the textually preceding enum member plus one.

Enum values can be converted to integral values and vice versa using type casts. For example



Color c = 0;

Delegates

using System;

delegate double Function(double x);

class Multiplier
{
    double factor;

    public Multiplier(double factor) {
        this.factor = factor;
    }

    public double Multiply(double x) {
        return x * factor;
    }
}

class Test
{
    static double Square(double x) {
        return x * x;
    }

    static double[] Apply(double[] a, Function f) {
        double[] result = new double[a.Length];
        for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
        return result;
    }

    static void Main() {
        double[] a = {0.0, 0.5, 1.0};
        double[] squares = Apply(a, Square);
        double[] sines = Apply(a, Math.Sin);
        Multiplier m = new Multiplier(2.0);
        double[] doubles =  Apply(a, m.Multiply);
    }
}

The default value of any enum type is the integral value zero converted to the enum type. In cases where variables

are automatically initialized to a default value, this is the value given to variables of enum types. In order for the

default value of an enum type to be easily available, the literal 0  implicitly converts to any enum type. Thus, the

following is permitted.

A delegate typedelegate type represents references to methods with a particular parameter list and return type. Delegates

make it possible to treat methods as entities that can be assigned to variables and passed as parameters. Delegates

are similar to the concept of function pointers found in some other languages, but unlike function pointers,

delegates are object-oriented and type-safe.

The following example declares and uses a delegate type named Function .

An instance of the Function  delegate type can reference any method that takes a double  argument and returns a 

double  value. The Apply  method applies a given Function  to the elements of a double[] , returning a double[]

with the results. In the Main  method, Apply  is used to apply three different functions to a double[] .

A delegate can reference either a static method (such as Square  or Math.Sin  in the previous example) or an

instance method (such as m.Multiply  in the previous example). A delegate that references an instance method also



double[] doubles =  Apply(a, (double x) => x * 2.0);

Attributes

using System;

public class HelpAttribute: Attribute
{
    string url;
    string topic;

    public HelpAttribute(string url) {
        this.url = url;
    }

    public string Url {
        get { return url; }
    }

    public string Topic {
        get { return topic; }
        set { topic = value; }
    }
}

[Help("http://msdn.microsoft.com/.../MyClass.htm")]
public class Widget
{
    [Help("http://msdn.microsoft.com/.../MyClass.htm", Topic = "Display")]
    public void Display(string text) {}
}

references a particular object, and when the instance method is invoked through the delegate, that object becomes 

this  in the invocation.

Delegates can also be created using anonymous functions, which are "inline methods" that are created on the fly.

Anonymous functions can see the local variables of the surrounding methods. Thus, the multiplier example above

can be written more easily without using a Multiplier  class:

An interesting and useful property of a delegate is that it does not know or care about the class of the method it

references; all that matters is that the referenced method has the same parameters and return type as the delegate.

Types, members, and other entities in a C# program support modifiers that control certain aspects of their behavior.

For example, the accessibility of a method is controlled using the public , protected , internal , and private

modifiers. C# generalizes this capability such that user-defined types of declarative information can be attached to

program entities and retrieved at run-time. Programs specify this additional declarative information by defining

and using attr ibutesattr ibutes .

The following example declares a HelpAttribute  attribute that can be placed on program entities to provide links

to their associated documentation.

All attribute classes derive from the System.Attribute  base class provided by the .NET Framework. Attributes can

be applied by giving their name, along with any arguments, inside square brackets just before the associated

declaration. If an attribute's name ends in Attribute , that part of the name can be omitted when the attribute is

referenced. For example, the HelpAttribute  attribute can be used as follows.

This example attaches a HelpAttribute  to the Widget  class and another HelpAttribute  to the Display  method in



using System;
using System.Reflection;

class Test
{
    static void ShowHelp(MemberInfo member) {
        HelpAttribute a = Attribute.GetCustomAttribute(member,
            typeof(HelpAttribute)) as HelpAttribute;
        if (a == null) {
            Console.WriteLine("No help for {0}", member);
        }
        else {
            Console.WriteLine("Help for {0}:", member);
            Console.WriteLine("  Url={0}, Topic={1}", a.Url, a.Topic);
        }
    }

    static void Main() {
        ShowHelp(typeof(Widget));
        ShowHelp(typeof(Widget).GetMethod("Display"));
    }
}

the class. The public constructors of an attribute class control the information that must be provided when the

attribute is attached to a program entity. Additional information can be provided by referencing public read-write

properties of the attribute class (such as the reference to the Topic  property previously).

The following example shows how attribute information for a given program entity can be retrieved at run-time

using reflection.

When a particular attribute is requested through reflection, the constructor for the attribute class is invoked with

the information provided in the program source, and the resulting attribute instance is returned. If additional

information was provided through properties, those properties are set to the given values before the attribute

instance is returned.
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Programs

Grammars

Grammar notationGrammar notation

Lexical grammarLexical grammar

Syntactic grammarSyntactic grammar

Lexical analysis

A C# programprogram consists of one or more source filessource files , known formally as compilation unitscompilation units  (Compilation units). A

source file is an ordered sequence of Unicode characters. Source files typically have a one-to-one correspondence

with files in a file system, but this correspondence is not required. For maximal portability, it is recommended that

files in a file system be encoded with the UTF-8 encoding.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a

sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

This specification presents the syntax of the C# programming language using two grammars. The lexicallexical

grammargrammar  (Lexical grammar) defines how Unicode characters are combined to form line terminators, white space,

comments, tokens, and pre-processing directives. The syntactic grammarsyntactic grammar  (Syntactic grammar) defines how the

tokens resulting from the lexical grammar are combined to form C# programs.

The lexical and syntactic grammars are presented in Backus-Naur form using the notation of the ANTLR grammar

tool.

The lexical grammar of C# is presented in Lexical analysis, Tokens, and Pre-processing directives. The terminal

symbols of the lexical grammar are the characters of the Unicode character set, and the lexical grammar specifies

how characters are combined to form tokens (Tokens), white space (White space), comments (Comments), and pre-

processing directives (Pre-processing directives).

Every source file in a C# program must conform to the input production of the lexical grammar (Lexical analysis).

The syntactic grammar of C# is presented in the chapters and appendices that follow this chapter. The terminal

symbols of the syntactic grammar are the tokens defined by the lexical grammar, and the syntactic grammar

specifies how tokens are combined to form C# programs.

Every source file in a C# program must conform to the compilation_unit production of the syntactic grammar

(Compilation units).

The input production defines the lexical structure of a C# source file. Each source file in a C# program must

conform to this lexical grammar production.

https://github.com/dotnet/csharplang/blob/master/spec/lexical-structure.md


  

    

input
    : input_section?
    ;

input_section
    : input_section_part+
    ;

input_section_part
    : input_element* new_line
    | pp_directive
    ;

input_element
    : whitespace
    | comment
    | token
    ;

Line terminatorsLine terminators

new_line
    : '<Carriage return character (U+000D)>'
    | '<Line feed character (U+000A)>'
    | '<Carriage return character (U+000D) followed by line feed character (U+000A)>'
    | '<Next line character (U+0085)>'
    | '<Line separator character (U+2028)>'
    | '<Paragraph separator character (U+2029)>'
    ;

CommentsComments

Five basic elements make up the lexical structure of a C# source file: Line terminators (Line terminators), white

space (White space), comments (Comments), tokens (Tokens), and pre-processing directives (Pre-processing

directives). Of these basic elements, only tokens are significant in the syntactic grammar of a C# program (Syntactic

grammar).

The lexical processing of a C# source file consists of reducing the file into a sequence of tokens which becomes the

input to the syntactic analysis. Line terminators, white space, and comments can serve to separate tokens, and pre-

processing directives can cause sections of the source file to be skipped, but otherwise these lexical elements have

no impact on the syntactic structure of a C# program.

In the case of interpolated string literals (Interpolated string literals) a single token is initially produced by lexical

analysis, but is broken up into several input elements which are repeatedly subjected to lexical analysis until all

interpolated string literals have been resolved. The resulting tokens then serve as input to the syntactic analysis.

When several lexical grammar productions match a sequence of characters in a source file, the lexical processing

always forms the longest possible lexical element. For example, the character sequence //  is processed as the

beginning of a single-line comment because that lexical element is longer than a single /  token.

Line terminators divide the characters of a C# source file into lines.

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to be

viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to every

source file in a C# program:

If the last character of the source file is a Control-Z character ( U+001A ), this character is deleted.

A carriage-return character ( U+000D ) is added to the end of the source file if that source file is non-empty and if

the last character of the source file is not a carriage return ( U+000D ), a line feed ( U+000A ), a line separator (

U+2028 ), or a paragraph separator ( U+2029 ).



comment
    : single_line_comment
    | delimited_comment
    ;

single_line_comment
    : '//' input_character*
    ;

input_character
    : '<Any Unicode character except a new_line_character>'
    ;

new_line_character
    : '<Carriage return character (U+000D)>'
    | '<Line feed character (U+000A)>'
    | '<Next line character (U+0085)>'
    | '<Line separator character (U+2028)>'
    | '<Paragraph separator character (U+2029)>'
    ;

delimited_comment
    : '/*' delimited_comment_section* asterisk+ '/'
    ;

delimited_comment_section
    : '/'
    | asterisk* not_slash_or_asterisk
    ;

asterisk
    : '*'
    ;

not_slash_or_asterisk
    : '<Any Unicode character except / or *>'
    ;

/* Hello, world program
   This program writes "hello, world" to the console
*/
class Hello
{
    static void Main() {
        System.Console.WriteLine("hello, world");
    }
}

Two forms of comments are supported: single-line comments and delimited comments. S ingle-line commentsSingle-line comments

start with the characters //  and extend to the end of the source line. Delimited commentsDelimited comments  start with the

characters /*  and end with the characters */ . Delimited comments may span multiple lines.

Comments do not nest. The character sequences /*  and */  have no special meaning within a //  comment, and

the character sequences //  and /*  have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

The example

includes a delimited comment.

The example



      

    

    

// Hello, world program
// This program writes "hello, world" to the console
//
class Hello // any name will do for this class
{
    static void Main() { // this method must be named "Main"
        System.Console.WriteLine("hello, world");
    }
}

White spaceWhite space

whitespace
    : '<Any character with Unicode class Zs>'
    | '<Horizontal tab character (U+0009)>'
    | '<Vertical tab character (U+000B)>'
    | '<Form feed character (U+000C)>'
    ;

Tokens

token
    : identifier
    | keyword
    | integer_literal
    | real_literal
    | character_literal
    | string_literal
    | interpolated_string_literal
    | operator_or_punctuator
    ;

Unicode character escape sequencesUnicode character escape sequences

unicode_escape_sequence
    : '\\u' hex_digit hex_digit hex_digit hex_digit
    | '\\U' hex_digit hex_digit hex_digit hex_digit hex_digit hex_digit hex_digit hex_digit
    ;

shows several single-line comments.

White space is defined as any character with Unicode class Zs (which includes the space character) as well as the

horizontal tab character, the vertical tab character, and the form feed character.

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and

comments are not tokens, though they act as separators for tokens.

A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences are

processed in identifiers (Identifiers), character literals (Character literals), and regular string literals (String literals).

A Unicode character escape is not processed in any other location (for example, to form an operator, punctuator, or

keyword).

A Unicode escape sequence represents the single Unicode character formed by the hexadecimal number following

the " \u " or " \U " characters. Since C# uses a 16-bit encoding of Unicode code points in characters and string

values, a Unicode character in the range U+10000 to U+10FFFF is not permitted in a character literal and is

represented using a Unicode surrogate pair in a string literal. Unicode characters with code points above 0x10FFFF

are not supported.



            

class Class1
{
    static void Test(bool \u0066) {
        char c = '\u0066';
        if (\u0066)
            System.Console.WriteLine(c.ToString());
    }        
}

class Class1
{
    static void Test(bool f) {
        char c = 'f';
        if (f)
            System.Console.WriteLine(c.ToString());
    }        
}

IdentifiersIdentifiers

Multiple translations are not performed. For instance, the string literal " \u005Cu005C " is equivalent to " \u005C "

rather than " \ ". The Unicode value \u005C  is the character " \ ".

The example

shows several uses of \u0066 , which is the escape sequence for the letter " f ". The program is equivalent to

The rules for identifiers given in this section correspond exactly to those recommended by the Unicode Standard

Annex 31, except that underscore is allowed as an initial character (as is traditional in the C programming

language), Unicode escape sequences are permitted in identifiers, and the " @ " character is allowed as a prefix to

enable keywords to be used as identifiers.



identifier
    : available_identifier
    | '@' identifier_or_keyword
    ;

available_identifier
    : '<An identifier_or_keyword that is not a keyword>'
    ;

identifier_or_keyword
    : identifier_start_character identifier_part_character*
    ;

identifier_start_character
    : letter_character
    | '_'
    ;

identifier_part_character
    : letter_character
    | decimal_digit_character
    | connecting_character
    | combining_character
    | formatting_character
    ;

letter_character
    : '<A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl>'
    | '<A unicode_escape_sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl>'
    ;

combining_character
    : '<A Unicode character of classes Mn or Mc>'
    | '<A unicode_escape_sequence representing a character of classes Mn or Mc>'
    ;

decimal_digit_character
    : '<A Unicode character of the class Nd>'
    | '<A unicode_escape_sequence representing a character of the class Nd>'
    ;

connecting_character
    : '<A Unicode character of the class Pc>'
    | '<A unicode_escape_sequence representing a character of the class Pc>'
    ;

formatting_character
    : '<A Unicode character of the class Cf>'
    | '<A unicode_escape_sequence representing a character of the class Cf>'
    ;

For information on the Unicode character classes mentioned above, see The Unicode Standard, Version 3.0, section

4.5.

Examples of valid identifiers include " identifier1 ", " _identifier2 ", and " @if ".

An identifier in a conforming program must be in the canonical format defined by Unicode Normalization Form C,

as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in Normalization

Form C is implementation-defined; however, a diagnostic is not required.

The prefix " @ " enables the use of keywords as identifiers, which is useful when interfacing with other

programming languages. The character @  is not actually part of the identifier, so the identifier might be seen in

other languages as a normal identifier, without the prefix. An identifier with an @  prefix is called a verbatimverbatim

identifieridentifier . Use of the @  prefix for identifiers that are not keywords is permitted, but strongly discouraged as a



    

class @class
{
    public static void @static(bool @bool) {
        if (@bool)
            System.Console.WriteLine("true");
        else
            System.Console.WriteLine("false");
    }    
}

class Class1
{
    static void M() {
        cl\u0061ss.st\u0061tic(true);
    }
}

KeywordsKeywords

keyword
    : 'abstract' | 'as'       | 'base'       | 'bool'      | 'break'
    | 'byte'     | 'case'     | 'catch'      | 'char'      | 'checked'
    | 'class'    | 'const'    | 'continue'   | 'decimal'   | 'default'
    | 'delegate' | 'do'       | 'double'     | 'else'      | 'enum'
    | 'event'    | 'explicit' | 'extern'     | 'false'     | 'finally'
    | 'fixed'    | 'float'    | 'for'        | 'foreach'   | 'goto'
    | 'if'       | 'implicit' | 'in'         | 'int'       | 'interface'
    | 'internal' | 'is'       | 'lock'       | 'long'      | 'namespace'
    | 'new'      | 'null'     | 'object'     | 'operator'  | 'out'
    | 'override' | 'params'   | 'private'    | 'protected' | 'public'
    | 'readonly' | 'ref'      | 'return'     | 'sbyte'     | 'sealed'
    | 'short'    | 'sizeof'   | 'stackalloc' | 'static'    | 'string'
    | 'struct'   | 'switch'   | 'this'       | 'throw'     | 'true'
    | 'try'      | 'typeof'   | 'uint'       | 'ulong'     | 'unchecked'
    | 'unsafe'   | 'ushort'   | 'using'      | 'virtual'   | 'void'
    | 'volatile' | 'while'
    ;

matter of style.

The example:

defines a class named " class " with a static method named " static " that takes a parameter named " bool ". Note

that since Unicode escapes are not permitted in keywords, the token " cl\u0061ss " is an identifier, and is the same

identifier as " @class ".

Two identifiers are considered the same if they are identical after the following transformations are applied, in

order :

The prefix " @ ", if used, is removed.

Each unicode_escape_sequence is transformed into its corresponding Unicode character.

Any formatting_characters are removed.

Identifiers containing two consecutive underscore characters ( U+005F ) are reserved for use by the implementation.

For example, an implementation might provide extended keywords that begin with two underscores.

A keywordkeyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except

when prefaced by the @  character.

In some places in the grammar, specific identifiers have special meaning, but are not keywords. Such identifiers are

sometimes referred to as "contextual keywords". For example, within a property declaration, the " get " and " set "



      

    

LiteralsLiterals

literal
    : boolean_literal
    | integer_literal
    | real_literal
    | character_literal
    | string_literal
    | null_literal
    ;

Boolean literalsBoolean literals

boolean_literal
    : 'true'
    | 'false'
    ;

Integer literalsInteger literals

integer_literal
    : decimal_integer_literal
    | hexadecimal_integer_literal
    ;

decimal_integer_literal
    : decimal_digit+ integer_type_suffix?
    ;

decimal_digit
    : '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
    ;

integer_type_suffix
    : 'U' | 'u' | 'L' | 'l' | 'UL' | 'Ul' | 'uL' | 'ul' | 'LU' | 'Lu' | 'lU' | 'lu'
    ;

hexadecimal_integer_literal
    : '0x' hex_digit+ integer_type_suffix?
    | '0X' hex_digit+ integer_type_suffix?
    ;

hex_digit
    : '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
    | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f';

identifiers have special meaning (Accessors). An identifier other than get  or set  is never permitted in these

locations, so this use does not conflict with a use of these words as identifiers. In other cases, such as with the

identifier " var " in implicitly typed local variable declarations (Local variable declarations), a contextual keyword

can conflict with declared names. In such cases, the declared name takes precedence over the use of the identifier

as a contextual keyword.

A literalliteral  is a source code representation of a value.

There are two boolean literal values: true  and false .

The type of a boolean_literal is bool .

Integer literals are used to write values of types int , uint , long , and ulong . Integer literals have two possible

forms: decimal and hexadecimal.

The type of an integer literal is determined as follows:



Real literalsReal literals

real_literal
    : decimal_digit+ '.' decimal_digit+ exponent_part? real_type_suffix?
    | '.' decimal_digit+ exponent_part? real_type_suffix?
    | decimal_digit+ exponent_part real_type_suffix?
    | decimal_digit+ real_type_suffix
    ;

exponent_part
    : 'e' sign? decimal_digit+
    | 'E' sign? decimal_digit+
    ;

sign
    : '+'
    | '-'
    ;

real_type_suffix
    : 'F' | 'f' | 'D' | 'd' | 'M' | 'm'
    ;

If the literal has no suffix, it has the first of these types in which its value can be represented: int , uint , long , 

ulong .

If the literal is suffixed by U  or u , it has the first of these types in which its value can be represented: uint , 

ulong .

If the literal is suffixed by L  or l , it has the first of these types in which its value can be represented: long , 

ulong .

If the literal is suffixed by UL , Ul , uL , ul , LU , Lu , lU , or lu , it is of type ulong .

If the value represented by an integer literal is outside the range of the ulong  type, a compile-time error occurs.

As a matter of style, it is suggested that " L " be used instead of " l " when writing literals of type long , since it is

easy to confuse the letter " l " with the digit " 1 ".

To permit the smallest possible int  and long  values to be written as decimal integer literals, the following two

rules exist:

When a decimal_integer_literal with the value 2147483648 (2^31) and no integer_type_suffix appears as the

token immediately following a unary minus operator token (Unary minus operator), the result is a constant of

type int  with the value -2147483648 (-2^31). In all other situations, such a decimal_integer_literal is of type 

uint .

When a decimal_integer_literal with the value 9223372036854775808 (2^63) and no integer_type_suffix or the

integer_type_suffix L  or l  appears as the token immediately following a unary minus operator token (Unary

minus operator), the result is a constant of type long  with the value -9223372036854775808 (-2^63). In all

other situations, such a decimal_integer_literal is of type ulong .

Real literals are used to write values of types float , double , and decimal .

If no real_type_suffix is specified, the type of the real literal is double . Otherwise, the real type suffix determines the

type of the real literal, as follows:

A real literal suffixed by F  or f  is of type float . For example, the literals 1f , 1.5f , 1e10f , and 123.456F

are all of type float .

A real literal suffixed by D  or d  is of type double . For example, the literals 1d , 1.5d , 1e10d , and 123.456D

are all of type double .

A real literal suffixed by M  or m  is of type decimal . For example, the literals 1m , 1.5m , 1e10m , and 123.456M



  Character literalsCharacter literals

character_literal
    : '\'' character '\''
    ;

character
    : single_character
    | simple_escape_sequence
    | hexadecimal_escape_sequence
    | unicode_escape_sequence
    ;

single_character
    : '<Any character except \' (U+0027), \\ (U+005C), and new_line_character>'
    ;

simple_escape_sequence
    : '\\\'' | '\\"' | '\\\\' | '\\0' | '\\a' | '\\b' | '\\f' | '\\n' | '\\r' | '\\t' | '\\v'
    ;

hexadecimal_escape_sequence
    : '\\x' hex_digit hex_digit? hex_digit? hex_digit?;
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\' Single quote 0x0027

are all of type decimal . This literal is converted to a decimal  value by taking the exact value, and, if necessary,

rounding to the nearest representable value using banker's rounding (The decimal type). Any scale apparent in

the literal is preserved unless the value is rounded or the value is zero (in which latter case the sign and scale

will be 0). Hence, the literal 2.900m  will be parsed to form the decimal with sign 0 , coefficient 2900 , and scale 

3 .

If the specified literal cannot be represented in the indicated type, a compile-time error occurs.

The value of a real literal of type float  or double  is determined by using the IEEE "round to nearest" mode.

Note that in a real literal, decimal digits are always required after the decimal point. For example, 1.3F  is a real

literal but 1.F  is not.

A character literal represents a single character, and usually consists of a character in quotes, as in 'a' .

Note: The ANTLR grammar notation makes the following confusing! In ANTLR, when you write \'  it stands for a

single quote ' . And when you write \\  it stands for a single backslash \ . Therefore the first rule for a character

literal means it starts with a single quote, then a character, then a single quote. And the eleven possible simple

escape sequences are \' , \" , \\ , \0 , \a , \b , \f , \n , \r , \t , \v .

A character that follows a backslash character ( \ ) in a character must be one of the following characters: ' , " , 

\ , 0 , a , b , f , n , r , t , u , U , x , v . Otherwise, a compile-time error occurs.

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the hexadecimal

number following " \x ".

If the value represented by a character literal is greater than U+FFFF , a compile-time error occurs.

A Unicode character escape sequence (Unicode character escape sequences) in a character literal must be in the

range U+0000  to U+FFFF .

A simple escape sequence represents a Unicode character encoding, as described in the table below.



    

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B
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String literalsString literals

The type of a character_literal is char .

C# supports two forms of string literals: regular str ing literalsregular str ing literals  and verbatim str ing literalsverbatim str ing literals .

A regular string literal consists of zero or more characters enclosed in double quotes, as in "hello" , and may

include both simple escape sequences (such as \t  for the tab character), and hexadecimal and Unicode escape

sequences.

A verbatim string literal consists of an @  character followed by a double-quote character, zero or more characters,

and a closing double-quote character. A simple example is @"hello" . In a verbatim string literal, the characters

between the delimiters are interpreted verbatim, the only exception being a quote_escape_sequence. In particular,

simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim string

literals. A verbatim string literal may span multiple lines.



string_literal
    : regular_string_literal
    | verbatim_string_literal
    ;

regular_string_literal
    : '"' regular_string_literal_character* '"'
    ;

regular_string_literal_character
    : single_regular_string_literal_character
    | simple_escape_sequence
    | hexadecimal_escape_sequence
    | unicode_escape_sequence
    ;

single_regular_string_literal_character
    : '<Any character except " (U+0022), \\ (U+005C), and new_line_character>'
    ;

verbatim_string_literal
    : '@"' verbatim_string_literal_character* '"'
    ;

verbatim_string_literal_character
    : single_verbatim_string_literal_character
    | quote_escape_sequence
    ;

single_verbatim_string_literal_character
    : '<any character except ">'
    ;

quote_escape_sequence
    : '""'
    ;

string a = "hello, world";                   // hello, world
string b = @"hello, world";                  // hello, world

string c = "hello \t world";                 // hello      world
string d = @"hello \t world";                // hello \t world

string e = "Joe said \"Hello\" to me";       // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me";      // Joe said "Hello" to me

string g = "\\\\server\\share\\file.txt";    // \\server\share\file.txt
string h = @"\\server\share\file.txt";       // \\server\share\file.txt

string i = "one\r\ntwo\r\nthree";
string j = @"one
two
three";

A character that follows a backslash character ( \ ) in a regular_string_literal_character must be one of the following

characters: ' , " , \ , 0 , a , b , f , n , r , t , u , U , x , v . Otherwise, a compile-time error occurs.

The example

shows a variety of string literals. The last string literal, j , is a verbatim string literal that spans multiple lines. The

characters between the quotation marks, including white space such as new line characters, are preserved

verbatim.



    

class Test
{
    static void Main() {
        object a = "hello";
        object b = "hello";
        System.Console.WriteLine(a == b);
    }
}

Interpolated string literalsInterpolated string literals

interpolated_string_literal
    : '$' interpolated_regular_string_literal
    | '$' interpolated_verbatim_string_literal
    ;

interpolated_regular_string_literal
    : interpolated_regular_string_whole
    | interpolated_regular_string_start  interpolated_regular_string_literal_body 
interpolated_regular_string_end
    ;

interpolated_regular_string_literal_body
    : regular_balanced_text
    | interpolated_regular_string_literal_body interpolated_regular_string_mid regular_balanced_text
    ;

interpolated_regular_string_whole
    : '"' interpolated_regular_string_character* '"'
    ;

interpolated_regular_string_start
    : '"' interpolated_regular_string_character* '{'
    ;

interpolated_regular_string_mid
    : interpolation_format? '}' interpolated_regular_string_characters_after_brace? '{'

Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal "\x123"  contains a

single character with hex value 123. To create a string containing the character with hex value 12 followed by the

character 3, one could write "\x00123"  or "\x12" + "3"  instead.

The type of a string_literal is string .

Each string literal does not necessarily result in a new string instance. When two or more string literals that are

equivalent according to the string equality operator (String equality operators) appear in the same program, these

string literals refer to the same string instance. For instance, the output produced by

is True  because the two literals refer to the same string instance.

Interpolated string literals are similar to string literals, but contain holes delimited by {  and } , wherein

expressions can occur. At runtime, the expressions are evaluated with the purpose of having their textual forms

substituted into the string at the place where the hole occurs. The syntax and semantics of string interpolation are

described in section (Interpolated strings).

Like string literals, interpolated string literals can be either regular or verbatim. Interpolated regular string literals

are delimited by $"  and " , and interpolated verbatim string literals are delimited by $@"  and " .

Like other literals, lexical analysis of an interpolated string literal initially results in a single token, as per the

grammar below. However, before syntactic analysis, the single token of an interpolated string literal is broken into

several tokens for the parts of the string enclosing the holes, and the input elements occurring in the holes are

lexically analysed again. This may in turn produce more interpolated string literals to be processed, but, if lexically

correct, will eventually lead to a sequence of tokens for syntactic analysis to process.



    : interpolation_format? '}' interpolated_regular_string_characters_after_brace? '{'
    ;

interpolated_regular_string_end
    : interpolation_format? '}' interpolated_regular_string_characters_after_brace? '"'
    ;

interpolated_regular_string_characters_after_brace
    : interpolated_regular_string_character_no_brace
    | interpolated_regular_string_characters_after_brace interpolated_regular_string_character
    ;

interpolated_regular_string_character
    : single_interpolated_regular_string_character
    | simple_escape_sequence
    | hexadecimal_escape_sequence
    | unicode_escape_sequence
    | open_brace_escape_sequence
    | close_brace_escape_sequence
    ;

interpolated_regular_string_character_no_brace
    : '<Any interpolated_regular_string_character except close_brace_escape_sequence and any 
hexadecimal_escape_sequence or unicode_escape_sequence designating } (U+007D)>'
    ;

single_interpolated_regular_string_character
    : '<Any character except \" (U+0022), \\ (U+005C), { (U+007B), } (U+007D), and new_line_character>'
    ;

open_brace_escape_sequence
    : '{{'
    ;

close_brace_escape_sequence
    : '}}'
    ;
    
regular_balanced_text
    : regular_balanced_text_part+
    ;

regular_balanced_text_part
    : single_regular_balanced_text_character
    | delimited_comment
    | '@' identifier_or_keyword
    | string_literal
    | interpolated_string_literal
    | '(' regular_balanced_text ')'
    | '[' regular_balanced_text ']'
    | '{' regular_balanced_text '}'
    ;
    
single_regular_balanced_text_character
    : '<Any character except / (U+002F), @ (U+0040), \" (U+0022), $ (U+0024), ( (U+0028), ) (U+0029), [ 
(U+005B), ] (U+005D), { (U+007B), } (U+007D) and new_line_character>'
    | '</ (U+002F), if not directly followed by / (U+002F) or * (U+002A)>'
    ;
    
interpolation_format
    : interpolation_format_character+
    ;
    
interpolation_format_character
    : '<Any character except \" (U+0022), : (U+003A), { (U+007B) and } (U+007D)>'
    ;
    
interpolated_verbatim_string_literal
    : interpolated_verbatim_string_whole
    | interpolated_verbatim_string_start interpolated_verbatim_string_literal_body 



    | interpolated_verbatim_string_start interpolated_verbatim_string_literal_body 
interpolated_verbatim_string_end
    ;

interpolated_verbatim_string_literal_body
    : verbatim_balanced_text
    | interpolated_verbatim_string_literal_body interpolated_verbatim_string_mid verbatim_balanced_text
    ;
    
interpolated_verbatim_string_whole
    : '@"' interpolated_verbatim_string_character* '"'
    ;
    
interpolated_verbatim_string_start
    : '@"' interpolated_verbatim_string_character* '{'
    ;
    
interpolated_verbatim_string_mid
    : interpolation_format? '}' interpolated_verbatim_string_characters_after_brace? '{'
    ;
    
interpolated_verbatim_string_end
    : interpolation_format? '}' interpolated_verbatim_string_characters_after_brace? '"'
    ;
    
interpolated_verbatim_string_characters_after_brace
    : interpolated_verbatim_string_character_no_brace
    | interpolated_verbatim_string_characters_after_brace interpolated_verbatim_string_character
    ;
    
interpolated_verbatim_string_character
    : single_interpolated_verbatim_string_character
    | quote_escape_sequence
    | open_brace_escape_sequence
    | close_brace_escape_sequence
    ;
    
interpolated_verbatim_string_character_no_brace
    : '<Any interpolated_verbatim_string_character except close_brace_escape_sequence>'
    ;
    
single_interpolated_verbatim_string_character
    : '<Any character except \" (U+0022), { (U+007B) and } (U+007D)>'
    ;
    
verbatim_balanced_text
    : verbatim_balanced_text_part+
    ;

verbatim_balanced_text_part
    : single_verbatim_balanced_text_character
    | comment
    | '@' identifier_or_keyword
    | string_literal
    | interpolated_string_literal
    | '(' verbatim_balanced_text ')'
    | '[' verbatim_balanced_text ']'
    | '{' verbatim_balanced_text '}'
    ;
    
single_verbatim_balanced_text_character
    : '<Any character except / (U+002F), @ (U+0040), \" (U+0022), $ (U+0024), ( (U+0028), ) (U+0029), [ 
(U+005B), ] (U+005D), { (U+007B) and } (U+007D)>'
    | '</ (U+002F), if not directly followed by / (U+002F) or * (U+002A)>'
    ;

An interpolated_string_literal token is reinterpreted as multiple tokens and other input elements as follows, in order



   

The null literalThe null literal

null_literal
    : 'null'
    ;

Operators and punctuatorsOperators and punctuators

operator_or_punctuator
    : '{'  | '}'  | '['  | ']'  | '('   | ')'  | '.'  | ','  | ':'  | ';'
    | '+'  | '-'  | '*'  | '/'  | '%'   | '&'  | '|'  | '^'  | '!'  | '~'
    | '='  | '<'  | '>'  | '?'  | '??'  | '::' | '++' | '--' | '&&' | '||'
    | '->' | '==' | '!=' | '<=' | '>='  | '+=' | '-=' | '*=' | '/=' | '%='
    | '&=' | '|=' | '^=' | '<<' | '<<=' | '=>'
    ;

right_shift
    : '>>'
    ;

right_shift_assignment
    : '>>='
    ;

Pre-processing directives

of occurrence in the interpolated_string_literal:

Occurrences of the following are reinterpreted as separate individual tokens: the leading $  sign,

interpolated_regular_string_whole, interpolated_regular_string_start, interpolated_regular_string_mid,

interpolated_regular_string_end, interpolated_verbatim_string_whole, interpolated_verbatim_string_start,

interpolated_verbatim_string_mid and interpolated_verbatim_string_end.

Occurrences of regular_balanced_text and verbatim_balanced_text between these are reprocessed as an

input_section (Lexical analysis) and are reinterpreted as the resulting sequence of input elements. These may in

turn include interpolated string literal tokens to be reinterpreted.

Syntactic analysis will recombine the tokens into an interpolated_string_expression (Interpolated strings).

Examples TODO

The null_literal can be implicitly converted to a reference type or nullable type.

There are several kinds of operators and punctuators. Operators are used in expressions to describe operations

involving one or more operands. For example, the expression a + b  uses the +  operator to add the two operands

a  and b . Punctuators are for grouping and separating.

The vertical bar in the right_shift and right_shift_assignment productions are used to indicate that, unlike other

productions in the syntactic grammar, no characters of any kind (not even whitespace) are allowed between the

tokens. These productions are treated specially in order to enable the correct handling of type_parameter_lists

(Type parameters).

The pre-processing directives provide the ability to conditionally skip sections of source files, to report error and

warning conditions, and to delineate distinct regions of source code. The term "pre-processing directives" is used

only for consistency with the C and C++ programming languages. In C#, there is no separate pre-processing step;

pre-processing directives are processed as part of the lexical analysis phase.



pp_directive
    : pp_declaration
    | pp_conditional
    | pp_line
    | pp_diagnostic
    | pp_region
    | pp_pragma
    ;

#define A
#undef B

class C
{
#if A
    void F() {}
#else
    void G() {}
#endif

#if B
    void H() {}
#else
    void I() {}
#endif
}

class C
{
    void F() {}
    void I() {}
}

The following pre-processing directives are available:

#define  and #undef , which are used to define and undefine, respectively, conditional compilation symbols

(Declaration directives).

#if , #elif , #else , and #endif , which are used to conditionally skip sections of source code (Conditional

compilation directives).

#line , which is used to control line numbers emitted for errors and warnings (Line directives).

#error  and #warning , which are used to issue errors and warnings, respectively (Diagnostic directives).

#region  and #endregion , which are used to explicitly mark sections of source code (Region directives).

#pragma , which is used to specify optional contextual information to the compiler (Pragma directives).

A pre-processing directive always occupies a separate line of source code and always begins with a #  character

and a pre-processing directive name. White space may occur before the #  character and between the #  character

and the directive name.

A source line containing a #define , #undef , #if , #elif , #else , #endif , #line , or #endregion  directive may

end with a single-line comment. Delimited comments (the /* */  style of comments) are not permitted on source

lines containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-processing

directives can be used to include or exclude sequences of tokens and can in that way affect the meaning of a C#

program. For example, when compiled, the program:

results in the exact same sequence of tokens as the program:



  

Conditional compilation symbolsConditional compilation symbols

conditional_symbol
    : '<Any identifier_or_keyword except true or false>'
    ;

Pre-processing expressionsPre-processing expressions

Thus, whereas lexically, the two programs are quite different, syntactically, they are identical.

The conditional compilation functionality provided by the #if , #elif , #else , and #endif  directives is controlled

through pre-processing expressions (Pre-processing expressions) and conditional compilation symbols.

A conditional compilation symbol has two possible states: defineddefined or undefinedundefined. At the beginning of the lexical

processing of a source file, a conditional compilation symbol is undefined unless it has been explicitly defined by an

external mechanism (such as a command-line compiler option). When a #define  directive is processed, the

conditional compilation symbol named in that directive becomes defined in that source file. The symbol remains

defined until an #undef  directive for that same symbol is processed, or until the end of the source file is reached.

An implication of this is that #define  and #undef  directives in one source file have no effect on other source files

in the same program.

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean value 

true , and an undefined conditional compilation symbol has the boolean value false . There is no requirement

that conditional compilation symbols be explicitly declared before they are referenced in pre-processing

expressions. Instead, undeclared symbols are simply undefined and thus have the value false .

The name space for conditional compilation symbols is distinct and separate from all other named entities in a C#

program. Conditional compilation symbols can only be referenced in #define  and #undef  directives and in pre-

processing expressions.

Pre-processing expressions can occur in #if  and #elif  directives. The operators ! , == , != , &&  and ||  are

permitted in pre-processing expressions, and parentheses may be used for grouping.



  

pp_expression
    : whitespace? pp_or_expression whitespace?
    ;

pp_or_expression
    : pp_and_expression
    | pp_or_expression whitespace? '||' whitespace? pp_and_expression
    ;

pp_and_expression
    : pp_equality_expression
    | pp_and_expression whitespace? '&&' whitespace? pp_equality_expression
    ;

pp_equality_expression
    : pp_unary_expression
    | pp_equality_expression whitespace? '==' whitespace? pp_unary_expression
    | pp_equality_expression whitespace? '!=' whitespace? pp_unary_expression
    ;

pp_unary_expression
    : pp_primary_expression
    | '!' whitespace? pp_unary_expression
    ;

pp_primary_expression
    : 'true'
    | 'false'
    | conditional_symbol
    | '(' whitespace? pp_expression whitespace? ')'
    ;

Declaration directivesDeclaration directives

pp_declaration
    : whitespace? '#' whitespace? 'define' whitespace conditional_symbol pp_new_line
    | whitespace? '#' whitespace? 'undef' whitespace conditional_symbol pp_new_line
    ;

pp_new_line
    : whitespace? single_line_comment? new_line
    ;

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean value 

true , and an undefined conditional compilation symbol has the boolean value false .

Evaluation of a pre-processing expression always yields a boolean value. The rules of evaluation for a pre-

processing expression are the same as those for a constant expression (Constant expressions), except that the only

user-defined entities that can be referenced are conditional compilation symbols.

The declaration directives are used to define or undefine conditional compilation symbols.

The processing of a #define  directive causes the given conditional compilation symbol to become defined, starting

with the source line that follows the directive. Likewise, the processing of an #undef  directive causes the given

conditional compilation symbol to become undefined, starting with the source line that follows the directive.

Any #define  and #undef  directives in a source file must occur before the first token (Tokens) in the source file;

otherwise a compile-time error occurs. In intuitive terms, #define  and #undef  directives must precede any "real

code" in the source file.

The example:



  

#define Enterprise

#if Professional || Enterprise
    #define Advanced
#endif

namespace Megacorp.Data
{
    #if Advanced
    class PivotTable {...}
    #endif
}

#define A
namespace N
{
    #define B
    #if B
    class Class1 {}
    #endif
}

#define A
#define A

#define A
#undef A
#undef A

Conditional compilation directivesConditional compilation directives

is valid because the #define  directives precede the first token (the namespace  keyword) in the source file.

The following example results in a compile-time error because a #define  follows real code:

A #define  may define a conditional compilation symbol that is already defined, without there being any

intervening #undef  for that symbol. The example below defines a conditional compilation symbol A  and then

defines it again.

A #undef  may "undefine" a conditional compilation symbol that is not defined. The example below defines a

conditional compilation symbol A  and then undefines it twice; although the second #undef  has no effect, it is still

valid.

The conditional compilation directives are used to conditionally include or exclude portions of a source file.



pp_conditional
    : pp_if_section pp_elif_section* pp_else_section? pp_endif
    ;

pp_if_section
    : whitespace? '#' whitespace? 'if' whitespace pp_expression pp_new_line conditional_section?
    ;

pp_elif_section
    : whitespace? '#' whitespace? 'elif' whitespace pp_expression pp_new_line conditional_section?
    ;

pp_else_section:
    | whitespace? '#' whitespace? 'else' pp_new_line conditional_section?
    ;

pp_endif
    : whitespace? '#' whitespace? 'endif' pp_new_line
    ;

conditional_section
    : input_section
    | skipped_section
    ;

skipped_section
    : skipped_section_part+
    ;

skipped_section_part
    : skipped_characters? new_line
    | pp_directive
    ;

skipped_characters
    : whitespace? not_number_sign input_character*
    ;

not_number_sign
    : '<Any input_character except #>'
    ;

As indicated by the syntax, conditional compilation directives must be written as sets consisting of, in order, an #if

directive, zero or more #elif  directives, zero or one #else  directive, and an #endif  directive. Between the

directives are conditional sections of source code. Each section is controlled by the immediately preceding directive.

A conditional section may itself contain nested conditional compilation directives provided these directives form

complete sets.

A pp_conditional selects at most one of the contained conditional_sections for normal lexical processing:

The pp_expressions of the #if  and #elif  directives are evaluated in order until one yields true . If an

expression yields true , the conditional_section of the corresponding directive is selected.

If all pp_expressions yield false , and if an #else  directive is present, the conditional_section of the #else

directive is selected.

Otherwise, no conditional_section is selected.

The selected conditional_section, if any, is processed as a normal input_section: the source code contained in the

section must adhere to the lexical grammar; tokens are generated from the source code in the section; and pre-

processing directives in the section have the prescribed effects.

The remaining conditional_sections, if any, are processed as skipped_sections: except for pre-processing directives,

the source code in the section need not adhere to the lexical grammar; no tokens are generated from the source



#define Debug       // Debugging on
#undef Trace        // Tracing off

class PurchaseTransaction
{
    void Commit() {
        #if Debug
            CheckConsistency();
            #if Trace
                WriteToLog(this.ToString());
            #endif
        #endif
        CommitHelper();
    }
}

#define Debug        // Debugging on

class PurchaseTransaction
{
    void Commit() {
        #if Debug
            CheckConsistency();
        #else
            /* Do something else
        #endif
    }
}

class Hello
{
    static void Main() {
        System.Console.WriteLine(@"hello, 
#if Debug
        world
#else
        Nebraska
#endif
        ");
    }
}

code in the section; and pre-processing directives in the section must be lexically correct but are not otherwise

processed. Within a conditional_section that is being processed as a skipped_section, any nested

conditional_sections (contained in nested #if ... #endif  and #region ... #endregion  constructs) are also processed

as skipped_sections.

The following example illustrates how conditional compilation directives can nest:

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the

following is valid despite the unterminated comment in the #else  section:

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections of source

code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For example, the

program:

results in the output:



  

  

hello,
#if Debug
        world
#else
        Nebraska
#endif

#if X
    /*
#else
    /* */ class Q { }
#endif

Diagnostic directivesDiagnostic directives

pp_diagnostic
    : whitespace? '#' whitespace? 'error' pp_message
    | whitespace? '#' whitespace? 'warning' pp_message
    ;

pp_message
    : new_line
    | whitespace input_character* new_line
    ;

#warning Code review needed before check-in

#if Debug && Retail
    #error A build can't be both debug and retail
#endif

class Test {...}

Region directivesRegion directives

In peculiar cases, the set of pre-processing directives that is processed might depend on the evaluation of the

pp_expression. The example:

always produces the same token stream ( class  Q  {  } ), regardless of whether or not X  is defined. If X  is

defined, the only processed directives are #if  and #endif , due to the multi-line comment. If X  is undefined, then

three directives ( #if , #else , #endif ) are part of the directive set.

The diagnostic directives are used to explicitly generate error and warning messages that are reported in the same

way as other compile-time errors and warnings.

The example:

always produces a warning ("Code review needed before check-in"), and produces a compile-time error ("A build

can't be both debug and retail") if the conditional symbols Debug  and Retail  are both defined. Note that a

pp_message can contain arbitrary text; specifically, it need not contain well-formed tokens, as shown by the single

quote in the word can't .

The region directives are used to explicitly mark regions of source code.



      

pp_region
    : pp_start_region conditional_section? pp_end_region
    ;

pp_start_region
    : whitespace? '#' whitespace? 'region' pp_message
    ;

pp_end_region
    : whitespace? '#' whitespace? 'endregion' pp_message
    ;

#region
...
#endregion

#if true
...
#endif

Line directivesLine directives

pp_line
    : whitespace? '#' whitespace? 'line' whitespace line_indicator pp_new_line
    ;

line_indicator
    : decimal_digit+ whitespace file_name
    | decimal_digit+
    | 'default'
    | 'hidden'
    ;

file_name
    : '"' file_name_character+ '"'
    ;

file_name_character
    : '<Any input_character except ">'
    ;

No semantic meaning is attached to a region; regions are intended for use by the programmer or by automated

tools to mark a section of source code. The message specified in a #region  or #endregion  directive likewise has no

semantic meaning; it merely serves to identify the region. Matching #region  and #endregion  directives may have

different pp_messages.

The lexical processing of a region:

corresponds exactly to the lexical processing of a conditional compilation directive of the form:

Line directives may be used to alter the line numbers and source file names that are reported by the compiler in

output such as warnings and errors, and that are used by caller info attributes (Caller info attributes).

Line directives are most commonly used in meta-programming tools that generate C# source code from some

other text input.

When no #line  directives are present, the compiler reports true line numbers and source file names in its output.

When processing a #line  directive that includes a line_indicator that is not default , the compiler treats the line

after the directive as having the given line number (and file name, if specified).



  Pragma directivesPragma directives

pp_pragma
    : whitespace? '#' whitespace? 'pragma' whitespace pragma_body pp_new_line
    ;

pragma_body
    : pragma_warning_body
    ;

Pragma warningPragma warning

pragma_warning_body
    : 'warning' whitespace warning_action
    | 'warning' whitespace warning_action whitespace warning_list
    ;

warning_action
    : 'disable'
    | 'restore'
    ;

warning_list
    : decimal_digit+ (whitespace? ',' whitespace? decimal_digit+)*
    ;

A #line default  directive reverses the effect of all preceding #line directives. The compiler reports true line

information for subsequent lines, precisely as if no #line  directives had been processed.

A #line hidden  directive has no effect on the file and line numbers reported in error messages, but does affect

source level debugging. When debugging, all lines between a #line hidden  directive and the subsequent #line

directive (that is not #line hidden ) have no line number information. When stepping through code in the

debugger, these lines will be skipped entirely.

Note that a file_name differs from a regular string literal in that escape characters are not processed; the " \ "

character simply designates an ordinary backslash character within a file_name.

The #pragma  preprocessing directive is used to specify optional contextual information to the compiler. The

information supplied in a #pragma  directive will never change program semantics.

C# provides #pragma  directives to control compiler warnings. Future versions of the language may include

additional #pragma  directives. To ensure interoperability with other C# compilers, the Microsoft C# compiler does

not issue compilation errors for unknown #pragma  directives; such directives do however generate warnings.

The #pragma warning  directive is used to disable or restore all or a particular set of warning messages during

compilation of the subsequent program text.

A #pragma warning  directive that omits the warning list affects all warnings. A #pragma warning  directive that

includes a warning list affects only those warnings that are specified in the list.

A #pragma warning disable  directive disables all or the given set of warnings.

A #pragma warning restore  directive restores all or the given set of warnings to the state that was in effect at the

beginning of the compilation unit. Note that if a particular warning was disabled externally, a 

#pragma warning restore  (whether for all or the specific warning) will not re-enable that warning.

The following example shows use of #pragma warning  to temporarily disable the warning reported when obsoleted

members are referenced, using the warning number from the Microsoft C# compiler.



using System;

class Program
{
    [Obsolete]
    static void Foo() {}

    static void Main() {
#pragma warning disable 612
    Foo();
#pragma warning restore 612
    }
}
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Application Startup

static void Main() {...}

static void Main(string[] args) {...}

static int Main() {...}

static int Main(string[] args) {...}

An assembly that has an entr y pointentr y point is called an applicationapplication. When an application is run, a new applicationapplication

domaindomain is created. Several different instantiations of an application may exist on the same machine at the same

time, and each has its own application domain.

An application domain enables application isolation by acting as a container for application state. An application

domain acts as a container and boundary for the types defined in the application and the class libraries it uses.

Types loaded into one application domain are distinct from the same type loaded into another application domain,

and instances of objects are not directly shared between application domains. For instance, each application

domain has its own copy of static variables for these types, and a static constructor for a type is run at most once

per application domain. Implementations are free to provide implementation-specific policy or mechanisms for the

creation and destruction of application domains.

Application star tupApplication star tup occurs when the execution environment calls a designated method, which is referred to as

the application's entry point. This entry point method is always named Main , and can have one of the following

signatures:

As shown, the entry point may optionally return an int  value. This return value is used in application termination

(Application termination).

The entry point may optionally have one formal parameter. The parameter may have any name, but the type of the

parameter must be string[] . If the formal parameter is present, the execution environment creates and passes a 

string[]  argument containing the command-line arguments that were specified when the application was started.

The string[]  argument is never null, but it may have a length of zero if no command-line arguments were

specified.

Since C# supports method overloading, a class or struct may contain multiple definitions of some method,

provided each has a different signature. However, within a single program, no class or struct may contain more

than one method called Main  whose definition qualifies it to be used as an application entry point. Other

overloaded versions of Main  are permitted, however, provided they have more than one parameter, or their only

parameter is other than type string[] .

An application can be made up of multiple classes or structs. It is possible for more than one of these classes or

structs to contain a method called Main  whose definition qualifies it to be used as an application entry point. In

such cases, an external mechanism (such as a command-line compiler option) must be used to select one of these 

Main  methods as the entry point.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility

(Declared accessibility) of a method is determined by the access modifiers (Access modifiers) specified in its

declaration, and similarly the declared accessibility of a type is determined by the access modifiers specified in its

https://github.com/dotnet/csharplang/blob/master/spec/basic-concepts.md


 

        

Application termination

Declarations

declaration. In order for a given method of a given type to be callable, both the type and the member must be

accessible. However, the application entry point is a special case. Specifically, the execution environment can access

the application's entry point regardless of its declared accessibility and regardless of the declared accessibility of its

enclosing type declarations.

The application entry point method may not be in a generic class declaration.

In all other respects, entry point methods behave like those that are not entry points.

Application terminationApplication termination returns control to the execution environment.

If the return type of the application's entr y pointentr y point method is int , the value returned serves as the application's

termination status codetermination status code. The purpose of this code is to allow communication of success or failure to the

execution environment.

If the return type of the entry point method is void , reaching the right brace ( } ) which terminates that method, or

executing a return  statement that has no expression, results in a termination status code of 0 .

Prior to an application's termination, destructors for all of its objects that have not yet been garbage collected are

called, unless such cleanup has been suppressed (by a call to the library method GC.SuppressFinalize , for example).

Declarations in a C# program define the constituent elements of the program. C# programs are organized using

namespaces (Namespaces), which can contain type declarations and nested namespace declarations. Type

declarations (Type declarations) are used to define classes (Classes), structs (Structs), interfaces (Interfaces), enums

(Enums), and delegates (Delegates). The kinds of members permitted in a type declaration depend on the form of

the type declaration. For instance, class declarations can contain declarations for constants (Constants), fields

(Fields), methods (Methods), properties (Properties), events (Events), indexers (Indexers), operators (Operators),

instance constructors (Instance constructors), static constructors (Static constructors), destructors (Destructors), and

nested types (Nested types).

A declaration defines a name in the declaration spacedeclaration space to which the declaration belongs. Except for overloaded

members (Signatures and overloading), it is a compile-time error to have two or more declarations that introduce

members with the same name in a declaration space. It is never possible for a declaration space to contain different

kinds of members with the same name. For example, a declaration space can never contain a field and a method by

the same name.

There are several different types of declaration spaces, as described in the following.

Within all source files of a program, namespace_member_declarations with no enclosing

namespace_declaration are members of a single combined declaration space called the global declarationglobal declaration

spacespace.

Within all source files of a program, namespace_member_declarations within namespace_declarations that have

the same fully qualified namespace name are members of a single combined declaration space.

Each class, struct, or interface declaration creates a new declaration space. Names are introduced into this

declaration space through class_member_declarations, struct_member_declarations,

interface_member_declarations, or type_parameters. Except for overloaded instance constructor declarations

and static constructor declarations, a class or struct cannot contain a member declaration with the same name

as the class or struct. A class, struct, or interface permits the declaration of overloaded methods and indexers.

Furthermore, a class or struct permits the declaration of overloaded instance constructors and operators. For

example, a class, struct, or interface may contain multiple method declarations with the same name, provided

these method declarations differ in their signature (Signatures and overloading). Note that base classes do not

contribute to the declaration space of a class, and base interfaces do not contribute to the declaration space of



namespace Megacorp.Data
{
    class Customer
    {
        ...
    }
}

namespace Megacorp.Data
{
    class Order
    {
        ...
    }
}

an interface. Thus, a derived class or interface is allowed to declare a member with the same name as an

inherited member. Such a member is said to hidehide the inherited member.

Each delegate declaration creates a new declaration space. Names are introduced into this declaration space

through formal parameters (fixed_parameters and parameter_arrays) and type_parameters.

Each enumeration declaration creates a new declaration space. Names are introduced into this declaration space

through enum_member_declarations.

Each method declaration, indexer declaration, operator declaration, instance constructor declaration and

anonymous function creates a new declaration space called a local var iable declaration spacelocal var iable declaration space. Names are

introduced into this declaration space through formal parameters (fixed_parameters and parameter_arrays) and

type_parameters. The body of the function member or anonymous function, if any, is considered to be nested

within the local variable declaration space. It is an error for a local variable declaration space and a nested local

variable declaration space to contain elements with the same name. Thus, within a nested declaration space it is

not possible to declare a local variable or constant with the same name as a local variable or constant in an

enclosing declaration space. It is possible for two declaration spaces to contain elements with the same name as

long as neither declaration space contains the other.

Each block or switch_block , as well as a for, foreach and using statement, creates a local variable declaration

space for local variables and local constants . Names are introduced into this declaration space through

local_variable_declarations and local_constant_declarations. Note that blocks that occur as or within the body of

a function member or anonymous function are nested within the local variable declaration space declared by

those functions for their parameters. Thus it is an error to have e.g. a method with a local variable and a

parameter of the same name.

Each block or switch_block creates a separate declaration space for labels. Names are introduced into this

declaration space through labeled_statements, and the names are referenced through goto_statements. The

label declaration spacelabel declaration space of a block includes any nested blocks. Thus, within a nested block it is not possible to

declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order is not

significant for the declaration and use of namespaces, constants, methods, properties, events, indexers, operators,

instance constructors, destructors, static constructors, and types. Declaration order is significant in the following

ways:

Declaration order for field declarations and local variable declarations determines the order in which their

initializers (if any) are executed.

Local variables must be defined before they are used (Scopes).

Declaration order for enum member declarations (Enum members) is significant when constant_expression

values are omitted.

The declaration space of a namespace is "open ended", and two namespace declarations with the same fully

qualified name contribute to the same declaration space. For example



 

class A
{
    void F() {
        int i = 0;
        if (true) {
            int i = 1;            
        }
    }

    void G() {
        if (true) {
            int i = 0;
        }
        int i = 1;                
    }

    void H() {
        if (true) {
            int i = 0;
        }
        if (true) {
            int i = 1;
        }
    }

    void I() {
        for (int i = 0; i < 10; i++)
            H();
        for (int i = 0; i < 10; i++)
            H();
    }
}

Members

Namespace membersNamespace members

The two namespace declarations above contribute to the same declaration space, in this case declaring two classes

with the fully qualified names Megacorp.Data.Customer  and Megacorp.Data.Order . Because the two declarations

contribute to the same declaration space, it would have caused a compile-time error if each contained a declaration

of a class with the same name.

As specified above, the declaration space of a block includes any nested blocks. Thus, in the following example, the 

F  and G  methods result in a compile-time error because the name i  is declared in the outer block and cannot

be redeclared in the inner block. However, the H  and I  methods are valid since the two i 's are declared in

separate non-nested blocks.

Namespaces and types have membersmembers . The members of an entity are generally available through the use of a

qualified name that starts with a reference to the entity, followed by a " . " token, followed by the name of the

member.

Members of a type are either declared in the type declaration or inheritedinherited from the base class of the type. When a

type inherits from a base class, all members of the base class, except instance constructors, destructors and static

constructors, become members of the derived type. The declared accessibility of a base class member does not

control whether the member is inherited—inheritance extends to any member that isn't an instance constructor,

static constructor, or destructor. However, an inherited member may not be accessible in a derived type, either

because of its declared accessibility (Declared accessibility) or because it is hidden by a declaration in the type itself

(Hiding through inheritance).

Namespaces and types that have no enclosing namespace are members of the global namespaceglobal namespace. This

corresponds directly to the names declared in the global declaration space.



Struct membersStruct members

Enumeration membersEnumeration members

Class membersClass members

Interface membersInterface members

Array membersArray members

Delegate membersDelegate members

Namespaces and types declared within a namespace are members of that namespace. This corresponds directly to

the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal namespaces, and

namespace names are always publicly accessible.

The members of a struct are the members declared in the struct and the members inherited from the struct's direct

base class System.ValueType  and the indirect base class object .

The members of a simple type correspond directly to the members of the struct type aliased by the simple type:

The members of sbyte  are the members of the System.SByte  struct.

The members of byte  are the members of the System.Byte  struct.

The members of short  are the members of the System.Int16  struct.

The members of ushort  are the members of the System.UInt16  struct.

The members of int  are the members of the System.Int32  struct.

The members of uint  are the members of the System.UInt32  struct.

The members of long  are the members of the System.Int64  struct.

The members of ulong  are the members of the System.UInt64  struct.

The members of char  are the members of the System.Char  struct.

The members of float  are the members of the System.Single  struct.

The members of double  are the members of the System.Double  struct.

The members of decimal  are the members of the System.Decimal  struct.

The members of bool  are the members of the System.Boolean  struct.

The members of an enumeration are the constants declared in the enumeration and the members inherited from

the enumeration's direct base class System.Enum  and the indirect base classes System.ValueType  and object .

The members of a class are the members declared in the class and the members inherited from the base class

(except for class object  which has no base class). The members inherited from the base class include the

constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the instance

constructors, destructors and static constructors of the base class. Base class members are inherited without regard

to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers, operators,

instance constructors, destructors, static constructors and types.

The members of object  and string  correspond directly to the members of the class types they alias:

The members of object  are the members of the System.Object  class.

The members of string  are the members of the System.String  class.

The members of an interface are the members declared in the interface and in all base interfaces of the interface.

The members in class object  are not, strictly speaking, members of any interface (Interface members). However,

the members in class object  are available via member lookup in any interface type (Member lookup).

The members of an array are the members inherited from class System.Array .



   

                  

        

Member access

Declared accessibilityDeclared accessibility

Accessibility domainsAccessibility domains

The members of a delegate are the members inherited from class System.Delegate .

Declarations of members allow control over member access. The accessibility of a member is established by the

declared accessibility (Declared accessibility) of the member combined with the accessibility of the immediately

containing type, if any.

When access to a particular member is allowed, the member is said to be accessibleaccessible. Conversely, when access to a

particular member is disallowed, the member is said to be inaccessibleinaccessible. Access to a member is permitted when

the textual location in which the access takes place is included in the accessibility domain (Accessibility domains) of

the member.

The declared accessibilitydeclared accessibility  of a member can be one of the following:

Public, which is selected by including a public  modifier in the member declaration. The intuitive meaning of 

public  is "access not limited".

Protected, which is selected by including a protected  modifier in the member declaration. The intuitive

meaning of protected  is "access limited to the containing class or types derived from the containing class".

Internal, which is selected by including an internal  modifier in the member declaration. The intuitive meaning

of internal  is "access limited to this program".

Protected internal (meaning protected or internal), which is selected by including both a protected  and an 

internal  modifier in the member declaration. The intuitive meaning of protected internal  is "access limited to

this program or types derived from the containing class".

Private, which is selected by including a private  modifier in the member declaration. The intuitive meaning of 

private  is "access limited to the containing type".

Depending on the context in which a member declaration takes place, only certain types of declared accessibility

are permitted. Furthermore, when a member declaration does not include any access modifiers, the context in

which the declaration takes place determines the default declared accessibility.

Namespaces implicitly have public  declared accessibility. No access modifiers are allowed on namespace

declarations.

Types declared in compilation units or namespaces can have public  or internal  declared accessibility and

default to internal  declared accessibility.

Class members can have any of the five kinds of declared accessibility and default to private  declared

accessibility. (Note that a type declared as a member of a class can have any of the five kinds of declared

accessibility, whereas a type declared as a member of a namespace can have only public  or internal  declared

accessibility.)

Struct members can have public , internal , or private  declared accessibility and default to private  declared

accessibility because structs are implicitly sealed. Struct members introduced in a struct (that is, not inherited by

that struct) cannot have protected  or protected internal  declared accessibility. (Note that a type declared as a

member of a struct can have public , internal , or private  declared accessibility, whereas a type declared as a

member of a namespace can have only public  or internal  declared accessibility.)

Interface members implicitly have public  declared accessibility. No access modifiers are allowed on interface

member declarations.

Enumeration members implicitly have public  declared accessibility. No access modifiers are allowed on

enumeration member declarations.

The accessibility domainaccessibility domain of a member consists of the (possibly disjoint) sections of program text in which access



to the member is permitted. For purposes of defining the accessibility domain of a member, a member is said to be

top-leveltop-level  if it is not declared within a type, and a member is said to be nestednested if it is declared within another type.

Furthermore, the program textprogram text of a program is defined as all program text contained in all source files of the

program, and the program text of a type is defined as all program text contained in the type_declarations of that

type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object , int , or double ) is unlimited.

The accessibility domain of a top-level unbound type T  (Bound and unbound types) that is declared in a program 

P  is defined as follows:

If the declared accessibility of T  is public , the accessibility domain of T  is the program text of P  and any

program that references P .

If the declared accessibility of T  is internal , the accessibility domain of T  is the program text of P .

From these definitions it follows that the accessibility domain of a top-level unbound type is always at least the

program text of the program in which that type is declared.

The accessibility domain for a constructed type T<A1, ..., An>  is the intersection of the accessibility domain of the

unbound generic type T  and the accessibility domains of the type arguments A1, ..., An .

The accessibility domain of a nested member M  declared in a type T  within a program P  is defined as follows

(noting that M  itself may possibly be a type):

If the declared accessibility of M  is public , the accessibility domain of M  is the accessibility domain of T .

If the declared accessibility of M  is protected internal , let D  be the union of the program text of P  and the

program text of any type derived from T , which is declared outside P . The accessibility domain of M  is the

intersection of the accessibility domain of T  with D .

If the declared accessibility of M  is protected , let D  be the union of the program text of T  and the program

text of any type derived from T . The accessibility domain of M  is the intersection of the accessibility domain of 

T  with D .

If the declared accessibility of M  is internal , the accessibility domain of M  is the intersection of the

accessibility domain of T  with the program text of P .

If the declared accessibility of M  is private , the accessibility domain of M  is the program text of T .

From these definitions it follows that the accessibility domain of a nested member is always at least the program

text of the type in which the member is declared. Furthermore, it follows that the accessibility domain of a member

is never more inclusive than the accessibility domain of the type in which the member is declared.

In intuitive terms, when a type or member M  is accessed, the following steps are evaluated to ensure that the

access is permitted:

First, if M  is declared within a type (as opposed to a compilation unit or a namespace), a compile-time error

occurs if that type is not accessible.

Then, if M  is public , the access is permitted.

Otherwise, if M  is protected internal , the access is permitted if it occurs within the program in which M  is

declared, or if it occurs within a class derived from the class in which M  is declared and takes place through the

derived class type (Protected access for instance members).

Otherwise, if M  is protected , the access is permitted if it occurs within the class in which M  is declared, or if it

occurs within a class derived from the class in which M  is declared and takes place through the derived class

type (Protected access for instance members).

Otherwise, if M  is internal , the access is permitted if it occurs within the program in which M  is declared.

Otherwise, if M  is private , the access is permitted if it occurs within the type in which M  is declared.

Otherwise, the type or member is inaccessible, and a compile-time error occurs.



public class A
{
    public static int X;
    internal static int Y;
    private static int Z;
}

internal class B
{
    public static int X;
    internal static int Y;
    private static int Z;

    public class C
    {
        public static int X;
        internal static int Y;
        private static int Z;
    }

    private class D
    {
        public static int X;
        internal static int Y;
        private static int Z;
    }
}

In the example

the classes and members have the following accessibility domains:

The accessibility domain of A  and A.X  is unlimited.

The accessibility domain of A.Y , B , B.X , B.Y , B.C , B.C.X , and B.C.Y  is the program text of the containing

program.

The accessibility domain of A.Z  is the program text of A .

The accessibility domain of B.Z  and B.D  is the program text of B , including the program text of B.C  and 

B.D .

The accessibility domain of B.C.Z  is the program text of B.C .

The accessibility domain of B.D.X  and B.D.Y  is the program text of B , including the program text of B.C  and 

B.D .

The accessibility domain of B.D.Z  is the program text of B.D .

As the example illustrates, the accessibility domain of a member is never larger than that of a containing type. For

example, even though all X  members have public declared accessibility, all but A.X  have accessibility domains

that are constrained by a containing type.

As described in Members, all members of a base class, except for instance constructors, destructors and static

constructors, are inherited by derived types. This includes even private members of a base class. However, the

accessibility domain of a private member includes only the program text of the type in which the member is

declared. In the example



    

class A
{
    int x;

    static void F(B b) {
        b.x = 1;        // Ok
    }
}

class B: A
{
    static void F(B b) {
        b.x = 1;        // Error, x not accessible
    }
}

Protected access for instance membersProtected access for instance members

public class A
{
    protected int x;

    static void F(A a, B b) {
        a.x = 1;        // Ok
        b.x = 1;        // Ok
    }
}

public class B: A
{
    static void F(A a, B b) {
        a.x = 1;        // Error, must access through instance of B
        b.x = 1;        // Ok
    }
}

the B  class inherits the private member x  from the A  class. Because the member is private, it is only accessible

within the class_body of A . Thus, the access to b.x  succeeds in the A.F  method, but fails in the B.F  method.

When a protected  instance member is accessed outside the program text of the class in which it is declared, and

when a protected internal  instance member is accessed outside the program text of the program in which it is

declared, the access must take place within a class declaration that derives from the class in which it is declared.

Furthermore, the access is required to take place through an instance of that derived class type or a class type

constructed from it. This restriction prevents one derived class from accessing protected members of other derived

classes, even when the members are inherited from the same base class.

Let B  be a base class that declares a protected instance member M , and let D  be a class that derives from B .

Within the class_body of D , access to M  can take one of the following forms:

An unqualified type_name or primary_expression of the form M .

A primary_expression of the form E.M , provided the type of E  is T  or a class derived from T , where T  is

the class type D , or a class type constructed from D

A primary_expression of the form base.M .

In addition to these forms of access, a derived class can access a protected instance constructor of a base class in a

constructor_initializer (Constructor initializers).

In the example

within A , it is possible to access x  through instances of both A  and B , since in either case the access takes place



                      

class C<T>
{
    protected T x;
}

class D<T>: C<T>
{
    static void F() {
        D<T> dt = new D<T>();
        D<int> di = new D<int>();
        D<string> ds = new D<string>();
        dt.x = default(T);
        di.x = 123;
        ds.x = "test";
    }
}

Accessibility constraintsAccessibility constraints

class A {...}

public class B: A {...}

through an instance of A  or a class derived from A . However, within B , it is not possible to access x  through an

instance of A , since A  does not derive from B .

In the example

the three assignments to x  are permitted because they all take place through instances of class types constructed

from the generic type.

Several constructs in the C# language require a type to be at least as accessible asat least as accessible as  a member or another type. A

type T  is said to be at least as accessible as a member or type M  if the accessibility domain of T  is a superset of

the accessibility domain of M . In other words, T  is at least as accessible as M  if T  is accessible in all contexts in

which M  is accessible.

The following accessibility constraints exist:

The direct base class of a class type must be at least as accessible as the class type itself.

The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

The return type and parameter types of a delegate type must be at least as accessible as the delegate type itself.

The type of a constant must be at least as accessible as the constant itself.

The type of a field must be at least as accessible as the field itself.

The return type and parameter types of a method must be at least as accessible as the method itself.

The type of a property must be at least as accessible as the property itself.

The type of an event must be at least as accessible as the event itself.

The type and parameter types of an indexer must be at least as accessible as the indexer itself.

The return type and parameter types of an operator must be at least as accessible as the operator itself.

The parameter types of an instance constructor must be at least as accessible as the instance constructor itself.

In the example

the B  class results in a compile-time error because A  is not at least as accessible as B .

Likewise, in the example



        

class A {...}

public class B
{
    A F() {...}

    internal A G() {...}

    public A H() {...}
}

Signatures and overloading

the H  method in B  results in a compile-time error because the return type A  is not at least as accessible as the

method.

Methods, instance constructors, indexers, and operators are characterized by their signaturessignatures :

The signature of a method consists of the name of the method, the number of type parameters and the type and

kind (value, reference, or output) of each of its formal parameters, considered in the order left to right. For these

purposes, any type parameter of the method that occurs in the type of a formal parameter is identified not by its

name, but by its ordinal position in the type argument list of the method. The signature of a method specifically

does not include the return type, the params  modifier that may be specified for the right-most parameter, nor

the optional type parameter constraints.

The signature of an instance constructor consists of the type and kind (value, reference, or output) of each of its

formal parameters, considered in the order left to right. The signature of an instance constructor specifically

does not include the params  modifier that may be specified for the right-most parameter.

The signature of an indexer consists of the type of each of its formal parameters, considered in the order left to

right. The signature of an indexer specifically does not include the element type, nor does it include the params

modifier that may be specified for the right-most parameter.

The signature of an operator consists of the name of the operator and the type of each of its formal parameters,

considered in the order left to right. The signature of an operator specifically does not include the result type.

Signatures are the enabling mechanism for overloadingoverloading of members in classes, structs, and interfaces:

Overloading of methods permits a class, struct, or interface to declare multiple methods with the same name,

provided their signatures are unique within that class, struct, or interface.

Overloading of instance constructors permits a class or struct to declare multiple instance constructors,

provided their signatures are unique within that class or struct.

Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their

signatures are unique within that class, struct, or interface.

Overloading of operators permits a class or struct to declare multiple operators with the same name, provided

their signatures are unique within that class or struct.

Although out  and ref  parameter modifiers are considered part of a signature, members declared in a single type

cannot differ in signature solely by ref  and out . A compile-time error occurs if two members are declared in the

same type with signatures that would be the same if all parameters in both methods with out  modifiers were

changed to ref  modifiers. For other purposes of signature matching (e.g., hiding or overriding), ref  and out  are

considered part of the signature and do not match each other. (This restriction is to allow C#  programs to be easily

translated to run on the Common Language Infrastructure (CLI), which does not provide a way to define methods

that differ solely in ref  and out .)

For the purposes of signatures, the types object  and dynamic  are considered the same. Members declared in a

single type can therefore not differ in signature solely by object  and dynamic .



   

interface ITest
{
    void F();                        // F()

    void F(int x);                   // F(int)

    void F(ref int x);               // F(ref int)

    void F(out int x);               // F(out int)      error

    void F(int x, int y);            // F(int, int)

    int F(string s);                 // F(string)

    int F(int x);                    // F(int)          error

    void F(string[] a);              // F(string[])

    void F(params string[] a);       // F(string[])     error
}

Scopes

The following example shows a set of overloaded method declarations along with their signatures.

Note that any ref  and out  parameter modifiers (Method parameters) are part of a signature. Thus, F(int)  and 

F(ref int)  are unique signatures. However, F(ref int)  and F(out int)  cannot be declared within the same

interface because their signatures differ solely by ref  and out . Also, note that the return type and the params

modifier are not part of a signature, so it is not possible to overload solely based on return type or on the inclusion

or exclusion of the params  modifier. As such, the declarations of the methods F(int)  and F(params string[])

identified above result in a compile-time error.

The scopescope of a name is the region of program text within which it is possible to refer to the entity declared by the

name without qualification of the name. Scopes can be nestednested, and an inner scope may redeclare the meaning of a

name from an outer scope (this does not, however, remove the restriction imposed by Declarations that within a

nested block it is not possible to declare a local variable with the same name as a local variable in an enclosing

block). The name from the outer scope is then said to be hiddenhidden in the region of program text covered by the inner

scope, and access to the outer name is only possible by qualifying the name.

The scope of a namespace member declared by a namespace_member_declaration (Namespace members) with

no enclosing namespace_declaration is the entire program text.

The scope of a namespace member declared by a namespace_member_declaration within a

namespace_declaration whose fully qualified name is N  is the namespace_body of every

namespace_declaration whose fully qualified name is N  or starts with N , followed by a period.

The scope of name defined by an extern_alias_directive extends over the using_directives, global_attributes and

namespace_member_declarations of its immediately containing compilation unit or namespace body. An

extern_alias_directive does not contribute any new members to the underlying declaration space. In other

words, an extern_alias_directive is not transitive, but, rather, affects only the compilation unit or namespace body

in which it occurs.

The scope of a name defined or imported by a using_directive (Using directives) extends over the

namespace_member_declarations of the compilation_unit or namespace_body in which the using_directive

occurs. A using_directive may make zero or more namespace, type or member names available within a

particular compilation_unit or namespace_body, but does not contribute any new members to the underlying

declaration space. In other words, a using_directive is not transitive but rather affects only the compilation_unit

or namespace_body in which it occurs.

The scope of a type parameter declared by a type_parameter_list on a class_declaration (Class declarations) is



the class_base, type_parameter_constraints_clauses, and class_body of that class_declaration.

The scope of a type parameter declared by a type_parameter_list on a struct_declaration (Struct declarations) is

the struct_interfaces, type_parameter_constraints_clauses, and struct_body of that struct_declaration.

The scope of a type parameter declared by a type_parameter_list on an interface_declaration (Interface

declarations) is the interface_base, type_parameter_constraints_clauses, and interface_body of that

interface_declaration.

The scope of a type parameter declared by a type_parameter_list on a delegate_declaration (Delegate

declarations) is the return_type, formal_parameter_list, and type_parameter_constraints_clauses of that

delegate_declaration.

The scope of a member declared by a class_member_declaration (Class body) is the class_body in which the

declaration occurs. In addition, the scope of a class member extends to the class_body of those derived classes

that are included in the accessibility domain (Accessibility domains) of the member.

The scope of a member declared by a struct_member_declaration (Struct members) is the struct_body in which

the declaration occurs.

The scope of a member declared by an enum_member_declaration (Enum members) is the enum_body in which

the declaration occurs.

The scope of a parameter declared in a method_declaration (Methods) is the method_body of that

method_declaration.

The scope of a parameter declared in an indexer_declaration (Indexers) is the accessor_declarations of that

indexer_declaration.

The scope of a parameter declared in an operator_declaration (Operators) is the block of that

operator_declaration.

The scope of a parameter declared in a constructor_declaration (Instance constructors) is the

constructor_initializer and block of that constructor_declaration.

The scope of a parameter declared in a lambda_expression (Anonymous function expressions) is the

anonymous_function_body of that lambda_expression

The scope of a parameter declared in an anonymous_method_expression (Anonymous function expressions) is

the block of that anonymous_method_expression.

The scope of a label declared in a labeled_statement (Labeled statements) is the block in which the declaration

occurs.

The scope of a local variable declared in a local_variable_declaration (Local variable declarations) is the block in

which the declaration occurs.

The scope of a local variable declared in a switch_block of a switch  statement (The switch statement) is the

switch_block.

The scope of a local variable declared in a for_initializer of a for  statement (The for statement) is the

for_initializer, the for_condition, the for_iterator, and the contained statement of the for  statement.

The scope of a local constant declared in a local_constant_declaration (Local constant declarations) is the block

in which the declaration occurs. It is a compile-time error to refer to a local constant in a textual position that

precedes its constant_declarator.

The scope of a variable declared as part of a foreach_statement, using_statement, lock_statement or

query_expression is determined by the expansion of the given construct.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member in a

textual position that precedes the declaration of the member. For example



class A
{
    void F() {
        i = 1;
    }

    int i = 0;
}

class A
{
    int i = 0;

    void F() {
        i = 1;                  // Error, use precedes declaration
        int i;
        i = 2;
    }

    void G() {
        int j = (j = 1);        // Valid
    }

    void H() {
        int a = 1, b = ++a;    // Valid
    }
}

Here, it is valid for F  to refer to i  before it is declared.

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual position that

precedes the local_variable_declarator of the local variable. For example

In the F  method above, the first assignment to i  specifically does not refer to the field declared in the outer

scope. Rather, it refers to the local variable and it results in a compile-time error because it textually precedes the

declaration of the variable. In the G  method, the use of j  in the initializer for the declaration of j  is valid

because the use does not precede the local_variable_declarator. In the H  method, a subsequent

local_variable_declarator correctly refers to a local variable declared in an earlier local_variable_declarator within

the same local_variable_declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an expression

context is always the same within a block. If the scope of a local variable were to extend only from its declaration to

the end of the block, then in the example above, the first assignment would assign to the instance variable and the

second assignment would assign to the local variable, possibly leading to compile-time errors if the statements of

the block were later to be rearranged.

The meaning of a name within a block may differ based on the context in which the name is used. In the example



  

using System;

class A {}

class Test
{
    static void Main() {
        string A = "hello, world";
        string s = A;                            // expression context

        Type t = typeof(A);                      // type context

        Console.WriteLine(s);                    // writes "hello, world"
        Console.WriteLine(t);                    // writes "A"
    }
}

Name hidingName hiding

Hiding through nestingHiding through nesting

class A
{
    int i = 0;

    void F() {
        int i = 1;
    }

    void G() {
        i = 1;
    }
}

the name A  is used in an expression context to refer to the local variable A  and in a type context to refer to the

class A .

The scope of an entity typically encompasses more program text than the declaration space of the entity. In

particular, the scope of an entity may include declarations that introduce new declaration spaces containing entities

of the same name. Such declarations cause the original entity to become hiddenhidden. Conversely, an entity is said to be

visiblevisible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The

characteristics of the two types of hiding are described in the following sections.

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a result

of nesting types within classes or structs, and as a result of parameter and local variable declarations.

In the example

within the F  method, the instance variable i  is hidden by the local variable i , but within the G  method, i  still

refers to the instance variable.

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that name. In

the example



          

class Outer
{
    static void F(int i) {}

    static void F(string s) {}

    class Inner
    {
        void G() {
            F(1);              // Invokes Outer.Inner.F
            F("Hello");        // Error
        }

        static void F(long l) {}
    }
}

Hiding through inheritanceHiding through inheritance

class Base
{
    public void F() {}
}

class Derived: Base
{
    public void F() {}        // Warning, hiding an inherited name
}

the call F(1)  invokes the F  declared in Inner  because all outer occurrences of F  are hidden by the inner

declaration. For the same reason, the call F("Hello")  results in a compile-time error.

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from base

classes. This type of name hiding takes one of the following forms:

A constant, field, property, event, or type introduced in a class or struct hides all base class members with the

same name.

A method introduced in a class or struct hides all non-method base class members with the same name, and all

base class methods with the same signature (method name and parameter count, modifiers, and types).

An indexer introduced in a class or struct hides all base class indexers with the same signature (parameter count

and types).

The rules governing operator declarations (Operators) make it impossible for a derived class to declare an operator

with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a

warning to be reported. In the example

the declaration of F  in Derived  causes a warning to be reported. Hiding an inherited name is specifically not an

error, since that would preclude separate evolution of base classes. For example, the above situation might have

come about because a later version of Base  introduced an F  method that wasn't present in an earlier version of

the class. Had the above situation been an error, then any change made to a base class in a separately versioned

class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new  modifier :



         

class Base
{
    public void F() {}
}

class Derived: Base
{
    new public void F() {}
}

class Base
{
    public static void F() {}
}

class Derived: Base
{
    new private static void F() {}    // Hides Base.F in Derived only
}

class MoreDerived: Derived
{
    static void G() { F(); }          // Invokes Base.F
}

Namespace and type names

namespace_name
    : namespace_or_type_name
    ;

type_name
    : namespace_or_type_name
    ;

namespace_or_type_name
    : identifier type_argument_list?
    | namespace_or_type_name '.' identifier type_argument_list?
    | qualified_alias_member
    ;

The new  modifier indicates that the F  in Derived  is "new", and that it is indeed intended to hide the inherited

member.

A declaration of a new member hides an inherited member only within the scope of the new member.

In the example above, the declaration of F  in Derived  hides the F  that was inherited from Base , but since the

new F  in Derived  has private access, its scope does not extend to MoreDerived . Thus, the call F()  in 

MoreDerived.G  is valid and will invoke Base.F .

Several contexts in a C# program require a namespace_name or a type_name to be specified.

A namespace_name is a namespace_or_type_name that refers to a namespace. Following resolution as described

below, the namespace_or_type_name of a namespace_name must refer to a namespace, or otherwise a compile-

time error occurs. No type arguments (Type arguments) can be present in a namespace_name (only types can have

type arguments).

A type_name is a namespace_or_type_name that refers to a type. Following resolution as described below, the

namespace_or_type_name of a type_name must refer to a type, or otherwise a compile-time error occurs.



If the namespace_or_type_name is a qualified-alias-member its meaning is as described in Namespace alias

qualifiers. Otherwise, a namespace_or_type_name has one of four forms:

I

I<A1, ..., Ak>

N.I

N.I<A1, ..., Ak>

where I  is a single identifier, N  is a namespace_or_type_name and <A1, ..., Ak>  is an optional

type_argument_list. When no type_argument_list is specified, consider k  to be zero.

The meaning of a namespace_or_type_name is determined as follows:

If the namespace_or_type_name is of the form I  or of the form I<A1, ..., Ak> :

If K  is zero and the namespace_or_type_name appears within a generic method declaration (Methods)

and if that declaration includes a type parameter (Type parameters) with name I , then the

namespace_or_type_name refers to that type parameter.

Otherwise, if the namespace_or_type_name appears within a type declaration, then for each instance

type T  (The instance type), starting with the instance type of that type declaration and continuing with

the instance type of each enclosing class or struct declaration (if any):

If the previous steps were unsuccessful then, for each namespace N , starting with the namespace in

which the namespace_or_type_name occurs, continuing with each enclosing namespace (if any), and

ending with the global namespace, the following steps are evaluated until an entity is located:

If K  is zero and the declaration of T  includes a type parameter with name I , then the

namespace_or_type_name refers to that type parameter.

Otherwise, if the namespace_or_type_name appears within the body of the type declaration, and 

T  or any of its base types contain a nested accessible type having name I  and K  type

parameters, then the namespace_or_type_name refers to that type constructed with the given type

arguments. If there is more than one such type, the type declared within the more derived type is

selected. Note that non-type members (constants, fields, methods, properties, indexers, operators,

instance constructors, destructors, and static constructors) and type members with a different

number of type parameters are ignored when determining the meaning of the

namespace_or_type_name.

If K  is zero and I  is the name of a namespace in N , then:

Otherwise, if N  contains an accessible type having name I  and K  type parameters, then:

Otherwise, if the location where the namespace_or_type_name occurs is enclosed by a namespace

declaration for N :

If the location where the namespace_or_type_name occurs is enclosed by a namespace

declaration for N  and the namespace declaration contains an extern_alias_directive or

using_alias_directive that associates the name I  with a namespace or type, then the

namespace_or_type_name is ambiguous and a compile-time error occurs.

Otherwise, the namespace_or_type_name refers to the namespace named I  in N .

If K  is zero and the location where the namespace_or_type_name occurs is enclosed by a

namespace declaration for N  and the namespace declaration contains an

extern_alias_directive or using_alias_directive that associates the name I  with a

namespace or type, then the namespace_or_type_name is ambiguous and a compile-time

error occurs.

Otherwise, the namespace_or_type_name refers to the type constructed with the given type

arguments.

If K  is zero and the namespace declaration contains an extern_alias_directive or

using_alias_directive that associates the name I  with an imported namespace or type,



  Fully qualified namesFully qualified names

Otherwise, the namespace_or_type_name is of the form N.I  or of the form N.I<A1, ..., Ak> . N  is first

resolved as a namespace_or_type_name. If the resolution of N  is not successful, a compile-time error occurs.

Otherwise, N.I  or N.I<A1, ..., Ak>  is resolved as follows:

Otherwise, the namespace_or_type_name is undefined and a compile-time error occurs.

then the namespace_or_type_name refers to that namespace or type.

Otherwise, if the namespaces and type declarations imported by the

using_namespace_directives and using_alias_directives of the namespace declaration

contain exactly one accessible type having name I  and K  type parameters, then the

namespace_or_type_name refers to that type constructed with the given type arguments.

Otherwise, if the namespaces and type declarations imported by the

using_namespace_directives and using_alias_directives of the namespace declaration

contain more than one accessible type having name I  and K  type parameters, then the

namespace_or_type_name is ambiguous and an error occurs.

If K  is zero and N  refers to a namespace and N  contains a nested namespace with name I , then the

namespace_or_type_name refers to that nested namespace.

Otherwise, if N  refers to a namespace and N  contains an accessible type having name I  and K  type

parameters, then the namespace_or_type_name refers to that type constructed with the given type

arguments.

Otherwise, if N  refers to a (possibly constructed) class or struct type and N  or any of its base classes

contain a nested accessible type having name I  and K  type parameters, then the

namespace_or_type_name refers to that type constructed with the given type arguments. If there is more

than one such type, the type declared within the more derived type is selected. Note that if the meaning

of N.I  is being determined as part of resolving the base class specification of N  then the direct base

class of N  is considered to be object (Base classes).

Otherwise, N.I  is an invalid namespace_or_type_name, and a compile-time error occurs.

A namespace_or_type_name is permitted to reference a static class (Static classes) only if

The namespace_or_type_name is the T  in a namespace_or_type_name of the form T.I , or

The namespace_or_type_name is the T  in a typeof_expression (Argument lists1) of the form typeof(T) .

Every namespace and type has a fully qualified namefully qualified name, which uniquely identifies the namespace or type amongst

all others. The fully qualified name of a namespace or type N  is determined as follows:

If N  is a member of the global namespace, its fully qualified name is N .

Otherwise, its fully qualified name is S.N , where S  is the fully qualified name of the namespace or type in

which N  is declared.

In other words, the fully qualified name of N  is the complete hierarchical path of identifiers that lead to N , starting

from the global namespace. Because every member of a namespace or type must have a unique name, it follows

that the fully qualified name of a namespace or type is always unique.

The example below shows several namespace and type declarations along with their associated fully qualified

names.



  

class A {}                // A

namespace X               // X
{
    class B               // X.B
    {
        class C {}        // X.B.C
    }

    namespace Y           // X.Y
    {
        class D {}        // X.Y.D
    }
}

namespace X.Y             // X.Y
{
    class E {}            // X.Y.E
}

Automatic memory management
C# employs automatic memory management, which frees developers from manually allocating and freeing the

memory occupied by objects. Automatic memory management policies are implemented by a garbage collectorgarbage collector .

The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is considered live.

2. If the object, or any part of it, cannot be accessed by any possible continuation of execution, other than the

running of destructors, the object is considered no longer in use, and it becomes eligible for destruction. The C#

compiler and the garbage collector may choose to analyze code to determine which references to an object may

be used in the future. For instance, if a local variable that is in scope is the only existing reference to an object,

but that local variable is never referred to in any possible continuation of execution from the current execution

point in the procedure, the garbage collector may (but is not required to) treat the object as no longer in use.

3. Once the object is eligible for destruction, at some unspecified later time the destructor (Destructors) (if any) for

the object is run. Under normal circumstances the destructor for the object is run once only, though

implementation-specific APIs may allow this behavior to be overridden.

4. Once the destructor for an object is run, if that object, or any part of it, cannot be accessed by any possible

continuation of execution, including the running of destructors, the object is considered inaccessible and the

object becomes eligible for collection.

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the memory

associated with that object.

The garbage collector maintains information about object usage, and uses this information to make memory

management decisions, such as where in memory to locate a newly created object, when to relocate an object, and

when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage collector

may implement a wide range of memory management policies. For instance, C# does not require that destructors

be run or that objects be collected as soon as they are eligible, or that destructors be run in any particular order, or

on any particular thread.

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class System.GC .

This class can be used to request a collection to occur, destructors to be run (or not run), and so forth.

Since the garbage collector is allowed wide latitude in deciding when to collect objects and run destructors, a

conforming implementation may produce output that differs from that shown by the following code. The program



using System;

class A
{
    ~A() {
        Console.WriteLine("Destruct instance of A");
    }
}

class B
{
    object Ref;

    public B(object o) {
        Ref = o;
    }

    ~B() {
        Console.WriteLine("Destruct instance of B");
    }
}

class Test
{
    static void Main() {
        B b = new B(new A());
        b = null;
        GC.Collect();
        GC.WaitForPendingFinalizers();
    }
}

Destruct instance of A
Destruct instance of B

Destruct instance of B
Destruct instance of A

creates an instance of class A  and an instance of class B . These objects become eligible for garbage collection

when the variable b  is assigned the value null , since after this time it is impossible for any user-written code to

access them. The output could be either

or

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between "eligible for destruction" and "eligible for collection" can be important. For

example,



using System;

class A
{
    ~A() {
        Console.WriteLine("Destruct instance of A");
    }

    public void F() {
        Console.WriteLine("A.F");
        Test.RefA = this;
    }
}

class B
{
    public A Ref;

    ~B() {
        Console.WriteLine("Destruct instance of B");
        Ref.F();
    }
}

class Test
{
    public static A RefA;
    public static B RefB;

    static void Main() {
        RefB = new B();
        RefA = new A();
        RefB.Ref = RefA;
        RefB = null;
        RefA = null;

        // A and B now eligible for destruction
        GC.Collect();
        GC.WaitForPendingFinalizers();

        // B now eligible for collection, but A is not
        if (RefA != null)
            Console.WriteLine("RefA is not null");
    }
}

Destruct instance of A
Destruct instance of B
A.F
RefA is not null

In the above program, if the garbage collector chooses to run the destructor of A  before the destructor of B , then

the output of this program might be:

Note that although the instance of A  was not in use and A 's destructor was run, it is still possible for methods of 

A  (in this case, F ) to be called from another destructor. Also, note that running of a destructor may cause an

object to become usable from the mainline program again. In this case, the running of B 's destructor caused an

instance of A  that was previously not in use to become accessible from the live reference Test.RefA . After the call

to WaitForPendingFinalizers , the instance of B  is eligible for collection, but the instance of A  is not, because of

the reference Test.RefA .

To avoid confusion and unexpected behavior, it is generally a good idea for destructors to only perform cleanup on



Execution order

data stored in their object's own fields, and not to perform any actions on referenced objects or static fields.

An alternative to using destructors is to let a class implement the System.IDisposable  interface. This allows the

client of the object to determine when to release the resources of the object, typically by accessing the object as a

resource in a using  statement (The using statement).

Execution of a C# program proceeds such that the side effects of each executing thread are preserved at critical

execution points. A side effectside effect is defined as a read or write of a volatile field, a write to a non-volatile variable, a

write to an external resource, and the throwing of an exception. The critical execution points at which the order of

these side effects must be preserved are references to volatile fields (Volatile fields), lock  statements (The lock

statement), and thread creation and termination. The execution environment is free to change the order of

execution of a C# program, subject to the following constraints:

Data dependence is preserved within a thread of execution. That is, the value of each variable is computed as if

all statements in the thread were executed in original program order.

Initialization ordering rules are preserved (Field initialization and Variable initializers).

The ordering of side effects is preserved with respect to volatile reads and writes (Volatile fields). Additionally,

the execution environment need not evaluate part of an expression if it can deduce that that expression's value is

not used and that no needed side effects are produced (including any caused by calling a method or accessing a

volatile field). When program execution is interrupted by an asynchronous event (such as an exception thrown

by another thread), it is not guaranteed that the observable side effects are visible in the original program order.
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type
    : value_type
    | reference_type
    | type_parameter
    | type_unsafe
    ;

Value types

The types of the C# language are divided into two main categories: value typesvalue types  and reference typesreference types . Both value

types and reference types may be generic typesgeneric types , which take one or more type parameterstype parameters . Type parameters can

designate both value types and reference types.

The final category of types, pointers, is available only in unsafe code. This is discussed further in Pointer types.

Value types differ from reference types in that variables of the value types directly contain their data, whereas

variables of the reference types store referencesreferences  to their data, the latter being known as objectsobjects . With reference

types, it is possible for two variables to reference the same object, and thus possible for operations on one variable

to affect the object referenced by the other variable. With value types, the variables each have their own copy of the

data, and it is not possible for operations on one to affect the other.

C#'s type system is unified such that a value of any type can be treated as an object. Every type in C# directly or

indirectly derives from the object  class type, and object  is the ultimate base class of all types. Values of reference

types are treated as objects simply by viewing the values as type object . Values of value types are treated as

objects by performing boxing and unboxing operations (Boxing and unboxing).

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types called the

simple typessimple types . The simple types are identified through reserved words.

https://github.com/dotnet/csharplang/blob/master/spec/types.md


      

value_type
    : struct_type
    | enum_type
    ;

struct_type
    : type_name
    | simple_type
    | nullable_type
    ;

simple_type
    : numeric_type
    | 'bool'
    ;

numeric_type
    : integral_type
    | floating_point_type
    | 'decimal'
    ;

integral_type
    : 'sbyte'
    | 'byte'
    | 'short'
    | 'ushort'
    | 'int'
    | 'uint'
    | 'long'
    | 'ulong'
    | 'char'
    ;

floating_point_type
    : 'float'
    | 'double'
    ;

nullable_type
    : non_nullable_value_type '?'
    ;

non_nullable_value_type
    : type
    ;

enum_type
    : type_name
    ;

The System.ValueType typeThe System.ValueType type

Unlike a variable of a reference type, a variable of a value type can contain the value null  only if the value type is a

nullable type. For every non-nullable value type there is a corresponding nullable value type denoting the same set

of values plus the value null .

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from assignment to

a variable of a reference type, which copies the reference but not the object identified by the reference.

All value types implicitly inherit from the class System.ValueType , which, in turn, inherits from class object . It is not

possible for any type to derive from a value type, and value types are thus implicitly sealed (Sealed classes).

Note that System.ValueType  is not itself a value_type. Rather, it is a class_type from which all value_types are

automatically derived.



          

  

Default constructorsDefault constructors

class A
{
    void F() {
        int i = 0;
        int j = new int();
    }
}

Struct typesStruct types

Simple typesSimple types

RESERVED W O RDRESERVED W O RD A L IA SED T Y P EA L IA SED T Y P E

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

All value types implicitly declare a public parameterless instance constructor called the default constructordefault constructor . The

default constructor returns a zero-initialized instance known as the default valuedefault value for the value type:

For all simple_types, the default value is the value produced by a bit pattern of all zeros:

For an enum_type E , the default value is 0 , converted to the type E .

For a struct_type, the default value is the value produced by setting all value type fields to their default value and

all reference type fields to null .

For a nullable_type the default value is an instance for which the HasValue  property is false and the Value

property is undefined. The default value is also known as the null valuenull value of the nullable type.

For sbyte , byte , short , ushort , int , uint , long , and ulong , the default value is 0 .

For char , the default value is '\x0000' .

For float , the default value is 0.0f .

For double , the default value is 0.0d .

For decimal , the default value is 0.0m .

For bool , the default value is false .

Like any other instance constructor, the default constructor of a value type is invoked using the new  operator. For

efficiency reasons, this requirement is not intended to actually have the implementation generate a constructor call.

In the example below, variables i  and j  are both initialized to zero.

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a struct

type to contain an explicit declaration of a parameterless constructor. A struct type is however permitted to declare

parameterized instance constructors (Constructors).

A struct type is a value type that can declare constants, fields, methods, properties, indexers, operators, instance

constructors, static constructors, and nested types. The declaration of struct types is described in Struct declarations.

C# provides a set of predefined struct types called the simple typessimple types . The simple types are identified through

reserved words, but these reserved words are simply aliases for predefined struct types in the System  namespace,

as described in the table below.



int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

RESERVED W O RDRESERVED W O RD A L IA SED T Y P EA L IA SED T Y P E

int i = int.MaxValue;           // System.Int32.MaxValue constant
string s = i.ToString();        // System.Int32.ToString() instance method
string t = 123.ToString();      // System.Int32.ToString() instance method

Integral typesIntegral types

Because a simple type aliases a struct type, every simple type has members. For example, int  has the members

declared in System.Int32  and the members inherited from System.Object , and the following statements are

permitted:

The simple types differ from other struct types in that they permit certain additional operations:

Most simple types permit values to be created by writing literals (Literals). For example, 123  is a literal of type 

int  and 'a'  is a literal of type char . C# makes no provision for literals of struct types in general, and non-

default values of other struct types are ultimately always created through instance constructors of those struct

types.

When the operands of an expression are all simple type constants, it is possible for the compiler to evaluate the

expression at compile-time. Such an expression is known as a constant_expression (Constant expressions).

Expressions involving operators defined by other struct types are not considered to be constant expressions.

Through const  declarations it is possible to declare constants of the simple types (Constants). It is not possible

to have constants of other struct types, but a similar effect is provided by static readonly  fields.

Conversions involving simple types can participate in evaluation of conversion operators defined by other struct

types, but a user-defined conversion operator can never participate in evaluation of another user-defined

operator (Evaluation of user-defined conversions).

C# supports nine integral types: sbyte , byte , short , ushort , int , uint , long , ulong , and char . The integral

types have the following sizes and ranges of values:

The sbyte  type represents signed 8-bit integers with values between -128 and 127.

The byte  type represents unsigned 8-bit integers with values between 0 and 255.

The short  type represents signed 16-bit integers with values between -32768 and 32767.

The ushort  type represents unsigned 16-bit integers with values between 0 and 65535.



Floating point typesFloating point types

The int  type represents signed 32-bit integers with values between -2147483648 and 2147483647.

The uint  type represents unsigned 32-bit integers with values between 0 and 4294967295.

The long  type represents signed 64-bit integers with values between -9223372036854775808 and

9223372036854775807.

The ulong  type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

The char  type represents unsigned 16-bit integers with values between 0 and 65535. The set of possible values

for the char  type corresponds to the Unicode character set. Although char  has the same representation as 

ushort , not all operations permitted on one type are permitted on the other.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit

precision, signed 64-bit precision, or unsigned 64-bit precision:

For the unary +  and ~  operators, the operand is converted to type T , where T  is the first of int , uint , 

long , and ulong  that can fully represent all possible values of the operand. The operation is then performed

using the precision of type T , and the type of the result is T .

For the unary -  operator, the operand is converted to type T , where T  is the first of int  and long  that can

fully represent all possible values of the operand. The operation is then performed using the precision of type 

T , and the type of the result is T . The unary -  operator cannot be applied to operands of type ulong .

For the binary + , - , * , / , % , & , ^ , | , == , != , > , < , >= , and <=  operators, the operands are

converted to type T , where T  is the first of int , uint , long , and ulong  that can fully represent all possible

values of both operands. The operation is then performed using the precision of type T , and the type of the

result is T  (or bool  for the relational operators). It is not permitted for one operand to be of type long  and

the other to be of type ulong  with the binary operators.

For the binary <<  and >>  operators, the left operand is converted to type T , where T  is the first of int , 

uint , long , and ulong  that can fully represent all possible values of the operand. The operation is then

performed using the precision of type T , and the type of the result is T .

The char  type is classified as an integral type, but it differs from the other integral types in two ways:

There are no implicit conversions from other types to the char  type. In particular, even though the sbyte , 

byte , and ushort  types have ranges of values that are fully representable using the char  type, implicit

conversions from sbyte , byte , or ushort  to char  do not exist.

Constants of the char  type must be written as character_literals or as integer_literals in combination with a cast

to type char . For example, (char)10  is the same as '\x000A' .

The checked  and unchecked  operators and statements are used to control overflow checking for integral-type

arithmetic operations and conversions (The checked and unchecked operators). In a checked  context, an overflow

produces a compile-time error or causes a System.OverflowException  to be thrown. In an unchecked  context,

overflows are ignored and any high-order bits that do not fit in the destination type are discarded.

C# supports two floating point types: float  and double . The float  and double  types are represented using the

32-bit single-precision and 64-bit double-precision IEEE 754 formats, which provide the following sets of values:

Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as the

simple value zero, but certain operations distinguish between the two (Division operator).

Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero number

by zero. For example, 1.0 / 0.0  yields positive infinity, and -1.0 / 0.0  yields negative infinity.

The Not-a-NumberNot-a-Number  value, often abbreviated NaN. NaNs are produced by invalid floating-point operations,

such as dividing zero by zero.

The finite set of non-zero values of the form s * m * 2^e , where s  is 1 or -1, and m  and e  are determined

by the particular floating-point type: For float , 0 < m < 2^24  and -149 <= e <= 104 , and for double , 



      The decimal typeThe decimal type

0 < m < 2^53  and -1075 <= e <= 970 . Denormalized floating-point numbers are considered valid non-zero

values.

The float  type can represent values ranging from approximately 1.5 * 10^-45  to 3.4 * 10^38  with a precision

of 7 digits.

The double  type can represent values ranging from approximately 5.0 * 10^-324  to 1.7 × 10^308  with a

precision of 15-16 digits.

If one of the operands of a binary operator is of a floating-point type, then the other operand must be of an integral

type or a floating-point type, and the operation is evaluated as follows:

If one of the operands is of an integral type, then that operand is converted to the floating-point type of the

other operand.

Then, if either of the operands is of type double , the other operand is converted to double , the operation is

performed using at least double  range and precision, and the type of the result is double  (or bool  for the

relational operators).

Otherwise, the operation is performed using at least float  range and precision, and the type of the result is 

float  (or bool  for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in exceptional

situations, floating-point operations produce zero, infinity, or NaN, as described below:

If the result of a floating-point operation is too small for the destination format, the result of the operation

becomes positive zero or negative zero.

If the result of a floating-point operation is too large for the destination format, the result of the operation

becomes positive infinity or negative infinity.

If a floating-point operation is invalid, the result of the operation becomes NaN.

If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For

example, some hardware architectures support an "extended" or "long double" floating-point type with greater

range and precision than the double  type, and implicitly perform all floating-point operations using this higher

precision type. Only at excessive cost in performance can such hardware architectures be made to perform

floating-point operations with less precision, and rather than require an implementation to forfeit both

performance and precision, C# allows a higher precision type to be used for all floating-point operations. Other

than delivering more precise results, this rarely has any measurable effects. However, in expressions of the form 

x * y / z , where the multiplication produces a result that is outside the double  range, but the subsequent

division brings the temporary result back into the double  range, the fact that the expression is evaluated in a

higher range format may cause a finite result to be produced instead of an infinity.

The decimal  type is a 128-bit data type suitable for financial and monetary calculations. The decimal  type can

represent values ranging from 1.0 * 10^-28  to approximately 7.9 * 10^28  with 28-29 significant digits.

The finite set of values of type decimal  are of the form (-1)^s * c * 10^-e , where the sign s  is 0 or 1, the

coefficient c  is given by 0 <= *c* < 2^96 , and the scale e  is such that 0 <= e <= 28 .The decimal  type does not

support signed zeros, infinities, or NaN's. A decimal  is represented as a 96-bit integer scaled by a power of ten. For

decimal s with an absolute value less than 1.0m , the value is exact to the 28th decimal place, but no further. For 

decimal s with an absolute value greater than or equal to 1.0m , the value is exact to 28 or 29 digits. Contrary to

the float  and double  data types, decimal fractional numbers such as 0.1 can be represented exactly in the 

decimal  representation. In the float  and double  representations, such numbers are often infinite fractions,

making those representations more prone to round-off errors.



        

The bool typeThe bool type

Enumeration typesEnumeration types

Nullable typesNullable types

If one of the operands of a binary operator is of type decimal , then the other operand must be of an integral type

or of type decimal . If an integral type operand is present, it is converted to decimal  before the operation is

performed.

The result of an operation on values of type decimal  is that which would result from calculating an exact result

(preserving scale, as defined for each operator) and then rounding to fit the representation. Results are rounded to

the nearest representable value, and, when a result is equally close to two representable values, to the value that

has an even number in the least significant digit position (this is known as "banker's rounding"). A zero result

always has a sign of 0 and a scale of 0.

If a decimal arithmetic operation produces a value less than or equal to 5 * 10^-29  in absolute value, the result of

the operation becomes zero. If a decimal  arithmetic operation produces a result that is too large for the decimal

format, a System.OverflowException  is thrown.

The decimal  type has greater precision but smaller range than the floating-point types. Thus, conversions from the

floating-point types to decimal  might produce overflow exceptions, and conversions from decimal  to the

floating-point types might cause loss of precision. For these reasons, no implicit conversions exist between the

floating-point types and decimal , and without explicit casts, it is not possible to mix floating-point and decimal

operands in the same expression.

The bool  type represents boolean logical quantities. The possible values of type bool  are true  and false .

No standard conversions exist between bool  and other types. In particular, the bool  type is distinct and separate

from the integral types, and a bool  value cannot be used in place of an integral value, and vice versa.

In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be converted to the

boolean value false , and a non-zero integral or floating-point value, or a non-null pointer can be converted to the

boolean value true . In C#, such conversions are accomplished by explicitly comparing an integral or floating-point

value to zero, or by explicitly comparing an object reference to null .

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying type,

which must be byte , sbyte , short , ushort , int , uint , long  or ulong . The set of values of the enumeration

type is the same as the set of values of the underlying type. Values of the enumeration type are not restricted to the

values of the named constants. Enumeration types are defined through enumeration declarations (Enum

declarations).

A nullable type can represent all values of its underlying typeunderlying type plus an additional null value. A nullable type is

written T? , where T  is the underlying type. This syntax is shorthand for System.Nullable<T> , and the two forms

can be used interchangeably.

A non-nullable value typenon-nullable value type conversely is any value type other than System.Nullable<T>  and its shorthand T?

(for any T ), plus any type parameter that is constrained to be a non-nullable value type (that is, any type

parameter with a struct  constraint). The System.Nullable<T>  type specifies the value type constraint for T  (Type

parameter constraints), which means that the underlying type of a nullable type can be any non-nullable value type.

The underlying type of a nullable type cannot be a nullable type or a reference type. For example, int??  and 

string?  are invalid types.

An instance of a nullable type T?  has two public read-only properties:

A HasValue  property of type bool

A Value  property of type T



  

new T?(x)

Reference types

reference_type
    : class_type
    | interface_type
    | array_type
    | delegate_type
    ;

class_type
    : type_name
    | 'object'
    | 'dynamic'
    | 'string'
    ;

interface_type
    : type_name
    ;

array_type
    : non_array_type rank_specifier+
    ;

non_array_type
    : type
    ;

rank_specifier
    : '[' dim_separator* ']'
    ;

dim_separator
    : ','
    ;

delegate_type
    : type_name
    ;

An instance for which HasValue  is true is said to be non-null. A non-null instance contains a known value and 

Value  returns that value.

An instance for which HasValue  is false is said to be null. A null instance has an undefined value. Attempting to

read the Value  of a null instance causes a System.InvalidOperationException  to be thrown. The process of

accessing the Value  property of a nullable instance is referred to as unwrappingunwrapping.

In addition to the default constructor, every nullable type T?  has a public constructor that takes a single argument

of type T . Given a value x  of type T , a constructor invocation of the form

creates a non-null instance of T?  for which the Value  property is x . The process of creating a non-null instance

of a nullable type for a given value is referred to as wrappingwrapping.

Implicit conversions are available from the null  literal to T?  (Null literal conversions) and from T  to T?

(Implicit nullable conversions).

A reference type is a class type, an interface type, an array type, or a delegate type.

A reference type value is a reference to an instanceinstance of the type, the latter known as an objectobject. The special value 



  

    

Class typesClass types

C L A SS T Y P EC L A SS T Y P E DESC RIP T IO NDESC RIP T IO N

System.Object The ultimate base class of all other types. See The object type.

System.String The string type of the C# language. See The string type.

System.ValueType The base class of all value types. See The System.ValueType
type.

System.Enum The base class of all enum types. See Enums.

System.Array The base class of all array types. See Arrays.

System.Delegate The base class of all delegate types. See Delegates.

System.Exception The base class of all exception types. See Exceptions.

The object typeThe object type

The dynamic typeThe dynamic type

null  is compatible with all reference types and indicates the absence of an instance.

A class type defines a data structure that contains data members (constants and fields), function members

(methods, properties, events, indexers, operators, instance constructors, destructors and static constructors), and

nested types. Class types support inheritance, a mechanism whereby derived classes can extend and specialize base

classes. Instances of class types are created using object_creation_expressions (Object creation expressions).

Class types are described in Classes.

Certain predefined class types have special meaning in the C# language, as described in the table below.

The object  class type is the ultimate base class of all other types. Every type in C# directly or indirectly derives

from the object  class type.

The keyword object  is simply an alias for the predefined class System.Object .

The dynamic  type, like object , can reference any object. When operators are applied to expressions of type 

dynamic , their resolution is deferred until the program is run. Thus, if the operator cannot legally be applied to the

referenced object, no error is given during compilation. Instead an exception will be thrown when resolution of the

operator fails at run-time.

Its purpose is to allow dynamic binding, which is described in detail in Dynamic binding.

dynamic  is considered identical to object  except in the following respects:

Operations on expressions of type dynamic  can be dynamically bound (Dynamic binding).

Type inference (Type inference) will prefer dynamic  over object  if both are candidates.

Because of this equivalence, the following holds:

There is an implicit identity conversion between object  and dynamic , and between constructed types that are

the same when replacing dynamic  with object

Implicit and explicit conversions to and from object  also apply to and from dynamic .

Method signatures that are the same when replacing dynamic  with object  are considered the same signature

The type dynamic  is indistinguishable from object  at run-time.



  

   

        

The string typeThe string type

Interface typesInterface types

Array typesArray types

Delegate typesDelegate types

Boxing and unboxing

Boxing conversionsBoxing conversions

An expression of the type dynamic  is referred to as a dynamic expressiondynamic expression.

The string  type is a sealed class type that inherits directly from object . Instances of the string  class represent

Unicode character strings.

Values of the string  type can be written as string literals (String literals).

The keyword string  is simply an alias for the predefined class System.String .

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An

interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interface types are described in Interfaces.

An array is a data structure that contains zero or more variables which are accessed through computed indices. The

variables contained in an array, also called the elements of the array, are all of the same type, and this type is called

the element type of the array.

Array types are described in Arrays.

A delegate is a data structure that refers to one or more methods. For instance methods, it also refers to their

corresponding object instances.

The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer can only

reference static functions, a delegate can reference both static and instance methods. In the latter case, the delegate

stores not only a reference to the method's entry point, but also a reference to the object instance on which to

invoke the method.

Delegate types are described in Delegates.

The concept of boxing and unboxing is central to C#'s type system. It provides a bridge between value_types and

reference_types by permitting any value of a value_type to be converted to and from type object . Boxing and

unboxing enables a unified view of the type system wherein a value of any type can ultimately be treated as an

object.

A boxing conversion permits a value_type to be implicitly converted to a reference_type. The following boxing

conversions exist:

From any value_type to the type object .

From any value_type to the type System.ValueType .

From any non_nullable_value_type to any interface_type implemented by the value_type.

From any nullable_type to any interface_type implemented by the underlying type of the nullable_type.

From any enum_type to the type System.Enum .

From any nullable_type with an underlying enum_type to the type System.Enum .

Note that an implicit conversion from a type parameter will be executed as a boxing conversion if at run-time it

ends up converting from a value type to a reference type (Implicit conversions involving type parameters).

Boxing a value of a non_nullable_value_type consists of allocating an object instance and copying the

non_nullable_value_type value into that instance.



sealed class Box<T>: System.ValueType
{
    T value;

    public Box(T t) {
        value = t;
    }
}

int i = 123;
object box = i;

int i = 123;
object box = new Box<int>(i);

int i = 123;
object box = i;
if (box is int) {
    Console.Write("Box contains an int");
}

struct Point
{
    public int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

Boxing a value of a nullable_type produces a null reference if it is the null  value ( HasValue  is false ), or the result

of unwrapping and boxing the underlying value otherwise.

The actual process of boxing a value of a non_nullable_value_type is best explained by imagining the existence of a

generic boxing classboxing class , which behaves as if it were declared as follows:

Boxing of a value v  of type T  now consists of executing the expression new Box<T>(v) , and returning the

resulting instance as a value of type object . Thus, the statements

conceptually correspond to

A boxing class like Box<T>  above doesn't actually exist and the dynamic type of a boxed value isn't actually a class

type. Instead, a boxed value of type T  has the dynamic type T , and a dynamic type check using the is  operator

can simply reference type T . For example,

will output the string " Box contains an int " on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion of a

reference_type to type object , in which the value continues to reference the same instance and simply is regarded

as the less derived type object . For example, given the declaration

the following statements



    

    

Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

Unboxing conversionsUnboxing conversions

object box = 123;
int i = (int)box;

object box = new Box<int>(123);
int i = ((Box<int>)box).value;

Constructed types

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment of p

to box  causes the value of p  to be copied. Had Point  been declared a class  instead, the value 20 would be

output because p  and box  would reference the same instance.

An unboxing conversion permits a reference_type to be explicitly converted to a value_type. The following

unboxing conversions exist:

From the type object  to any value_type.

From the type System.ValueType  to any value_type.

From any interface_type to any non_nullable_value_type that implements the interface_type.

From any interface_type to any nullable_type whose underlying type implements the interface_type.

From the type System.Enum  to any enum_type.

From the type System.Enum  to any nullable_type with an underlying enum_type.

Note that an explicit conversion to a type parameter will be executed as an unboxing conversion if at run-time it

ends up converting from a reference type to a value type (Explicit dynamic conversions).

An unboxing operation to a non_nullable_value_type consists of first checking that the object instance is a boxed

value of the given non_nullable_value_type, and then copying the value out of the instance.

Unboxing to a nullable_type produces the null value of the nullable_type if the source operand is null , or the

wrapped result of unboxing the object instance to the underlying type of the nullable_type otherwise.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an object 

box  to a value_type T  consists of executing the expression ((Box<T>)box).value . Thus, the statements

conceptually correspond to

For an unboxing conversion to a given non_nullable_value_type to succeed at run-time, the value of the source

operand must be a reference to a boxed value of that non_nullable_value_type. If the source operand is null , a 

System.NullReferenceException  is thrown. If the source operand is a reference to an incompatible object, a 

System.InvalidCastException  is thrown.

For an unboxing conversion to a given nullable_type to succeed at run-time, the value of the source operand must

be either null  or a reference to a boxed value of the underlying non_nullable_value_type of the nullable_type. If

the source operand is a reference to an incompatible object, a System.InvalidCastException  is thrown.

A generic type declaration, by itself, denotes an unbound generic typeunbound generic type that is used as a "blueprint" to form many

different types, by way of applying type argumentstype arguments . The type arguments are written within angle brackets ( <

and > ) immediately following the name of the generic type. A type that includes at least one type argument is



        

      

namespace Widgets
{
    class Queue {...}
    class Queue<TElement> {...}
}

namespace MyApplication
{
    using Widgets;

    class X
    {
        Queue q1;            // Non-generic Widgets.Queue
        Queue<int> q2;       // Generic Widgets.Queue
    }
}

class Outer<T>
{
    public class Inner {...}

    public Inner i;                // Type of i is Outer<T>.Inner
}

Type argumentsType arguments

type_argument_list
    : '<' type_arguments '>'
    ;

type_arguments
    : type_argument (',' type_argument)*
    ;

type_argument
    : type
    ;

Open and closed typesOpen and closed types

called a constructed typeconstructed type. A constructed type can be used in most places in the language in which a type name

can appear. An unbound generic type can only be used within a typeof_expression (The typeof operator).

Constructed types can also be used in expressions as simple names (Simple names) or when accessing a member

(Member access).

When a namespace_or_type_name is evaluated, only generic types with the correct number of type parameters are

considered. Thus, it is possible to use the same identifier to identify different types, as long as the types have

different numbers of type parameters. This is useful when mixing generic and non-generic classes in the same

program:

A type_name might identify a constructed type even though it doesn't specify type parameters directly. This can

occur where a type is nested within a generic class declaration, and the instance type of the containing declaration

is implicitly used for name lookup (Nested types in generic classes):

In unsafe code, a constructed type cannot be used as an unmanaged_type (Pointer types).

Each argument in a type argument list is simply a type.

In unsafe code (Unsafe code), a type_argument may not be a pointer type. Each type argument must satisfy any

constraints on the corresponding type parameter (Type parameter constraints).



          

        

Bound and unbound typesBound and unbound types

Satisfying constraintsSatisfying constraints

All types can be classified as either open typesopen types  or closed typesclosed types . An open type is a type that involves type

parameters. More specifically:

A type parameter defines an open type.

An array type is an open type if and only if its element type is an open type.

A constructed type is an open type if and only if one or more of its type arguments is an open type. A

constructed nested type is an open type if and only if one or more of its type arguments or the type arguments

of its containing type(s) is an open type.

A closed type is a type that is not an open type.

At run-time, all of the code within a generic type declaration is executed in the context of a closed constructed type

that was created by applying type arguments to the generic declaration. Each type parameter within the generic

type is bound to a particular run-time type. The run-time processing of all statements and expressions always

occurs with closed types, and open types occur only during compile-time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other closed

constructed types. Since an open type does not exist at run-time, there are no static variables associated with an

open type. Two closed constructed types are the same type if they are constructed from the same unbound generic

type, and their corresponding type arguments are the same type.

The term unbound typeunbound type refers to a non-generic type or an unbound generic type. The term bound typebound type refers to

a non-generic type or a constructed type.

An unbound type refers to the entity declared by a type declaration. An unbound generic type is not itself a type,

and cannot be used as the type of a variable, argument or return value, or as a base type. The only construct in

which an unbound generic type can be referenced is the typeof  expression (The typeof operator).

Whenever a constructed type or generic method is referenced, the supplied type arguments are checked against

the type parameter constraints declared on the generic type or method (Type parameter constraints). For each 

where  clause, the type argument A  that corresponds to the named type parameter is checked against each

constraint as follows:

If the constraint is a class type, an interface type, or a type parameter, let C  represent that constraint with the

supplied type arguments substituted for any type parameters that appear in the constraint. To satisfy the

constraint, it must be the case that type A  is convertible to type C  by one of the following:

If the constraint is the reference type constraint ( class ), the type A  must satisfy one of the following:

If the constraint is the value type constraint ( struct ), the type A  must satisfy one of the following:

If the constraint is the constructor constraint new() , the type A  must not be abstract  and must have a public

parameterless constructor. This is satisfied if one of the following is true:

An identity conversion (Identity conversion)

An implicit reference conversion (Implicit reference conversions)

A boxing conversion (Boxing conversions), provided that type A is a non-nullable value type.

An implicit reference, boxing or type parameter conversion from a type parameter A  to C .

A  is an interface type, class type, delegate type or array type. Note that System.ValueType  and 

System.Enum  are reference types that satisfy this constraint.

A  is a type parameter that is known to be a reference type (Type parameter constraints).

A  is a struct type or enum type, but not a nullable type. Note that System.ValueType  and System.Enum

are reference types that do not satisfy this constraint.

A  is a type parameter having the value type constraint (Type parameter constraints).

A  is a value type, since all value types have a public default constructor (Default constructors).



class B<T> where T: IEnumerable {...}

class D<T>: B<T> where T: IEnumerable {...}

class E<T>: B<List<T>> {...}

Type parameters

type_parameter
    : identifier
    ;

A  is a type parameter having the constructor constraint (Type parameter constraints).

A  is a type parameter having the value type constraint (Type parameter constraints).

A  is a class that is not abstract  and contains an explicitly declared public  constructor with no

parameters.

A  is not abstract  and has a default constructor (Default constructors).

A compile-time error occurs if one or more of a type parameter's constraints are not satisfied by the given type

arguments.

Since type parameters are not inherited, constraints are never inherited either. In the example below, D  needs to

specify the constraint on its type parameter T  so that T  satisfies the constraint imposed by the base class B<T> .

In contrast, class E  need not specify a constraint, because List<T>  implements IEnumerable  for any T .

A type parameter is an identifier designating a value type or reference type that the parameter is bound to at run-

time.

Since a type parameter can be instantiated with many different actual type arguments, type parameters have

slightly different operations and restrictions than other types. These include:

A type parameter cannot be used directly to declare a base class (Base class) or interface (Variant type

parameter lists).

The rules for member lookup on type parameters depend on the constraints, if any, applied to the type

parameter. They are detailed in Member lookup.

The available conversions for a type parameter depend on the constraints, if any, applied to the type parameter.

They are detailed in Implicit conversions involving type parameters and Explicit dynamic conversions.

The literal null  cannot be converted to a type given by a type parameter, except if the type parameter is known

to be a reference type (Implicit conversions involving type parameters). However, a default  expression (Default

value expressions) can be used instead. In addition, a value with a type given by a type parameter can be

compared with null  using ==  and !=  (Reference type equality operators) unless the type parameter has the

value type constraint.

A new  expression (Object creation expressions) can only be used with a type parameter if the type parameter is

constrained by a constructor_constraint or the value type constraint (Type parameter constraints).

A type parameter cannot be used anywhere within an attribute.

A type parameter cannot be used in a member access (Member access) or type name (Namespace and type

names) to identify a static member or a nested type.

In unsafe code, a type parameter cannot be used as an unmanaged_type (Pointer types).

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound to a

run-time type that was specified by supplying a type argument to the generic type declaration. Thus, the type of a

variable declared with a type parameter will, at run-time, be a closed constructed type (Open and closed types). The



     Expression tree types

Func<int,int> del = x => x + 1;                    // Code

Expression<Func<int,int>> exp = x => x + 1;        // Data

run-time execution of all statements and expressions involving type parameters uses the actual type that was

supplied as the type argument for that parameter.

Expression treesExpression trees  permit lambda expressions to be represented as data structures instead of executable code.

Expression trees are values of expression tree typesexpression tree types  of the form System.Linq.Expressions.Expression<D> , where 

D  is any delegate type. For the remainder of this specification we will refer to these types using the shorthand 

Expression<D> .

If a conversion exists from a lambda expression to a delegate type D , a conversion also exists to the expression

tree type Expression<D> . Whereas the conversion of a lambda expression to a delegate type generates a delegate

that references executable code for the lambda expression, conversion to an expression tree type creates an

expression tree representation of the lambda expression.

Expression trees are efficient in-memory data representations of lambda expressions and make the structure of the

lambda expression transparent and explicit.

Just like a delegate type D , Expression<D>  is said to have parameter and return types, which are the same as those

of D .

The following example represents a lambda expression both as executable code and as an expression tree. Because

a conversion exists to Func<int,int> , a conversion also exists to Expression<Func<int,int>> :

Following these assignments, the delegate del  references a method that returns x + 1 , and the expression tree 

exp  references a data structure that describes the expression x => x + 1 .

The exact definition of the generic type Expression<D>  as well as the precise rules for constructing an expression

tree when a lambda expression is converted to an expression tree type, are both outside the scope of this

specification.

Two things are important to make explicit:

Func<int,int> del2 = exp.Compile();

int i1 = del(1);

int i2 = del2(1);

Not all lambda expressions can be converted to expression trees. For instance, lambda expressions with

statement bodies, and lambda expressions containing assignment expressions cannot be represented. In

these cases, a conversion still exists, but will fail at compile-time. These exceptions are detailed in

Anonymous function conversions.

Expression<D>  offers an instance method Compile  which produces a delegate of type D :

Invoking this delegate causes the code represented by the expression tree to be executed. Thus, given the

definitions above, del and del2 are equivalent, and the following two statements will have the same effect:

After executing this code, i1  and i2  will both have the value 2 .
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Variable categories

class A
{
    public static int x;
    int y;

    void F(int[] v, int a, ref int b, out int c) {
        int i = 1;
        c = a + b++;
    }
}

Static variablesStatic variables

Instance variablesInstance variables

Instance variables in classesInstance variables in classes

Variables represent storage locations. Every variable has a type that determines what values can be stored in the

variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables are always of

the appropriate type. The value of a variable can be changed through assignment or through use of the ++  and 

--  operators.

A variable must be definitely assigneddefinitely assigned (Definite assignment) before its value can be obtained.

As described in the following sections, variables are either initially assignedinitially assigned or initially unassignedinitially unassigned. An initially

assigned variable has a well-defined initial value and is always considered definitely assigned. An initially

unassigned variable has no initial value. For an initially unassigned variable to be considered definitely assigned at

a certain location, an assignment to the variable must occur in every possible execution path leading to that

location.

C# defines seven categories of variables: static variables, instance variables, array elements, value parameters,

reference parameters, output parameters, and local variables. The sections that follow describe each of these

categories.

In the example

x  is a static variable, y  is an instance variable, v[0]  is an array element, a  is a value parameter, b  is a

reference parameter, c  is an output parameter, and i  is a local variable.

A field declared with the static  modifier is called a static var iablestatic var iable. A static variable comes into existence before

execution of the static constructor (Static constructors) for its containing type, and ceases to exist when the

associated application domain ceases to exist.

The initial value of a static variable is the default value (Default values) of the variable's type.

For purposes of definite assignment checking, a static variable is considered initially assigned.

A field declared without the static  modifier is called an instance var iableinstance var iable.

An instance variable of a class comes into existence when a new instance of that class is created, and ceases to exist

when there are no references to that instance and the instance's destructor (if any) has executed.

https://github.com/dotnet/csharplang/blob/master/spec/variables.md


  

  

  

Instance variables in structsInstance variables in structs

Array elementsArray elements

Value parametersValue parameters

Reference parametersReference parameters

Output parametersOutput parameters

The initial value of an instance variable of a class is the default value (Default values) of the variable's type.

For the purpose of definite assignment checking, an instance variable of a class is considered initially assigned.

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In other

words, when a variable of a struct type comes into existence or ceases to exist, so too do the instance variables of

the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing struct variable. In

other words, when a struct variable is considered initially assigned, so too are its instance variables, and when a

struct variable is considered initially unassigned, its instance variables are likewise unassigned.

The elements of an array come into existence when an array instance is created, and cease to exist when there are

no references to that array instance.

The initial value of each of the elements of an array is the default value (Default values) of the type of the array

elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

A parameter declared without a ref  or out  modifier is a value parametervalue parameter .

A value parameter comes into existence upon invocation of the function member (method, instance constructor,

accessor, or operator) or anonymous function to which the parameter belongs, and is initialized with the value of

the argument given in the invocation. A value parameter normally ceases to exist upon return of the function

member or anonymous function. However, if the value parameter is captured by an anonymous function

(Anonymous function expressions), its life time extends at least until the delegate or expression tree created from

that anonymous function is eligible for garbage collection.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

A parameter declared with a ref  modifier is a reference parameterreference parameter .

A reference parameter does not create a new storage location. Instead, a reference parameter represents the same

storage location as the variable given as the argument in the function member or anonymous function invocation.

Thus, the value of a reference parameter is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output

parameters described in Output parameters.

A variable must be definitely assigned (Definite assignment) before it can be passed as a reference parameter in

a function member or delegate invocation.

Within a function member or anonymous function, a reference parameter is considered initially assigned.

Within an instance method or instance accessor of a struct type, the this  keyword behaves exactly as a reference

parameter of the struct type (This access).

A parameter declared with an out  modifier is an output parameteroutput parameter .

An output parameter does not create a new storage location. Instead, an output parameter represents the same

storage location as the variable given as the argument in the function member or delegate invocation. Thus, the

value of an output parameter is always the same as the underlying variable.



  

           

Local variablesLocal variables

Default values

The following definite assignment rules apply to output parameters. Note the different rules for reference

parameters described in Reference parameters.

A variable need not be definitely assigned before it can be passed as an output parameter in a function member

or delegate invocation.

Following the normal completion of a function member or delegate invocation, each variable that was passed as

an output parameter is considered assigned in that execution path.

Within a function member or anonymous function, an output parameter is considered initially unassigned.

Every output parameter of a function member or anonymous function must be definitely assigned (Definite

assignment) before the function member or anonymous function returns normally.

Within an instance constructor of a struct type, the this  keyword behaves exactly as an output parameter of the

struct type (This access).

A local var iablelocal var iable is declared by a local_variable_declaration, which may occur in a block, a for_statement, a

switch_statement or a using_statement; or by a foreach_statement or a specific_catch_clause for a try_statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to be

reserved for it. This lifetime extends at least from entry into the block, for_statement, switch_statement,

using_statement, foreach_statement, or specific_catch_clause with which it is associated, until execution of that

block, for_statement, switch_statement, using_statement, foreach_statement, or specific_catch_clause ends in any

way. (Entering an enclosed block or calling a method suspends, but does not end, execution of the current block,

for_statement, switch_statement, using_statement, foreach_statement, or specific_catch_clause.) If the local variable

is captured by an anonymous function (Captured outer variables), its lifetime extends at least until the delegate or

expression tree created from the anonymous function, along with any other objects that come to reference the

captured variable, are eligible for garbage collection.

If the parent block, for_statement, switch_statement, using_statement, foreach_statement, or specific_catch_clause is

entered recursively, a new instance of the local variable is created each time, and its local_variable_initializer, if any,

is evaluated each time.

A local variable introduced by a local_variable_declaration is not automatically initialized and thus has no default

value. For the purpose of definite assignment checking, a local variable introduced by a local_variable_declaration is

considered initially unassigned. A local_variable_declaration may include a local_variable_initializer, in which case

the variable is considered definitely assigned only after the initializing expression (Declaration statements).

Within the scope of a local variable introduced by a local_variable_declaration, it is a compile-time error to refer to

that local variable in a textual position that precedes its local_variable_declarator. If the local variable declaration is

implicit (Local variable declarations), it is also an error to refer to the variable within its local_variable_declarator.

A local variable introduced by a foreach_statement or a specific_catch_clause is considered definitely assigned in its

entire scope.

The actual lifetime of a local variable is implementation-dependent. For example, a compiler might statically

determine that a local variable in a block is only used for a small portion of that block. Using this analysis, the

compiler could generate code that results in the variable's storage having a shorter lifetime than its containing

block.

The storage referred to by a local reference variable is reclaimed independently of the lifetime of that local

reference variable (Automatic memory management).

The following categories of variables are automatically initialized to their default values:



          Definite assignment

Static variables.

Instance variables of class instances.

Array elements.

The default value of a variable depends on the type of the variable and is determined as follows:

For a variable of a value_type, the default value is the same as the value computed by the value_type's default

constructor (Default constructors).

For a variable of a reference_type, the default value is null .

Initialization to default values is typically done by having the memory manager or garbage collector initialize

memory to all-bits-zero before it is allocated for use. For this reason, it is convenient to use all-bits-zero to

represent the null reference.

At a given location in the executable code of a function member, a variable is said to be definitely assigneddefinitely assigned if the

compiler can prove, by a particular static flow analysis (Precise rules for determining definite assignment), that the

variable has been automatically initialized or has been the target of at least one assignment. Informally stated, the

rules of definite assignment are:

An initially assigned variable (Initially assigned variables) is always considered definitely assigned.

An initially unassigned variable (Initially unassigned variables) is considered definitely assigned at a given

location if all possible execution paths leading to that location contain at least one of the following:

A simple assignment (Simple assignment) in which the variable is the left operand.

An invocation expression (Invocation expressions) or object creation expression (Object creation

expressions) that passes the variable as an output parameter.

For a local variable, a local variable declaration (Local variable declarations) that includes a variable

initializer.

The formal specification underlying the above informal rules is described in Initially assigned variables, Initially

unassigned variables, and Precise rules for determining definite assignment.

The definite assignment states of instance variables of a struct_type variable are tracked individually as well as

collectively. In addition to the rules above, the following rules apply to struct_type variables and their instance

variables:

An instance variable is considered definitely assigned if its containing struct_type variable is considered

definitely assigned.

A struct_type variable is considered definitely assigned if each of its instance variables is considered definitely

assigned.

Definite assignment is a requirement in the following contexts:

A variable must be definitely assigned at each location where its value is obtained. This ensures that undefined

values never occur. The occurrence of a variable in an expression is considered to obtain the value of the

variable, except when

A variable must be definitely assigned at each location where it is passed as a reference parameter. This ensures

that the function member being invoked can consider the reference parameter initially assigned.

All output parameters of a function member must be definitely assigned at each location where the function

member returns (through a return  statement or through execution reaching the end of the function member

the variable is the left operand of a simple assignment,

the variable is passed as an output parameter, or

the variable is a struct_type variable and occurs as the left operand of a member access.



      

    

          

Initially assigned variablesInitially assigned variables

Initially unassigned variablesInitially unassigned variables

Precise rules for determining definite assignmentPrecise rules for determining definite assignment

General rules for statementsGeneral rules for statements

body). This ensures that function members do not return undefined values in output parameters, thus enabling

the compiler to consider a function member invocation that takes a variable as an output parameter equivalent

to an assignment to the variable.

The this  variable of a struct_type instance constructor must be definitely assigned at each location where that

instance constructor returns.

The following categories of variables are classified as initially assigned:

Static variables.

Instance variables of class instances.

Instance variables of initially assigned struct variables.

Array elements.

Value parameters.

Reference parameters.

Variables declared in a catch  clause or a foreach  statement.

The following categories of variables are classified as initially unassigned:

Instance variables of initially unassigned struct variables.

Output parameters, including the this  variable of struct instance constructors.

Local variables, except those declared in a catch  clause or a foreach  statement.

In order to determine that each used variable is definitely assigned, the compiler must use a process that is

equivalent to the one described in this section.

The compiler processes the body of each function member that has one or more initially unassigned variables. For

each initially unassigned variable v, the compiler determines a definite assignment statedefinite assignment state for v at each of the

following points in the function member:

At the beginning of each statement

At the end point (End points and reachability) of each statement

On each arc which transfers control to another statement or to the end point of a statement

At the beginning of each expression

At the end of each expression

The definite assignment state of v can be either :

Definitely assigned. This indicates that on all possible control flows to this point, v has been assigned a value.

Not definitely assigned. For the state of a variable at the end of an expression of type bool , the state of a

variable that isn't definitely assigned may (but doesn't necessarily) fall into one of the following sub-states:

Definitely assigned after true expression. This state indicates that v is definitely assigned if the boolean

expression evaluated as true, but is not necessarily assigned if the boolean expression evaluated as false.

Definitely assigned after false expression. This state indicates that v is definitely assigned if the boolean

expression evaluated as false, but is not necessarily assigned if the boolean expression evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

v is not definitely assigned at the beginning of a function member body.

v is definitely assigned at the beginning of any unreachable statement.

The definite assignment state of v at the beginning of any other statement is determined by checking the



  

Block statements, checked, and unchecked statementsBlock statements, checked, and unchecked statements

Expression statementsExpression statements

Declaration statementsDeclaration statements

If statementsIf statements

if ( expr ) then_stmt else else_stmt

Switch statementsSwitch statements

definite assignment state of v on all control flow transfers that target the beginning of that statement. If (and

only if) v is definitely assigned on all such control flow transfers, then v is definitely assigned at the beginning of

the statement. The set of possible control flow transfers is determined in the same way as for checking

statement reachability (End points and reachability).

The definite assignment state of v at the end point of a block, checked , unchecked , if , while , do , for , 

foreach , lock , using , or switch  statement is determined by checking the definite assignment state of v on

all control flow transfers that target the end point of that statement. If v is definitely assigned on all such control

flow transfers, then v is definitely assigned at the end point of the statement. Otherwise; v is not definitely

assigned at the end point of the statement. The set of possible control flow transfers is determined in the same

way as for checking statement reachability (End points and reachability).

The definite assignment state of v on the control transfer to the first statement of the statement list in the block (or

to the end point of the block, if the statement list is empty) is the same as the definite assignment statement of v

before the block, checked , or unchecked  statement.

For an expression statement stmt that consists of the expression expr:

v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

If v if definitely assigned at the end of expr, it is definitely assigned at the end point of stmt; otherwise; it is not

definitely assigned at the end point of stmt.

If stmt is a declaration statement without initializers, then v has the same definite assignment state at the end

point of stmt as at the beginning of stmt.

If stmt is a declaration statement with initializers, then the definite assignment state for v is determined as if

stmt were a statement list, with one assignment statement for each declaration with an initializer (in the order of

declaration).

For an if  statement stmt of the form:

v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to

then_stmt and to either else_stmt or to the end-point of stmt if there is no else clause.

If v has the state "definitely assigned after true expression" at the end of expr, then it is definitely assigned on the

control flow transfer to then_stmt, and not definitely assigned on the control flow transfer to either else_stmt or

to the end-point of stmt if there is no else clause.

If v has the state "definitely assigned after false expression" at the end of expr, then it is definitely assigned on

the control flow transfer to else_stmt, and not definitely assigned on the control flow transfer to then_stmt. It is

definitely assigned at the end-point of stmt if and only if it is definitely assigned at the end-point of then_stmt.

Otherwise, v is considered not definitely assigned on the control flow transfer to either the then_stmt or

else_stmt, or to the end-point of stmt if there is no else clause.

In a switch  statement stmt with a controlling expression expr:

The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of stmt.

The definite assignment state of v on the control flow transfer to a reachable switch block statement list is the

same as the definite assignment state of v at the end of expr.



While statementsWhile statements

while ( expr ) while_body

Do statementsDo statements

do do_body while ( expr ) ;

For statementsFor statements

for ( for_initializer ; for_condition ; for_iterator ) embedded_statement

{
    for_initializer ;
    while ( for_condition ) {
        embedded_statement ;
        for_iterator ;
    }
}

Break, continue, and goto statementsBreak, continue, and goto statements

Throw statementsThrow statements

For a while  statement stmt of the form:

v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to

while_body and to the end point of stmt.

If v has the state "definitely assigned after true expression" at the end of expr, then it is definitely assigned on the

control flow transfer to while_body, but not definitely assigned at the end-point of stmt.

If v has the state "definitely assigned after false expression" at the end of expr, then it is definitely assigned on

the control flow transfer to the end point of stmt, but not definitely assigned on the control flow transfer to

while_body.

For a do  statement stmt of the form:

v has the same definite assignment state on the control flow transfer from the beginning of stmt to do_body as

at the beginning of stmt.

v has the same definite assignment state at the beginning of expr as at the end point of do_body.

If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to the end

point of stmt.

If v has the state "definitely assigned after false expression" at the end of expr, then it is definitely assigned on

the control flow transfer to the end point of stmt.

Definite assignment checking for a for  statement of the form:

is done as if the statement were written:

If the for_condition is omitted from the for  statement, then evaluation of definite assignment proceeds as if

for_condition were replaced with true  in the above expansion.

The definite assignment state of v on the control flow transfer caused by a break , continue , or goto  statement is

the same as the definite assignment state of v at the beginning of the statement.

For a statement stmt of the form



throw expr ;

Return statementsReturn statements

return expr ;

return ;

Try-catch statementsTry-catch statements

try try_block
catch(...) catch_block_1
...
catch(...) catch_block_n

Try-finally statementsTry-finally statements

try try_block finally finally_block

The definite assignment state of v at the beginning of expr is the same as the definite assignment state of v at the

beginning of stmt.

For a statement stmt of the form

The definite assignment state of v at the beginning of expr is the same as the definite assignment state of v at

the beginning of stmt.

If v is an output parameter, then it must be definitely assigned either :

after expr

or at the end of the finally  block of a try - finally  or try - catch - finally  that encloses the return

statement.

For a statement stmt of the form:

If v is an output parameter, then it must be definitely assigned either :

before stmt

or at the end of the finally  block of a try - finally  or try - catch - finally  that encloses the return

statement.

For a statement stmt of the form:

The definite assignment state of v at the beginning of try_block is the same as the definite assignment state of v

at the beginning of stmt.

The definite assignment state of v at the beginning of catch_block_i (for any i) is the same as the definite

assignment state of v at the beginning of stmt.

The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is definitely

assigned at the end-point of try_block and every catch_block_i (for every i from 1 to n).

For a try  statement stmt of the form:

The definite assignment state of v at the beginning of try_block is the same as the definite assignment state of v

at the beginning of stmt.

The definite assignment state of v at the beginning of finally_block is the same as the definite assignment state

of v at the beginning of stmt.

The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) at least one of



Try-catch-finally statementsTry-catch-finally statements

try try_block
catch(...) catch_block_1
...
catch(...) catch_block_n
finally *finally_block*

try {
    try try_block
    catch(...) catch_block_1
    ...
    catch(...) catch_block_n
}
finally finally_block

class A
{
    static void F() {
        int i, j;
        try {
            goto LABEL;
            // neither i nor j definitely assigned
            i = 1;
            // i definitely assigned
        }

        catch {
            // neither i nor j definitely assigned
            i = 3;
            // i definitely assigned
        }

        finally {
            // neither i nor j definitely assigned
            j = 5;
            // j definitely assigned
            }
        // i and j definitely assigned
        LABEL:;
        // j definitely assigned

    }
}

the following is true:

v is definitely assigned at the end-point of try_block

v is definitely assigned at the end-point of finally_block

If a control flow transfer (for example, a goto  statement) is made that begins within try_block, and ends outside of

try_block, then v is also considered definitely assigned on that control flow transfer if v is definitely assigned at the

end-point of finally_block. (This is not an only if—if v is definitely assigned for another reason on this control flow

transfer, then it is still considered definitely assigned.)

Definite assignment analysis for a try - catch - finally  statement of the form:

is done as if the statement were a try - finally  statement enclosing a try - catch  statement:

The following example demonstrates how the different blocks of a try  statement (The try statement) affect

definite assignment.



  

Foreach statementsForeach statements

foreach ( type identifier in expr ) embedded_statement

Using statementsUsing statements

using ( resource_acquisition ) embedded_statement

Lock statementsLock statements

lock ( expr ) embedded_statement

Yield statementsYield statements

yield return expr ;

General rules for simple expressionsGeneral rules for simple expressions

General rules for expressions with embedded expressionsGeneral rules for expressions with embedded expressions

For a foreach  statement stmt of the form:

The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of stmt.

The definite assignment state of v on the control flow transfer to embedded_statement or to the end point of

stmt is the same as the state of v at the end of expr.

For a using  statement stmt of the form:

The definite assignment state of v at the beginning of resource_acquisition is the same as the state of v at the

beginning of stmt.

The definite assignment state of v on the control flow transfer to embedded_statement is the same as the state

of v at the end of resource_acquisition.

For a lock  statement stmt of the form:

The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of stmt.

The definite assignment state of v on the control flow transfer to embedded_statement is the same as the state

of v at the end of expr.

For a yield return  statement stmt of the form:

The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of stmt.

The definite assignment state of v at the end of stmt is the same as the state of v at the end of expr.

A yield break  statement has no effect on the definite assignment state.

The following rule applies to these kinds of expressions: literals (Literals), simple names (Simple names), member

access expressions (Member access), non-indexed base access expressions (Base access), typeof  expressions (The

typeof operator), default value expressions (Default value expressions) and nameof  expressions (Nameof

expressions).

The definite assignment state of v at the end of such an expression is the same as the definite assignment state

of v at the beginning of the expression.

The following rules apply to these kinds of expressions: parenthesized expressions (Parenthesized expressions),

element access expressions (Element access), base access expressions with indexing (Base access), increment and

decrement expressions (Postfix increment and decrement operators, Prefix increment and decrement operators),

cast expressions (Cast expressions), unary + , - , ~ , *  expressions, binary + , - , * , / , % , << , >> , < , <= , 

> , >= , == , != , is , as , & , | , ^  expressions (Arithmetic operators, Shift operators, Relational and type-



  

Invocation expressions and object creation expressionsInvocation expressions and object creation expressions

primary_expression ( arg1 , arg2 , ... , argN )

new type ( arg1 , arg2 , ... , argN )

Simple assignment expressionsSimple assignment expressions

testing operators, Logical operators), compound assignment expressions (Compound assignment), checked  and 

unchecked  expressions (The checked and unchecked operators), plus array and delegate creation expressions (The

new operator).

Each of these expressions has one or more sub-expressions that are unconditionally evaluated in a fixed order. For

example, the binary %  operator evaluates the left hand side of the operator, then the right hand side. An indexing

operation evaluates the indexed expression, and then evaluates each of the index expressions, in order from left to

right. For an expression expr, which has sub-expressions e1, e2, ..., eN, evaluated in that order :

The definite assignment state of v at the beginning of e1 is the same as the definite assignment state at the

beginning of expr.

The definite assignment state of v at the beginning of ei (i greater than one) is the same as the definite

assignment state at the end of the previous sub-expression.

The definite assignment state of v at the end of expr is the same as the definite assignment state at the end of

eN

For an invocation expression expr of the form:

or an object creation expression of the form:

For an invocation expression, the definite assignment state of v before primary_expression is the same as the

state of v before expr.

For an invocation expression, the definite assignment state of v before arg1 is the same as the state of v after

primary_expression.

For an object creation expression, the definite assignment state of v before arg1 is the same as the state of v

before expr.

For each argument argi, the definite assignment state of v after argi is determined by the normal expression

rules, ignoring any ref  or out  modifiers.

For each argument argi for any i greater than one, the definite assignment state of v before argi is the same as

the state of v after the previous arg.

If the variable v is passed as an out  argument (i.e., an argument of the form out v ) in any of the arguments,

then the state of v after expr is definitely assigned. Otherwise; the state of v after expr is the same as the state of

v after argN.

For array initializers (Array creation expressions), object initializers (Object initializers), collection initializers

(Collection initializers) and anonymous object initializers (Anonymous object creation expressions), the definite

assignment state is determined by the expansion that these constructs are defined in terms of.

For an expression expr of the form w = expr_rhs :

The definite assignment state of v before expr_rhs is the same as the definite assignment state of v before expr.

The definite assignment state of v after expr is determined by:

If w is the same variable as v, then the definite assignment state of v after expr is definitely assigned.

Otherwise, if the assignment occurs within the instance constructor of a struct type, if w is a property

access designating an automatically implemented property P on the instance being constructed and v is

the hidden backing field of P, then the definite assignment state of v after expr is definitely assigned.

Otherwise, the definite assignment state of v after expr is the same as the definite assignment state of v



&& (conditional AND) expressions&& (conditional AND) expressions

class A
{
    static void F(int x, int y) {
        int i;
        if (x >= 0 && (i = y) >= 0) {
            // i definitely assigned
        }
        else {
            // i not definitely assigned
        }
        // i not definitely assigned
    }
}

|| (conditional OR) expressions|| (conditional OR) expressions

after expr_rhs.

For an expression expr of the form expr_first && expr_second :

The definite assignment state of v before expr_first is the same as the definite assignment state of v before expr.

The definite assignment state of v before expr_second is definitely assigned if the state of v after expr_first is

either definitely assigned or "definitely assigned after true expression". Otherwise, it is not definitely assigned.

The definite assignment state of v after expr is determined by:

If expr_first is a constant expression with the value false , then the definite assignment state of v after

expr is the same as the definite assignment state of v after expr_first.

Otherwise, if the state of v after expr_first is definitely assigned, then the state of v after expr is definitely

assigned.

Otherwise, if the state of v after expr_second is definitely assigned, and the state of v after expr_first is

"definitely assigned after false expression", then the state of v after expr is definitely assigned.

Otherwise, if the state of v after expr_second is definitely assigned or "definitely assigned after true

expression", then the state of v after expr is "definitely assigned after true expression".

Otherwise, if the state of v after expr_first is "definitely assigned after false expression", and the state of v

after expr_second is "definitely assigned after false expression", then the state of v after expr is "definitely

assigned after false expression".

Otherwise, the state of v after expr is not definitely assigned.

In the example

the variable i  is considered definitely assigned in one of the embedded statements of an if  statement but not in

the other. In the if  statement in method F , the variable i  is definitely assigned in the first embedded statement

because execution of the expression (i = y)  always precedes execution of this embedded statement. In contrast,

the variable i  is not definitely assigned in the second embedded statement, since x >= 0  might have tested false,

resulting in the variable i  being unassigned.

For an expression expr of the form expr_first || expr_second :

The definite assignment state of v before expr_first is the same as the definite assignment state of v before expr.

The definite assignment state of v before expr_second is definitely assigned if the state of v after expr_first is

either definitely assigned or "definitely assigned after false expression". Otherwise, it is not definitely assigned.

The definite assignment statement of v after expr is determined by:

If expr_first is a constant expression with the value true , then the definite assignment state of v after

expr is the same as the definite assignment state of v after expr_first.

Otherwise, if the state of v after expr_first is definitely assigned, then the state of v after expr is definitely

assigned.



class A
{
    static void G(int x, int y) {
        int i;
        if (x >= 0 || (i = y) >= 0) {
            // i not definitely assigned
        }
        else {
            // i definitely assigned
        }
        // i not definitely assigned
    }
}

! (logical negation) expressions! (logical negation) expressions

?? (null coalescing) expressions?? (null coalescing) expressions

Otherwise, if the state of v after expr_second is definitely assigned, and the state of v after expr_first is

"definitely assigned after true expression", then the state of v after expr is definitely assigned.

Otherwise, if the state of v after expr_second is definitely assigned or "definitely assigned after false

expression", then the state of v after expr is "definitely assigned after false expression".

Otherwise, if the state of v after expr_first is "definitely assigned after true expression", and the state of v

after expr_second is "definitely assigned after true expression", then the state of v after expr is "definitely

assigned after true expression".

Otherwise, the state of v after expr is not definitely assigned.

In the example

the variable i  is considered definitely assigned in one of the embedded statements of an if  statement but not in

the other. In the if  statement in method G , the variable i  is definitely assigned in the second embedded

statement because execution of the expression (i = y)  always precedes execution of this embedded statement. In

contrast, the variable i  is not definitely assigned in the first embedded statement, since x >= 0  might have tested

true, resulting in the variable i  being unassigned.

For an expression expr of the form ! expr_operand :

The definite assignment state of v before expr_operand is the same as the definite assignment state of v before

expr.

The definite assignment state of v after expr is determined by:

If the state of v after *expr_operand *is definitely assigned, then the state of v after expr is definitely

assigned.

If the state of v after *expr_operand *is not definitely assigned, then the state of v after expr is not

definitely assigned.

If the state of v after *expr_operand *is "definitely assigned after false expression", then the state of v after

expr is "definitely assigned after true expression".

If the state of v after *expr_operand *is "definitely assigned after true expression", then the state of v after

expr is "definitely assigned after false expression".

For an expression expr of the form expr_first ?? expr_second :

The definite assignment state of v before expr_first is the same as the definite assignment state of v before expr.

The definite assignment state of v before expr_second is the same as the definite assignment state of v after

expr_first.

The definite assignment statement of v after expr is determined by:

If expr_first is a constant expression (Constant expressions) with value null, then the state of v after expr is

the same as the state of v after expr_second.



?: (conditional) expressions?: (conditional) expressions

Anonymous functionsAnonymous functions

delegate bool Filter(int i);

void F() {
    int max;

    // Error, max is not definitely assigned
    Filter f = (int n) => n < max;

    max = 5;
    DoWork(f);
}

Otherwise, the state of v after expr is the same as the definite assignment state of v after expr_first.

For an expression expr of the form expr_cond ? expr_true : expr_false :

The definite assignment state of v before expr_cond is the same as the state of v before expr.

The definite assignment state of v before expr_true is definitely assigned if and only if one of the following

holds:

The definite assignment state of v before expr_false is definitely assigned if and only if one of the following

holds:

the state of v after expr_cond is definitely assigned or "definitely assigned after false expression".

The definite assignment state of v after expr is determined by:

expr_cond is a constant expression with the value false

the state of v after expr_cond is definitely assigned or "definitely assigned after true expression".

expr_cond is a constant expression with the value true

If expr_cond is a constant expression (Constant expressions) with value true  then the state of v after

expr is the same as the state of v after expr_true.

Otherwise, if expr_cond is a constant expression (Constant expressions) with value false  then the state

of v after expr is the same as the state of v after expr_false.

Otherwise, if the state of v after expr_true is definitely assigned and the state of v after expr_false is

definitely assigned, then the state of v after expr is definitely assigned.

Otherwise, the state of v after expr is not definitely assigned.

For a lambda_expression or anonymous_method_expression expr with a body (either block or expression) body:

The definite assignment state of an outer variable v before body is the same as the state of v before expr. That is,

definite assignment state of outer variables is inherited from the context of the anonymous function.

The definite assignment state of an outer variable v after expr is the same as the state of v before expr.

The example

generates a compile-time error since max  is not definitely assigned where the anonymous function is declared. The

example



  

delegate void D();

void F() {
    int n;
    D d = () => { n = 1; };

    d();

    // Error, n is not definitely assigned
    Console.WriteLine(n);
}

Variable references

variable_reference
    : expression
    ;

Atomicity of variable references

also generates a compile-time error since the assignment to n  in the anonymous function has no affect on the

definite assignment state of n  outside the anonymous function.

A variable_reference is an expression that is classified as a variable. A variable_reference denotes a storage location

that can be accessed both to fetch the current value and to store a new value.

In C and C++, a variable_reference is known as an lvalue.

Reads and writes of the following data types are atomic: bool , char , byte , sbyte , short , ushort , uint , int , 

float , and reference types. In addition, reads and writes of enum types with an underlying type in the previous list

are also atomic. Reads and writes of other types, including long , ulong , double , and decimal , as well as user-

defined types, are not guaranteed to be atomic. Aside from the library functions designed for that purpose, there is

no guarantee of atomic read-modify-write, such as in the case of increment or decrement.
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int a = 123;
long b = a;         // implicit conversion from int to long
int c = (int) b;    // explicit conversion from long to int

Implicit conversions

Identity conversionIdentity conversion

A conversionconversion enables an expression to be treated as being of a particular type. A conversion may cause an

expression of a given type to be treated as having a different type, or it may cause an expression without a type to

get a type. Conversions can be implicitimplicit or explicitexplicit, and this determines whether an explicit cast is required. For

instance, the conversion from type int  to type long  is implicit, so expressions of type int  can implicitly be

treated as type long . The opposite conversion, from type long  to type int , is explicit and so an explicit cast is

required.

Some conversions are defined by the language. Programs may also define their own conversions (User-defined

conversions).

The following conversions are classified as implicit conversions:

Identity conversions

Implicit numeric conversions

Implicit enumeration conversions

Implicit interpolated string conversions

Implicit nullable conversions

Null literal conversions

Implicit reference conversions

Boxing conversions

Implicit dynamic conversions

Implicit constant expression conversions

User-defined implicit conversions

Anonymous function conversions

Method group conversions

Implicit conversions can occur in a variety of situations, including function member invocations (Compile-time

checking of dynamic overload resolution), cast expressions (Cast expressions), and assignments (Assignment

operators).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly designed

user-defined implicit conversions should exhibit these characteristics as well.

For the purposes of conversion, the types object  and dynamic  are considered equivalent.

However, dynamic conversions (Implicit dynamic conversions and Explicit dynamic conversions) apply only to

expressions of type dynamic  (The dynamic type).

An identity conversion converts from any type to the same type. This conversion exists such that an entity that

https://github.com/dotnet/csharplang/blob/master/spec/conversions.md


        

  

  

        

Implicit numeric conversionsImplicit numeric conversions

Implicit enumeration conversionsImplicit enumeration conversions

Implicit interpolated string conversionsImplicit interpolated string conversions

Implicit nullable conversionsImplicit nullable conversions

already has a required type can be said to be convertible to that type.

Because object  and dynamic  are considered equivalent there is an identity conversion between object  and 

dynamic , and between constructed types that are the same when replacing all occurrences of dynamic  with 

object .

The implicit numeric conversions are:

From sbyte  to short , int , long , float , double , or decimal .

From byte  to short , ushort , int , uint , long , ulong , float , double , or decimal .

From short  to int , long , float , double , or decimal .

From ushort  to int , uint , long , ulong , float , double , or decimal .

From int  to long , float , double , or decimal .

From uint  to long , ulong , float , double , or decimal .

From long  to float , double , or decimal .

From ulong  to float , double , or decimal .

From char  to ushort , int , uint , long , ulong , float , double , or decimal .

From float  to double .

Conversions from int , uint , long , or ulong  to float  and from long  or ulong  to double  may cause a loss of

precision, but will never cause a loss of magnitude. The other implicit numeric conversions never lose any

information.

There are no implicit conversions to the char  type, so values of the other integral types do not automatically

convert to the char  type.

An implicit enumeration conversion permits the decimal_integer_literal 0  to be converted to any enum_type and

to any nullable_type whose underlying type is an enum_type. In the latter case the conversion is evaluated by

converting to the underlying enum_type and wrapping the result (Nullable types).

An implicit interpolated string conversion permits an interpolated_string_expression (Interpolated strings) to be

converted to System.IFormattable  or System.FormattableString  (which implements System.IFormattable ).

When this conversion is applied a string value is not composed from the interpolated string. Instead an instance of 

System.FormattableString  is created, as further described in Interpolated strings.

Predefined implicit conversions that operate on non-nullable value types can also be used with nullable forms of

those types. For each of the predefined implicit identity and numeric conversions that convert from a non-nullable

value type S  to a non-nullable value type T , the following implicit nullable conversions exist:

An implicit conversion from S?  to T? .

An implicit conversion from S  to T? .

Evaluation of an implicit nullable conversion based on an underlying conversion from S  to T  proceeds as follows:

If the nullable conversion is from S?  to T? :

If the source value is null ( HasValue  property is false), the result is the null value of type T? .

Otherwise, the conversion is evaluated as an unwrapping from S?  to S , followed by the underlying

conversion from S  to T , followed by a wrapping (Nullable types) from T  to T? .



    

                            

              

Null literal conversionsNull literal conversions

Implicit reference conversionsImplicit reference conversions

Boxing conversionsBoxing conversions

If the nullable conversion is from S  to T? , the conversion is evaluated as the underlying conversion from 

S  to T  followed by a wrapping from T  to T? .

An implicit conversion exists from the null  literal to any nullable type. This conversion produces the null value

(Nullable types) of the given nullable type.

The implicit reference conversions are:

From any reference_type to object  and dynamic .

From any class_type S  to any class_type T , provided S  is derived from T .

From any class_type S  to any interface_type T , provided S  implements T .

From any interface_type S  to any interface_type T , provided S  is derived from T .

From an array_type S  with an element type SE  to an array_type T  with an element type TE , provided all of

the following are true:

From any array_type to System.Array  and the interfaces it implements.

From a single-dimensional array type S[]  to System.Collections.Generic.IList<T>  and its base interfaces,

provided that there is an implicit identity or reference conversion from S  to T .

From any delegate_type to System.Delegate  and the interfaces it implements.

From the null literal to any reference_type.

From any reference_type to a reference_type T  if it has an implicit identity or reference conversion to a

reference_type T0  and T0  has an identity conversion to T .

From any reference_type to an interface or delegate type T  if it has an implicit identity or reference conversion

to an interface or delegate type T0  and T0  is variance-convertible (Variance conversion) to T .

Implicit conversions involving type parameters that are known to be reference types. See Implicit conversions

involving type parameters for more details on implicit conversions involving type parameters.

S  and T  differ only in element type. In other words, S  and T  have the same number of dimensions.

Both SE  and TE  are reference_types.

An implicit reference conversion exists from SE  to TE .

The implicit reference conversions are those conversions between reference_types that can be proven to always

succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted. In

other words, while a reference conversion may change the type of the reference, it never changes the type or value

of the object being referred to.

A boxing conversion permits a value_type to be implicitly converted to a reference type. A boxing conversion exists

from any non_nullable_value_type to object  and dynamic , to System.ValueType  and to any interface_type

implemented by the non_nullable_value_type. Furthermore an enum_type can be converted to the type 

System.Enum .

A boxing conversion exists from a nullable_type to a reference type, if and only if a boxing conversion exists from

the underlying non_nullable_value_type to the reference type.

A value type has a boxing conversion to an interface type I  if it has a boxing conversion to an interface type I0

and I0  has an identity conversion to I .

A value type has a boxing conversion to an interface type I  if it has a boxing conversion to an interface or

delegate type I0  and I0  is variance-convertible (Variance conversion) to I .



        

  

                

Implicit dynamic conversionsImplicit dynamic conversions

object o  = "object"
dynamic d = "dynamic";

string s1 = o; // Fails at compile-time -- no conversion exists
string s2 = d; // Compiles and succeeds at run-time
int i     = d; // Compiles but fails at run-time -- no conversion exists

Implicit constant expression conversionsImplicit constant expression conversions

Implicit conversions involving type parametersImplicit conversions involving type parameters

Boxing a value of a non_nullable_value_type consists of allocating an object instance and copying the value_type

value into that instance. A struct can be boxed to the type System.ValueType , since that is a base class for all

structs (Inheritance).

Boxing a value of a nullable_type proceeds as follows:

If the source value is null ( HasValue  property is false), the result is a null reference of the target type.

Otherwise, the result is a reference to a boxed T  produced by unwrapping and boxing the source value.

Boxing conversions are described further in Boxing conversions.

An implicit dynamic conversion exists from an expression of type dynamic  to any type T . The conversion is

dynamically bound (Dynamic binding), which means that an implicit conversion will be sought at run-time from the

run-time type of the expression to T . If no conversion is found, a run-time exception is thrown.

Note that this implicit conversion seemingly violates the advice in the beginning of Implicit conversions that an

implicit conversion should never cause an exception. However it is not the conversion itself, but the finding of the

conversion that causes the exception. The risk of run-time exceptions is inherent in the use of dynamic binding. If

dynamic binding of the conversion is not desired, the expression can be first converted to object , and then to the

desired type.

The following example illustrates implicit dynamic conversions:

The assignments to s2  and i  both employ implicit dynamic conversions, where the binding of the operations is

suspended until run-time. At run-time, implicit conversions are sought from the run-time type of d  -- string  -- to

the target type. A conversion is found to string  but not to int .

An implicit constant expression conversion permits the following conversions:

A constant_expression (Constant expressions) of type int  can be converted to type sbyte , byte , short , 

ushort , uint , or ulong , provided the value of the constant_expression is within the range of the destination

type.

A constant_expression of type long  can be converted to type ulong , provided the value of the

constant_expression is not negative.

The following implicit conversions exist for a given type parameter T :

From T  to its effective base class C , from T  to any base class of C , and from T  to any interface

implemented by C . At run-time, if T  is a value type, the conversion is executed as a boxing conversion.

Otherwise, the conversion is executed as an implicit reference conversion or identity conversion.

From T  to an interface type I  in T 's effective interface set and from T  to any base interface of I . At run-

time, if T  is a value type, the conversion is executed as a boxing conversion. Otherwise, the conversion is

executed as an implicit reference conversion or identity conversion.

From T  to a type parameter U , provided T  depends on U  (Type parameter constraints). At run-time, if U  is

a value type, then T  and U  are necessarily the same type and no conversion is performed. Otherwise, if T  is a



      

      

User-defined implicit conversionsUser-defined implicit conversions

Anonymous function conversions and method group conversionsAnonymous function conversions and method group conversions

Explicit conversions

Explicit numeric conversionsExplicit numeric conversions

value type, the conversion is executed as a boxing conversion. Otherwise, the conversion is executed as an

implicit reference conversion or identity conversion.

From the null literal to T , provided T  is known to be a reference type.

From T  to a reference type I  if it has an implicit conversion to a reference type S0  and S0  has an identity

conversion to S . At run-time the conversion is executed the same way as the conversion to S0 .

From T  to an interface type I  if it has an implicit conversion to an interface or delegate type I0  and I0  is

variance-convertible to I  (Variance conversion). At run-time, if T  is a value type, the conversion is executed as

a boxing conversion. Otherwise, the conversion is executed as an implicit reference conversion or identity

conversion.

If T  is known to be a reference type (Type parameter constraints), the conversions above are all classified as

implicit reference conversions (Implicit reference conversions). If T  is not known to be a reference type, the

conversions above are classified as boxing conversions (Boxing conversions).

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by execution of a

user-defined implicit conversion operator, followed by another optional standard implicit conversion. The exact

rules for evaluating user-defined implicit conversions are described in Processing of user-defined implicit

conversions.

Anonymous functions and method groups do not have types in and of themselves, but may be implicitly converted

to delegate types or expression tree types. Anonymous function conversions are described in more detail in

Anonymous function conversions and method group conversions in Method group conversions.

The following conversions are classified as explicit conversions:

All implicit conversions.

Explicit numeric conversions.

Explicit enumeration conversions.

Explicit nullable conversions.

Explicit reference conversions.

Explicit interface conversions.

Unboxing conversions.

Explicit dynamic conversions

User-defined explicit conversions.

Explicit conversions can occur in cast expressions (Cast expressions).

The set of explicit conversions includes all implicit conversions. This means that redundant cast expressions are

allowed.

The explicit conversions that are not implicit conversions are conversions that cannot be proven to always succeed,

conversions that are known to possibly lose information, and conversions across domains of types sufficiently

different to merit explicit notation.

The explicit numeric conversions are the conversions from a numeric_type to another numeric_type for which an

implicit numeric conversion (Implicit numeric conversions) does not already exist:

From sbyte  to byte , ushort , uint , ulong , or char .

From byte  to sbyte  and char .



From short  to sbyte , byte , ushort , uint , ulong , or char .

From ushort  to sbyte , byte , short , or char .

From int  to sbyte , byte , short , ushort , uint , ulong , or char .

From uint  to sbyte , byte , short , ushort , int , or char .

From long  to sbyte , byte , short , ushort , int , uint , ulong , or char .

From ulong  to sbyte , byte , short , ushort , int , uint , long , or char .

From char  to sbyte , byte , or short .

From float  to sbyte , byte , short , ushort , int , uint , long , ulong , char , or decimal .

From double  to sbyte , byte , short , ushort , int , uint , long , ulong , char , float , or decimal .

From decimal  to sbyte , byte , short , ushort , int , uint , long , ulong , char , float , or double .

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible to

convert from any numeric_type to any other numeric_type using a cast expression (Cast expressions).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An explicit

numeric conversion is processed as follows:

For a conversion from an integral type to another integral type, the processing depends on the overflow

checking context (The checked and unchecked operators) in which the conversion takes place:

For a conversion from decimal  to an integral type, the source value is rounded towards zero to the nearest

integral value, and this integral value becomes the result of the conversion. If the resulting integral value is

outside the range of the destination type, a System.OverflowException  is thrown.

For a conversion from float  or double  to an integral type, the processing depends on the overflow checking

context (The checked and unchecked operators) in which the conversion takes place:

In a checked  context, the conversion succeeds if the value of the source operand is within the range of

the destination type, but throws a System.OverflowException  if the value of the source operand is outside

the range of the destination type.

In an unchecked  context, the conversion always succeeds, and proceeds as follows.

If the source type is larger than the destination type, then the source value is truncated by

discarding its "extra" most significant bits. The result is then treated as a value of the destination

type.

If the source type is smaller than the destination type, then the source value is either sign-extended

or zero-extended so that it is the same size as the destination type. Sign-extension is used if the

source type is signed; zero-extension is used if the source type is unsigned. The result is then

treated as a value of the destination type.

If the source type is the same size as the destination type, then the source value is treated as a

value of the destination type.

In a checked  context, the conversion proceeds as follows:

In an unchecked  context, the conversion always succeeds, and proceeds as follows.

If the value of the operand is NaN or infinite, a System.OverflowException  is thrown.

Otherwise, the source operand is rounded towards zero to the nearest integral value. If this

integral value is within the range of the destination type then this value is the result of the

conversion.

Otherwise, a System.OverflowException  is thrown.

If the value of the operand is NaN or infinite, the result of the conversion is an unspecified value of

the destination type.

Otherwise, the source operand is rounded towards zero to the nearest integral value. If this

integral value is within the range of the destination type then this value is the result of the

conversion.



    

  

                    

Explicit enumeration conversionsExplicit enumeration conversions

Explicit nullable conversionsExplicit nullable conversions

Explicit reference conversionsExplicit reference conversions

For a conversion from double  to float , the double  value is rounded to the nearest float  value. If the 

double  value is too small to represent as a float , the result becomes positive zero or negative zero. If the 

double  value is too large to represent as a float , the result becomes positive infinity or negative infinity. If the 

double  value is NaN, the result is also NaN.

For a conversion from float  or double  to decimal , the source value is converted to decimal  representation

and rounded to the nearest number after the 28th decimal place if required (The decimal type). If the source

value is too small to represent as a decimal , the result becomes zero. If the source value is NaN, infinity, or too

large to represent as a decimal , a System.OverflowException  is thrown.

For a conversion from decimal  to float  or double , the decimal  value is rounded to the nearest double  or 

float  value. While this conversion may lose precision, it never causes an exception to be thrown.

Otherwise, the result of the conversion is an unspecified value of the destination type.

The explicit enumeration conversions are:

From sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double , or decimal  to any

enum_type.

From any enum_type to sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double , or 

decimal .

From any enum_type to any other enum_type.

An explicit enumeration conversion between two types is processed by treating any participating enum_type as the

underlying type of that enum_type, and then performing an implicit or explicit numeric conversion between the

resulting types. For example, given an enum_type E  with and underlying type of int , a conversion from E  to 

byte  is processed as an explicit numeric conversion (Explicit numeric conversions) from int  to byte , and a

conversion from byte  to E  is processed as an implicit numeric conversion (Implicit numeric conversions) from 

byte  to int .

Explicit nullable conversionsExplicit nullable conversions  permit predefined explicit conversions that operate on non-nullable value types to

also be used with nullable forms of those types. For each of the predefined explicit conversions that convert from a

non-nullable value type S  to a non-nullable value type T  (Identity conversion, Implicit numeric conversions,

Implicit enumeration conversions, Explicit numeric conversions, and Explicit enumeration conversions), the

following nullable conversions exist:

An explicit conversion from S?  to T? .

An explicit conversion from S  to T? .

An explicit conversion from S?  to T .

Evaluation of a nullable conversion based on an underlying conversion from S  to T  proceeds as follows:

If the nullable conversion is from S?  to T? :

If the nullable conversion is from S  to T? , the conversion is evaluated as the underlying conversion from S

to T  followed by a wrapping from T  to T? .

If the nullable conversion is from S?  to T , the conversion is evaluated as an unwrapping from S?  to S

followed by the underlying conversion from S  to T .

If the source value is null ( HasValue  property is false), the result is the null value of type T? .

Otherwise, the conversion is evaluated as an unwrapping from S?  to S , followed by the underlying

conversion from S  to T , followed by a wrapping from T  to T? .

Note that an attempt to unwrap a nullable value will throw an exception if the value is null .



    Unboxing conversionsUnboxing conversions

The explicit reference conversions are:

From object  and dynamic  to any other reference_type.

From any class_type S  to any class_type T , provided S  is a base class of T .

From any class_type S  to any interface_type T , provided S  is not sealed and provided S  does not

implement T .

From any interface_type S  to any class_type T , provided T  is not sealed or provided T  implements S .

From any interface_type S  to any interface_type T , provided S  is not derived from T .

From an array_type S  with an element type SE  to an array_type T  with an element type TE , provided all of

the following are true:

From System.Array  and the interfaces it implements to any array_type.

From a single-dimensional array type S[]  to System.Collections.Generic.IList<T>  and its base interfaces,

provided that there is an explicit reference conversion from S  to T .

From System.Collections.Generic.IList<S>  and its base interfaces to a single-dimensional array type T[] ,

provided that there is an explicit identity or reference conversion from S  to T .

From System.Delegate  and the interfaces it implements to any delegate_type.

From a reference type to a reference type T  if it has an explicit reference conversion to a reference type T0

and T0  has an identity conversion T .

From a reference type to an interface or delegate type T  if it has an explicit reference conversion to an interface

or delegate type T0  and either T0  is variance-convertible to T  or T  is variance-convertible to T0  (Variance

conversion).

From D<S1...Sn>  to D<T1...Tn>  where D<X1...Xn>  is a generic delegate type, D<S1...Sn>  is not compatible

with or identical to D<T1...Tn> , and for each type parameter Xi  of D  the following holds:

Explicit conversions involving type parameters that are known to be reference types. For more details on explicit

conversions involving type parameters, see Explicit conversions involving type parameters.

S  and T  differ only in element type. In other words, S  and T  have the same number of dimensions.

Both SE  and TE  are reference_types.

An explicit reference conversion exists from SE  to TE .

If Xi  is invariant, then Si  is identical to Ti .

If Xi  is covariant, then there is an implicit or explicit identity or reference conversion from Si  to Ti .

If Xi  is contravariant, then Si  and Ti  are either identical or both reference types.

The explicit reference conversions are those conversions between reference-types that require run-time checks to

ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source operand must be null , or the

actual type of the object referenced by the source operand must be a type that can be converted to the destination

type by an implicit reference conversion (Implicit reference conversions) or boxing conversion (Boxing

conversions). If an explicit reference conversion fails, a System.InvalidCastException  is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted. In

other words, while a reference conversion may change the type of the reference, it never changes the type or value

of the object being referred to.

An unboxing conversion permits a reference type to be explicitly converted to a value_type. An unboxing

conversion exists from the types object , dynamic  and System.ValueType  to any non_nullable_value_type, and

from any interface_type to any non_nullable_value_type that implements the interface_type. Furthermore type 

System.Enum  can be unboxed to any enum_type.

An unboxing conversion exists from a reference type to a nullable_type if an unboxing conversion exists from the



          

  

Explicit dynamic conversionsExplicit dynamic conversions

class C
{
    int i;

    public C(int i) { this.i = i; }

    public static explicit operator C(string s) 
    {
        return new C(int.Parse(s));
    }
}

object o  = "1";
dynamic d = "2";

var c1 = (C)o; // Compiles, but explicit reference conversion fails
var c2 = (C)d; // Compiles and user defined conversion succeeds

Explicit conversions involving type parametersExplicit conversions involving type parameters

reference type to the underlying non_nullable_value_type of the nullable_type.

A value type S  has an unboxing conversion from an interface type I  if it has an unboxing conversion from an

interface type I0  and I0  has an identity conversion to I .

A value type S  has an unboxing conversion from an interface type I  if it has an unboxing conversion from an

interface or delegate type I0  and either I0  is variance-convertible to I  or I  is variance-convertible to I0

(Variance conversion).

An unboxing operation consists of first checking that the object instance is a boxed value of the given value_type,

and then copying the value out of the instance. Unboxing a null reference to a nullable_type produces the null value

of the nullable_type. A struct can be unboxed from the type System.ValueType , since that is a base class for all

structs (Inheritance).

Unboxing conversions are described further in Unboxing conversions.

An explicit dynamic conversion exists from an expression of type dynamic  to any type T . The conversion is

dynamically bound (Dynamic binding), which means that an explicit conversion will be sought at run-time from the

run-time type of the expression to T . If no conversion is found, a run-time exception is thrown.

If dynamic binding of the conversion is not desired, the expression can be first converted to object , and then to

the desired type.

Assume the following class is defined:

The following example illustrates explicit dynamic conversions:

The best conversion of o  to C  is found at compile-time to be an explicit reference conversion. This fails at run-

time, because "1"  is not in fact a C . The conversion of d  to C  however, as an explicit dynamic conversion, is

suspended to run-time, where a user defined conversion from the run-time type of d  -- string  -- to C  is found,

and succeeds.

The following explicit conversions exist for a given type parameter T :

From the effective base class C  of T  to T  and from any base class of C  to T . At run-time, if T  is a value

type, the conversion is executed as an unboxing conversion. Otherwise, the conversion is executed as an explicit

reference conversion or identity conversion.



 

          

class X<T>
{
    public static long F(T t) {
        return (long)t;                // Error 
    }
}

class X<T>
{
    public static long F(T t) {
        return (long)(object)t;        // Ok, but will only work when T is long
    }
}

User-defined explicit conversionsUser-defined explicit conversions

Standard conversions

Standard implicit conversionsStandard implicit conversions

From any interface type to T . At run-time, if T  is a value type, the conversion is executed as an unboxing

conversion. Otherwise, the conversion is executed as an explicit reference conversion or identity conversion.

From T  to any interface_type I  provided there is not already an implicit conversion from T  to I . At run-

time, if T  is a value type, the conversion is executed as a boxing conversion followed by an explicit reference

conversion. Otherwise, the conversion is executed as an explicit reference conversion or identity conversion.

From a type parameter U  to T , provided T  depends on U  (Type parameter constraints). At run-time, if U  is

a value type, then T  and U  are necessarily the same type and no conversion is performed. Otherwise, if T  is a

value type, the conversion is executed as an unboxing conversion. Otherwise, the conversion is executed as an

explicit reference conversion or identity conversion.

If T  is known to be a reference type, the conversions above are all classified as explicit reference conversions

(Explicit reference conversions). If T  is not known to be a reference type, the conversions above are classified as

unboxing conversions (Unboxing conversions).

The above rules do not permit a direct explicit conversion from an unconstrained type parameter to a non-interface

type, which might be surprising. The reason for this rule is to prevent confusion and make the semantics of such

conversions clear. For example, consider the following declaration:

If the direct explicit conversion of t  to int  were permitted, one might easily expect that X<int>.F(7)  would

return 7L . However, it would not, because the standard numeric conversions are only considered when the types

are known to be numeric at binding-time. In order to make the semantics clear, the above example must instead be

written:

This code will now compile but executing X<int>.F(7)  would then throw an exception at run-time, since a boxed 

int  cannot be converted directly to a long .

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by execution of a

user-defined implicit or explicit conversion operator, followed by another optional standard explicit conversion. The

exact rules for evaluating user-defined explicit conversions are described in Processing of user-defined explicit

conversions.

The standard conversions are those pre-defined conversions that can occur as part of a user-defined conversion.

The following implicit conversions are classified as standard implicit conversions:

Identity conversions (Identity conversion)

Implicit numeric conversions (Implicit numeric conversions)



     

    

    

Standard explicit conversionsStandard explicit conversions

User-defined conversions

Permitted user-defined conversionsPermitted user-defined conversions

Lifted conversion operatorsLifted conversion operators

Evaluation of user-defined conversionsEvaluation of user-defined conversions

Implicit nullable conversions (Implicit nullable conversions)

Implicit reference conversions (Implicit reference conversions)

Boxing conversions (Boxing conversions)

Implicit constant expression conversions (Implicit dynamic conversions)

Implicit conversions involving type parameters (Implicit conversions involving type parameters)

The standard implicit conversions specifically exclude user-defined implicit conversions.

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit conversions for

which an opposite standard implicit conversion exists. In other words, if a standard implicit conversion exists from a

type A  to a type B , then a standard explicit conversion exists from type A  to type B  and from type B  to type 

A .

C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversionsuser-defined conversions . User-

defined conversions are introduced by declaring conversion operators (Conversion operators) in class and struct

types.

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an

already existing implicit or explicit conversion.

For a given source type S  and target type T , if S  or T  are nullable types, let S0  and T0  refer to their

underlying types, otherwise S0  and T0  are equal to S  and T  respectively. A class or struct is permitted to

declare a conversion from a source type S  to a target type T  only if all of the following are true:

S0  and T0  are different types.

Either S0  or T0  is the class or struct type in which the operator declaration takes place.

Neither S0  nor T0  is an interface_type.

Excluding user-defined conversions, a conversion does not exist from S  to T  or from T  to S .

The restrictions that apply to user-defined conversions are discussed further in Conversion operators.

Given a user-defined conversion operator that converts from a non-nullable value type S  to a non-nullable value

type T , a lifted conversion operatorlifted conversion operator  exists that converts from S?  to T? . This lifted conversion operator

performs an unwrapping from S?  to S  followed by the user-defined conversion from S  to T  followed by a

wrapping from T  to T? , except that a null valued S?  converts directly to a null valued T? .

A lifted conversion operator has the same implicit or explicit classification as its underlying user-defined conversion

operator. The term "user-defined conversion" applies to the use of both user-defined and lifted conversion

operators.

A user-defined conversion converts a value from its type, called the source typesource type, to another type, called the targettarget

typetype. Evaluation of a user-defined conversion centers on finding the most specificmost specific user-defined conversion

operator for the particular source and target types. This determination is broken into several steps:

Finding the set of classes and structs from which user-defined conversion operators will be considered. This set

consists of the source type and its base classes and the target type and its base classes (with the implicit

assumptions that only classes and structs can declare user-defined operators, and that non-class types have no

base classes). For the purposes of this step, if either the source or target type is a nullable_type, their underlying
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type is used instead.

From that set of types, determining which user-defined and lifted conversion operators are applicable. For a

conversion operator to be applicable, it must be possible to perform a standard conversion (Standard

conversions) from the source type to the operand type of the operator, and it must be possible to perform a

standard conversion from the result type of the operator to the target type.

From the set of applicable user-defined operators, determining which operator is unambiguously the most

specific. In general terms, the most specific operator is the operator whose operand type is "closest" to the

source type and whose result type is "closest" to the target type. User-defined conversion operators are

preferred over lifted conversion operators. The exact rules for establishing the most specific user-defined

conversion operator are defined in the following sections.

Once a most specific user-defined conversion operator has been identified, the actual execution of the user-defined

conversion involves up to three steps:

First, if required, performing a standard conversion from the source type to the operand type of the user-defined

or lifted conversion operator.

Next, invoking the user-defined or lifted conversion operator to perform the conversion.

Finally, if required, performing a standard conversion from the result type of the user-defined or lifted

conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined or lifted conversion operator. In

other words, a conversion from type S  to type T  will never first execute a user-defined conversion from S  to X

and then execute a user-defined conversion from X  to T .

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following sections.

The definitions make use of the following terms:

If a standard implicit conversion (Standard implicit conversions) exists from a type A  to a type B , and if neither

A  nor B  are interface_types, then A  is said to be encompassed byencompassed by  B , and B  is said to encompassencompass  A .

The most encompassing typemost encompassing type in a set of types is the one type that encompasses all other types in the set. If

no single type encompasses all other types, then the set has no most encompassing type. In more intuitive

terms, the most encompassing type is the "largest" type in the set—the one type to which each of the other

types can be implicitly converted.

The most encompassed typemost encompassed type in a set of types is the one type that is encompassed by all other types in the set.

If no single type is encompassed by all other types, then the set has no most encompassed type. In more

intuitive terms, the most encompassed type is the "smallest" type in the set—the one type that can be implicitly

converted to each of the other types.

A user-defined implicit conversion from type S  to type T  is processed as follows:

Determine the types S0  and T0 . If S  or T  are nullable types, S0  and T0  are their underlying types,

otherwise S0  and T0  are equal to S  and T  respectively.

Find the set of types, D , from which user-defined conversion operators will be considered. This set consists of 

S0  (if S0  is a class or struct), the base classes of S0  (if S0  is a class), and T0  (if T0  is a class or struct).

Find the set of applicable user-defined and lifted conversion operators, U . This set consists of the user-defined

and lifted implicit conversion operators declared by the classes or structs in D  that convert from a type

encompassing S  to a type encompassed by T . If U  is empty, the conversion is undefined and a compile-time

error occurs.

Find the most specific source type, SX , of the operators in U :

If any of the operators in U  convert from S , then SX  is S .

Otherwise, SX  is the most encompassed type in the combined set of source types of the operators in U .

If exactly one most encompassed type cannot be found, then the conversion is ambiguous and a compile-



  Processing of user-defined explicit conversionsProcessing of user-defined explicit conversions

Find the most specific target type, TX , of the operators in U :

Find the most specific conversion operator :

Finally, apply the conversion:

time error occurs.

If any of the operators in U  convert to T , then TX  is T .

Otherwise, TX  is the most encompassing type in the combined set of target types of the operators in U .

If exactly one most encompassing type cannot be found, then the conversion is ambiguous and a

compile-time error occurs.

If U  contains exactly one user-defined conversion operator that converts from SX  to TX , then this is

the most specific conversion operator.

Otherwise, if U  contains exactly one lifted conversion operator that converts from SX  to TX , then this

is the most specific conversion operator.

Otherwise, the conversion is ambiguous and a compile-time error occurs.

If S  is not SX , then a standard implicit conversion from S  to SX  is performed.

The most specific conversion operator is invoked to convert from SX  to TX .

If TX  is not T , then a standard implicit conversion from TX  to T  is performed.

A user-defined explicit conversion from type S  to type T  is processed as follows:

Determine the types S0  and T0 . If S  or T  are nullable types, S0  and T0  are their underlying types,

otherwise S0  and T0  are equal to S  and T  respectively.

Find the set of types, D , from which user-defined conversion operators will be considered. This set consists of 

S0  (if S0  is a class or struct), the base classes of S0  (if S0  is a class), T0  (if T0  is a class or struct), and the

base classes of T0  (if T0  is a class).

Find the set of applicable user-defined and lifted conversion operators, U . This set consists of the user-defined

and lifted implicit or explicit conversion operators declared by the classes or structs in D  that convert from a

type encompassing or encompassed by S  to a type encompassing or encompassed by T . If U  is empty, the

conversion is undefined and a compile-time error occurs.

Find the most specific source type, SX , of the operators in U :

Find the most specific target type, TX , of the operators in U :

Find the most specific conversion operator :

If any of the operators in U  convert from S , then SX  is S .

Otherwise, if any of the operators in U  convert from types that encompass S , then SX  is the most

encompassed type in the combined set of source types of those operators. If no most encompassed type

can be found, then the conversion is ambiguous and a compile-time error occurs.

Otherwise, SX  is the most encompassing type in the combined set of source types of the operators in U

. If exactly one most encompassing type cannot be found, then the conversion is ambiguous and a

compile-time error occurs.

If any of the operators in U  convert to T , then TX  is T .

Otherwise, if any of the operators in U  convert to types that are encompassed by T , then TX  is the

most encompassing type in the combined set of target types of those operators. If exactly one most

encompassing type cannot be found, then the conversion is ambiguous and a compile-time error occurs.

Otherwise, TX  is the most encompassed type in the combined set of target types of the operators in U .

If no most encompassed type can be found, then the conversion is ambiguous and a compile-time error

occurs.

If U  contains exactly one user-defined conversion operator that converts from SX  to TX , then this is

the most specific conversion operator.

Otherwise, if U  contains exactly one lifted conversion operator that converts from SX  to TX , then this



         Anonymous function conversions

Finally, apply the conversion:

is the most specific conversion operator.

Otherwise, the conversion is ambiguous and a compile-time error occurs.

If S  is not SX , then a standard explicit conversion from S  to SX  is performed.

The most specific user-defined conversion operator is invoked to convert from SX  to TX .

If TX  is not T , then a standard explicit conversion from TX  to T  is performed.

An anonymous_method_expression or lambda_expression is classified as an anonymous function (Anonymous

function expressions). The expression does not have a type but can be implicitly converted to a compatible delegate

type or expression tree type. Specifically, an anonymous function F  is compatible with a delegate type D

provided:

If F  contains an anonymous_function_signature, then D  and F  have the same number of parameters.

If F  does not contain an anonymous_function_signature, then D  may have zero or more parameters of any

type, as long as no parameter of D  has the out  parameter modifier.

If F  has an explicitly typed parameter list, each parameter in D  has the same type and modifiers as the

corresponding parameter in F .

If F  has an implicitly typed parameter list, D  has no ref  or out  parameters.

If the body of F  is an expression, and either D  has a void  return type or F  is async and D  has the return

type Task , then when each parameter of F  is given the type of the corresponding parameter in D , the body of

F  is a valid expression (wrt Expressions) that would be permitted as a statement_expression (Expression

statements).

If the body of F  is a statement block, and either D  has a void  return type or F  is async and D  has the

return type Task , then when each parameter of F  is given the type of the corresponding parameter in D , the

body of F  is a valid statement block (wrt Blocks) in which no return  statement specifies an expression.

If the body of F  is an expression, and either F  is non-async and D  has a non-void return type T , or F  is

async and D  has a return type Task<T> , then when each parameter of F  is given the type of the

corresponding parameter in D , the body of F  is a valid expression (wrt Expressions) that is implicitly

convertible to T .

If the body of F  is a statement block, and either F  is non-async and D  has a non-void return type T , or F  is

async and D  has a return type Task<T> , then when each parameter of F  is given the type of the

corresponding parameter in D , the body of F  is a valid statement block (wrt Blocks) with a non-reachable end

point in which each return  statement specifies an expression that is implicitly convertible to T .

For the purpose of brevity, this section uses the short form for the task types Task  and Task<T>  (Async functions).

A lambda expression F  is compatible with an expression tree type Expression<D>  if F  is compatible with the

delegate type D . Note that this does not apply to anonymous methods, only lambda expressions.

Certain lambda expressions cannot be converted to expression tree types: Even though the conversion exists, it fails

at compile-time. This is the case if the lambda expression:

Has a block body

Contains simple or compound assignment operators

Contains a dynamically bound expression

Is async

The examples that follow use a generic delegate type Func<A,R>  which represents a function that takes an

argument of type A  and returns a value of type R :



delegate R Func<A,R>(A arg);

Func<int,int> f1 = x => x + 1;                 // Ok

Func<int,double> f2 = x => x + 1;              // Ok

Func<double,int> f3 = x => x + 1;              // Error

Func<int, Task<int>> f4 = async x => x + 1;    // Ok

Evaluation of anonymous function conversions to delegate typesEvaluation of anonymous function conversions to delegate types

In the assignments

the parameter and return types of each anonymous function are determined from the type of the variable to which

the anonymous function is assigned.

The first assignment successfully converts the anonymous function to the delegate type Func<int,int>  because,

when x  is given type int , x+1  is a valid expression that is implicitly convertible to type int .

Likewise, the second assignment successfully converts the anonymous function to the delegate type 

Func<int,double>  because the result of x+1  (of type int ) is implicitly convertible to type double .

However, the third assignment is a compile-time error because, when x  is given type double , the result of x+1

(of type double ) is not implicitly convertible to type int .

The fourth assignment successfully converts the anonymous async function to the delegate type 

Func<int, Task<int>>  because the result of x+1  (of type int ) is implicitly convertible to the result type int  of

the task type Task<int> .

Anonymous functions may influence overload resolution, and participate in type inference. See Function members

for further details.

Conversion of an anonymous function to a delegate type produces a delegate instance which references the

anonymous function and the (possibly empty) set of captured outer variables that are active at the time of the

evaluation. When the delegate is invoked, the body of the anonymous function is executed. The code in the body is

executed using the set of captured outer variables referenced by the delegate.

The invocation list of a delegate produced from an anonymous function contains a single entry. The exact target

object and target method of the delegate are unspecified. In particular, it is unspecified whether the target object of

the delegate is null , the this  value of the enclosing function member, or some other object.

Conversions of semantically identical anonymous functions with the same (possibly empty) set of captured outer

variable instances to the same delegate types are permitted (but not required) to return the same delegate instance.

The term semantically identical is used here to mean that execution of the anonymous functions will, in all cases,

produce the same effects given the same arguments. This rule permits code such as the following to be optimized.



  

delegate double Function(double x);

class Test
{
    static double[] Apply(double[] a, Function f) {
        double[] result = new double[a.Length];
        for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
        return result;
    }

    static void F(double[] a, double[] b) {
        a = Apply(a, (double x) => Math.Sin(x));
        b = Apply(b, (double y) => Math.Sin(y));
        ...
    }
}

Evaluation of anonymous function conversions to expression tree typesEvaluation of anonymous function conversions to expression tree types

Implementation exampleImplementation example

public delegate void D();

class Test
{
    static void F() {
        D d = () => { Console.WriteLine("test"); };
    }
}

Since the two anonymous function delegates have the same (empty) set of captured outer variables, and since the

anonymous functions are semantically identical, the compiler is permitted to have the delegates refer to the same

target method. Indeed, the compiler is permitted to return the very same delegate instance from both anonymous

function expressions.

Conversion of an anonymous function to an expression tree type produces an expression tree (Expression tree

types). More precisely, evaluation of the anonymous function conversion leads to the construction of an object

structure that represents the structure of the anonymous function itself. The precise structure of the expression tree,

as well as the exact process for creating it, are implementation defined.

This section describes a possible implementation of anonymous function conversions in terms of other C#

constructs. The implementation described here is based on the same principles used by the Microsoft C# compiler,

but it is by no means a mandated implementation, nor is it the only one possible. It only briefly mentions

conversions to expression trees, as their exact semantics are outside the scope of this specification.

The remainder of this section gives several examples of code that contains anonymous functions with different

characteristics. For each example, a corresponding translation to code that uses only other C# constructs is

provided. In the examples, the identifier D  is assumed by represent the following delegate type:

The simplest form of an anonymous function is one that captures no outer variables:

This can be translated to a delegate instantiation that references a compiler generated static method in which the

code of the anonymous function is placed:



class Test
{
    static void F() {
        D d = new D(__Method1);
    }

    static void __Method1() {
        Console.WriteLine("test");
    }
}

class Test
{
    int x;

    void F() {
        D d = () => { Console.WriteLine(x); };
    }
}

class Test
{
    int x;

    void F() {
        D d = new D(__Method1);
    }

    void __Method1() {
        Console.WriteLine(x);
    }
}

class Test
{
    void F() {
        int y = 123;
        D d = () => { Console.WriteLine(y); };
    }
}

In the following example, the anonymous function references instance members of this :

This can be translated to a compiler generated instance method containing the code of the anonymous function:

In this example, the anonymous function captures a local variable:

The lifetime of the local variable must now be extended to at least the lifetime of the anonymous function delegate.

This can be achieved by "hoisting" the local variable into a field of a compiler generated class. Instantiation of the

local variable (Instantiation of local variables) then corresponds to creating an instance of the compiler generated

class, and accessing the local variable corresponds to accessing a field in the instance of the compiler generated

class. Furthermore, the anonymous function becomes an instance method of the compiler generated class:



class Test
{
    void F() {
        __Locals1 __locals1 = new __Locals1();
        __locals1.y = 123;
        D d = new D(__locals1.__Method1);
    }

    class __Locals1
    {
        public int y;

        public void __Method1() {
            Console.WriteLine(y);
        }
    }
}

class Test
{
    int x;

    void F() {
        int y = 123;
        for (int i = 0; i < 10; i++) {
            int z = i * 2;
            D d = () => { Console.WriteLine(x + y + z); };
        }
    }
}

Finally, the following anonymous function captures this  as well as two local variables with different lifetimes:

Here, a compiler generated class is created for each statement block in which locals are captured such that the

locals in the different blocks can have independent lifetimes. An instance of __Locals2 , the compiler generated

class for the inner statement block, contains the local variable z  and a field that references an instance of 

__Locals1 . An instance of __Locals1 , the compiler generated class for the outer statement block, contains the local

variable y  and a field that references this  of the enclosing function member. With these data structures it is

possible to reach all captured outer variables through an instance of __Local2 , and the code of the anonymous

function can thus be implemented as an instance method of that class.



      

class Test
{
    void F() {
        __Locals1 __locals1 = new __Locals1();
        __locals1.__this = this;
        __locals1.y = 123;
        for (int i = 0; i < 10; i++) {
            __Locals2 __locals2 = new __Locals2();
            __locals2.__locals1 = __locals1;
            __locals2.z = i * 2;
            D d = new D(__locals2.__Method1);
        }
    }

    class __Locals1
    {
        public Test __this;
        public int y;
    }

    class __Locals2
    {
        public __Locals1 __locals1;
        public int z;

        public void __Method1() {
            Console.WriteLine(__locals1.__this.x + __locals1.y + z);
        }
    }
}

Method group conversions

The same technique applied here to capture local variables can also be used when converting anonymous functions

to expression trees: References to the compiler generated objects can be stored in the expression tree, and access to

the local variables can be represented as field accesses on these objects. The advantage of this approach is that it

allows the "lifted" local variables to be shared between delegates and expression trees.

An implicit conversion (Implicit conversions) exists from a method group (Expression classifications) to a

compatible delegate type. Given a delegate type D  and an expression E  that is classified as a method group, an

implicit conversion exists from E  to D  if E  contains at least one method that is applicable in its normal form

(Applicable function member) to an argument list constructed by use of the parameter types and modifiers of D ,

as described in the following.

The compile-time application of a conversion from a method group E  to a delegate type D  is described in the

following. Note that the existence of an implicit conversion from E  to D  does not guarantee that the compile-time

application of the conversion will succeed without error.

A single method M  is selected corresponding to a method invocation (Method invocations) of the form E(A) ,

with the following modifications:

If the algorithm of Method invocations produces an error, then a compile-time error occurs. Otherwise the

algorithm produces a single best method M  having the same number of parameters as D  and the conversion

is considered to exist.

The selected method M  must be compatible (Delegate compatibility) with the delegate type D , or otherwise, a

The argument list A  is a list of expressions, each classified as a variable and with the type and modifier (

ref  or out ) of the corresponding parameter in the formal_parameter_list of D .

The candidate methods considered are only those methods that are applicable in their normal form

(Applicable function member), not those applicable only in their expanded form.



delegate string D1(object o);

delegate object D2(string s);

delegate object D3();

delegate string D4(object o, params object[] a);

delegate string D5(int i);

class Test
{
    static string F(object o) {...}

    static void G() {
        D1 d1 = F;            // Ok
        D2 d2 = F;            // Ok
        D3 d3 = F;            // Error -- not applicable
        D4 d4 = F;            // Error -- not applicable in normal form
        D5 d5 = F;            // Error -- applicable but not compatible

    }
}

object obj = new EventHandler(myDialog.OkClick);

compile-time error occurs.

If the selected method M  is an instance method, the instance expression associated with E  determines the

target object of the delegate.

If the selected method M is an extension method which is denoted by means of a member access on an instance

expression, that instance expression determines the target object of the delegate.

The result of the conversion is a value of type D , namely a newly created delegate that refers to the selected

method and target object.

Note that this process can lead to the creation of a delegate to an extension method, if the algorithm of Method

invocations fails to find an instance method but succeeds in processing the invocation of E(A)  as an extension

method invocation (Extension method invocations). A delegate thus created captures the extension method as

well as its first argument.

The following example demonstrates method group conversions:

The assignment to d1  implicitly converts the method group F  to a value of type D1 .

The assignment to d2  shows how it is possible to create a delegate to a method that has less derived

(contravariant) parameter types and a more derived (covariant) return type.

The assignment to d3  shows how no conversion exists if the method is not applicable.

The assignment to d4  shows how the method must be applicable in its normal form.

The assignment to d5  shows how parameter and return types of the delegate and method are allowed to differ

only for reference types.

As with all other implicit and explicit conversions, the cast operator can be used to explicitly perform a method

group conversion. Thus, the example

could instead be written



object obj = (EventHandler)myDialog.OkClick;

Method groups may influence overload resolution, and participate in type inference. See Function members for

further details.

The run-time evaluation of a method group conversion proceeds as follows:

If the method selected at compile-time is an instance method, or it is an extension method which is accessed as

an instance method, the target object of the delegate is determined from the instance expression associated with

E :

Otherwise the selected method is part of a static method call, and the target object of the delegate is null .

A new instance of the delegate type D  is allocated. If there is not enough memory available to allocate the new

instance, a System.OutOfMemoryException  is thrown and no further steps are executed.

The new delegate instance is initialized with a reference to the method that was determined at compile-time and

a reference to the target object computed above.

The instance expression is evaluated. If this evaluation causes an exception, no further steps are executed.

If the instance expression is of a reference_type, the value computed by the instance expression becomes

the target object. If the selected method is an instance method and the target object is null , a 

System.NullReferenceException  is thrown and no further steps are executed.

If the instance expression is of a value_type, a boxing operation (Boxing conversions) is performed to

convert the value to an object, and this object becomes the target object.
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Expression classifications

An expression is a sequence of operators and operands. This chapter defines the syntax, order of evaluation of

operands and operators, and meaning of expressions.

An expression is classified as one of the following:

A value. Every value has an associated type.

A variable. Every variable has an associated type, namely the declared type of the variable.

A namespace. An expression with this classification can only appear as the left hand side of a member_access

(Member access). In any other context, an expression classified as a namespace causes a compile-time error.

A type. An expression with this classification can only appear as the left hand side of a member_access (Member

access), or as an operand for the as  operator (The as operator), the is  operator (The is operator), or the 

typeof  operator (The typeof operator). In any other context, an expression classified as a type causes a

compile-time error.

A method group, which is a set of overloaded methods resulting from a member lookup (Member lookup). A

method group may have an associated instance expression and an associated type argument list. When an

instance method is invoked, the result of evaluating the instance expression becomes the instance represented

by this  (This access). A method group is permitted in an invocation_expression (Invocation expressions) , a

delegate_creation_expression (Delegate creation expressions) and as the left hand side of an is operator, and

can be implicitly converted to a compatible delegate type (Method group conversions). In any other context, an

expression classified as a method group causes a compile-time error.

A null literal. An expression with this classification can be implicitly converted to a reference type or nullable

type.

An anonymous function. An expression with this classification can be implicitly converted to a compatible

delegate type or expression tree type.

A property access. Every property access has an associated type, namely the type of the property. Furthermore,

a property access may have an associated instance expression. When an accessor (the get  or set  block) of an

instance property access is invoked, the result of evaluating the instance expression becomes the instance

represented by this  (This access).

An event access. Every event access has an associated type, namely the type of the event. Furthermore, an event

access may have an associated instance expression. An event access may appear as the left hand operand of the

+=  and -=  operators (Event assignment). In any other context, an expression classified as an event access

causes a compile-time error.

An indexer access. Every indexer access has an associated type, namely the element type of the indexer.

Furthermore, an indexer access has an associated instance expression and an associated argument list. When

an accessor (the get  or set  block) of an indexer access is invoked, the result of evaluating the instance

expression becomes the instance represented by this  (This access), and the result of evaluating the argument

list becomes the parameter list of the invocation.

Nothing. This occurs when the expression is an invocation of a method with a return type of void . An

expression classified as nothing is only valid in the context of a statement_expression (Expression statements).

The final result of an expression is never a namespace, type, method group, or event access. Rather, as noted above,

these categories of expressions are intermediate constructs that are only permitted in certain contexts.

https://github.com/dotnet/csharplang/blob/master/spec/expressions.md
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Static and Dynamic Binding

A property access or indexer access is always reclassified as a value by performing an invocation of the get

accessor or the set accessor. The particular accessor is determined by the context of the property or indexer access:

If the access is the target of an assignment, the set accessor is invoked to assign a new value (Simple assignment).

Otherwise, the get accessor is invoked to obtain the current value (Values of expressions).

Most of the constructs that involve an expression ultimately require the expression to denote a valuevalue. In such

cases, if the actual expression denotes a namespace, a type, a method group, or nothing, a compile-time error

occurs. However, if the expression denotes a property access, an indexer access, or a variable, the value of the

property, indexer, or variable is implicitly substituted:

The value of a variable is simply the value currently stored in the storage location identified by the variable. A

variable must be considered definitely assigned (Definite assignment) before its value can be obtained, or

otherwise a compile-time error occurs.

The value of a property access expression is obtained by invoking the get accessor of the property. If the

property has no get accessor, a compile-time error occurs. Otherwise, a function member invocation (Compile-

time checking of dynamic overload resolution) is performed, and the result of the invocation becomes the value

of the property access expression.

The value of an indexer access expression is obtained by invoking the get accessor of the indexer. If the indexer

has no get accessor, a compile-time error occurs. Otherwise, a function member invocation (Compile-time

checking of dynamic overload resolution) is performed with the argument list associated with the indexer

access expression, and the result of the invocation becomes the value of the indexer access expression.

The process of determining the meaning of an operation based on the type or value of constituent expressions

(arguments, operands, receivers) is often referred to as bindingbinding. For instance the meaning of a method call is

determined based on the type of the receiver and arguments. The meaning of an operator is determined based on

the type of its operands.

In C# the meaning of an operation is usually determined at compile-time, based on the compile-time type of its

constituent expressions. Likewise, if an expression contains an error, the error is detected and reported by the

compiler. This approach is known as static bindingstatic binding.

However, if an expression is a dynamic expression (i.e. has the type dynamic ) this indicates that any binding that it

participates in should be based on its run-time type (i.e. the actual type of the object it denotes at run-time) rather

than the type it has at compile-time. The binding of such an operation is therefore deferred until the time where

the operation is to be executed during the running of the program. This is referred to as dynamic bindingdynamic binding.

When an operation is dynamically bound, little or no checking is performed by the compiler. Instead if the run-time

binding fails, errors are reported as exceptions at run-time.

The following operations in C# are subject to binding:

Member access: e.M

Method invocation: e.M(e1, ..., eN)

Delegate invocation: e(e1, ..., eN)

Element access: e[e1, ..., eN]

Object creation: new C(e1, ..., eN)

Overloaded unary operators: + , - , ! , ~ , ++ , -- , true , false

Overloaded binary operators: + , - , * , / , % , & , && , | , || , ?? , ^ , << , >> , == , != , > , < , >= , <=

Assignment operators: = , += , -= , *= , /= , %= , &= , |= , ^= , <<= , >>=

Implicit and explicit conversions



                                              

Binding-timeBinding-time

object  o = 5;
dynamic d = 5;

Console.WriteLine(5);  // static  binding to Console.WriteLine(int)
Console.WriteLine(o);  // static  binding to Console.WriteLine(object)
Console.WriteLine(d);  // dynamic binding to Console.WriteLine(int)

Dynamic bindingDynamic binding

Types of constituent expressionsTypes of constituent expressions

When no dynamic expressions are involved, C# defaults to static binding, which means that the compile-time types

of constituent expressions are used in the selection process. However, when one of the constituent expressions in

the operations listed above is a dynamic expression, the operation is instead dynamically bound.

Static binding takes place at compile-time, whereas dynamic binding takes place at run-time. In the following

sections, the term binding-timebinding-time refers to either compile-time or run-time, depending on when the binding takes

place.

The following example illustrates the notions of static and dynamic binding and of binding-time:

The first two calls are statically bound: the overload of Console.WriteLine  is picked based on the compile-time type

of their argument. Thus, the binding-time is compile-time.

The third call is dynamically bound: the overload of Console.WriteLine  is picked based on the run-time type of its

argument. This happens because the argument is a dynamic expression -- its compile-time type is dynamic . Thus,

the binding-time for the third call is run-time.

The purpose of dynamic binding is to allow C# programs to interact with dynamic objectsdynamic objects , i.e. objects that do not

follow the normal rules of the C# type system. Dynamic objects may be objects from other programming

languages with different types systems, or they may be objects that are programmatically setup to implement their

own binding semantics for different operations.

The mechanism by which a dynamic object implements its own semantics is implementation defined. A given

interface -- again implementation defined -- is implemented by dynamic objects to signal to the C# run-time that

they have special semantics. Thus, whenever operations on a dynamic object are dynamically bound, their own

binding semantics, rather than those of C# as specified in this document, take over.

While the purpose of dynamic binding is to allow interoperation with dynamic objects, C# allows dynamic binding

on all objects, whether they are dynamic or not. This allows for a smoother integration of dynamic objects, as the

results of operations on them may not themselves be dynamic objects, but are still of a type unknown to the

programmer at compile-time. Also dynamic binding can help eliminate error-prone reflection-based code even

when no objects involved are dynamic objects.

The following sections describe for each construct in the language exactly when dynamic binding is applied, what

compile time checking -- if any -- is applied, and what the compile-time result and expression classification is.

When an operation is statically bound, the type of a constituent expression (e.g. a receiver, an argument, an index

or an operand) is always considered to be the compile-time type of that expression.

When an operation is dynamically bound, the type of a constituent expression is determined in different ways

depending on the compile-time type of the constituent expression:

A constituent expression of compile-time type dynamic  is considered to have the type of the actual value that

the expression evaluates to at runtime

A constituent expression whose compile-time type is a type parameter is considered to have the type which the

type parameter is bound to at runtime



   

      

Operators

Operator precedence and associativityOperator precedence and associativity
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Primary expressions Primary x.y  f(x)  a[x]  x++  x--  new

typeof  default  checked

unchecked  delegate

Unary operators Unary +  -  !  ~  ++x  --x  (T)x

Arithmetic operators Multiplicative *  /  %

Arithmetic operators Additive +  -

Shift operators Shift <<  >>

Relational and type-testing operators Relational and type testing <  >  <=  >=  is  as

Relational and type-testing operators Equality ==  !=

Otherwise the constituent expression is considered to have its compile-time type.

Expressions are constructed from operandsoperands  and operatorsoperators . The operators of an expression indicate which

operations to apply to the operands. Examples of operators include + , - , * , / , and new . Examples of operands

include literals, fields, local variables, and expressions.

There are three kinds of operators:

Unary operators. The unary operators take one operand and use either prefix notation (such as --x ) or postfix

notation (such as x++ ).

Binary operators. The binary operators take two operands and all use infix notation (such as x + y ).

Ternary operator. Only one ternary operator, ?: , exists; it takes three operands and uses infix notation (

c ? x : y ).

The order of evaluation of operators in an expression is determined by the precedenceprecedence and associativ ityassociativ ity  of the

operators (Operator precedence and associativity).

Operands in an expression are evaluated from left to right. For example, in F(i) + G(i++) * H(i) , method F  is

called using the old value of i , then method G  is called with the old value of i , and, finally, method H  is called

with the new value of i . This is separate from and unrelated to operator precedence.

Certain operators can be overloadedoverloaded. Operator overloading permits user-defined operator implementations to be

specified for operations where one or both of the operands are of a user-defined class or struct type (Operator

overloading).

When an expression contains multiple operators, the precedenceprecedence of the operators controls the order in which the

individual operators are evaluated. For example, the expression x + y * z  is evaluated as x + (y * z)  because

the *  operator has higher precedence than the binary +  operator. The precedence of an operator is established

by the definition of its associated grammar production. For example, an additive_expression consists of a sequence

of multiplicative_expressions separated by +  or -  operators, thus giving the +  and -  operators lower

precedence than the * , / , and %  operators.

The following table summarizes all operators in order of precedence from highest to lowest:



  

Logical operators Logical AND &

Logical operators Logical XOR ^

Logical operators Logical OR |

Conditional logical operators Conditional AND &&

Conditional logical operators Conditional OR ||

The null coalescing operator Null coalescing ??

Conditional operator Conditional ?:

Assignment operators, Anonymous
function expressions

Assignment and lambda expression =  *=  /=  %=  +=  -=  <<=  >>=  &=

^=  |=  =>
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Operator overloadingOperator overloading

+   -   !   ~   ++   --   true   false

+   -   *   /   %   &   |   ^   <<   >>   ==   !=   >   <   >=   <=

When an operand occurs between two operators with the same precedence, the associativity of the operators

controls the order in which the operations are performed:

Except for the assignment operators and the null coalescing operator, all binary operators are left-associativeleft-associative,

meaning that operations are performed from left to right. For example, x + y + z  is evaluated as (x + y) + z .

The assignment operators, the null coalescing operator and the conditional operator ( ?: ) are r ight-r ight-

associativeassociative, meaning that operations are performed from right to left. For example, x = y = z  is evaluated as 

x = (y = z) .

Precedence and associativity can be controlled using parentheses. For example, x + y * z  first multiplies y  by 

z  and then adds the result to x , but (x + y) * z  first adds x  and y  and then multiplies the result by z .

All unary and binary operators have predefined implementations that are automatically available in any

expression. In addition to the predefined implementations, user-defined implementations can be introduced by

including operator  declarations in classes and structs (Operators). User-defined operator implementations always

take precedence over predefined operator implementations: Only when no applicable user-defined operator

implementations exist will the predefined operator implementations be considered, as described in Unary operator

overload resolution and Binary operator overload resolution.

The overloadable unar y operatorsoverloadable unar y operators  are:

Although true  and false  are not used explicitly in expressions (and therefore are not included in the precedence

table in Operator precedence and associativity), they are considered operators because they are invoked in several

expression contexts: boolean expressions (Boolean expressions) and expressions involving the conditional

(Conditional operator), and conditional logical operators (Conditional logical operators).

The overloadable binar y operatorsoverloadable binar y operators  are:
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op x operator op(x)

x op operator op(x)

x op y operator op(x,y)

Unary operator overload resolutionUnary operator overload resolution

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access,

method invocation, or the = , && , || , ?? , ?: , => , checked , unchecked , new , typeof , default , as , and is

operators.

When a binary operator is overloaded, the corresponding assignment operator, if any, is also implicitly overloaded.

For example, an overload of operator *  is also an overload of operator *= . This is described further in

Compound assignment. Note that the assignment operator itself ( = ) cannot be overloaded. An assignment always

performs a simple bit-wise copy of a value into a variable.

Cast operations, such as (T)x , are overloaded by providing user-defined conversions (User-defined conversions).

Element access, such as a[x] , is not considered an overloadable operator. Instead, user-defined indexing is

supported through indexers (Indexers).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced

using functional notation. The following table shows the relationship between operator and functional notations

for unary and binary operators. In the first entry, op denotes any overloadable unary prefix operator. In the second

entry, op denotes the unary postfix ++  and --  operators. In the third entry, op denotes any overloadable binary

operator.

User-defined operator declarations always require at least one of the parameters to be of the class or struct type

that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the same

signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For

example, the /  operator is always a binary operator, always has the precedence level specified in Operator

precedence and associativity, and is always left-associative.

While it is possible for a user-defined operator to perform any computation it pleases, implementations that

produce results other than those that are intuitively expected are strongly discouraged. For example, an

implementation of operator ==  should compare the two operands for equality and return an appropriate bool

result.

The descriptions of individual operators in Primary expressions through Conditional logical operators specify the

predefined implementations of the operators and any additional rules that apply to each operator. The descriptions

make use of the terms unar y operator overload resolutionunar y operator overload resolution, binar y operator overload resolutionbinar y operator overload resolution, and

numeric promotionnumeric promotion, definitions of which are found in the following sections.

An operation of the form op x  or x op , where op  is an overloadable unary operator, and x  is an expression of

type X , is processed as follows:

The set of candidate user-defined operators provided by X  for the operation operator op(x)  is determined

using the rules of Candidate user-defined operators.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate operators for

the operation. Otherwise, the predefined unary operator op  implementations, including their lifted forms,

become the set of candidate operators for the operation. The predefined implementations of a given operator



                            

    

Binary operator overload resolutionBinary operator overload resolution

Candidate user-defined operatorsCandidate user-defined operators

Numeric promotionsNumeric promotions

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

are specified in the description of the operator (Primary expressions and Unary operators).

The overload resolution rules of Overload resolution are applied to the set of candidate operators to select the

best operator with respect to the argument list (x) , and this operator becomes the result of the overload

resolution process. If overload resolution fails to select a single best operator, a binding-time error occurs.

An operation of the form x op y , where op  is an overloadable binary operator, x  is an expression of type X ,

and y  is an expression of type Y , is processed as follows:

The set of candidate user-defined operators provided by X  and Y  for the operation operator op(x,y)  is

determined. The set consists of the union of the candidate operators provided by X  and the candidate

operators provided by Y , each determined using the rules of Candidate user-defined operators. If X  and Y

are the same type, or if X  and Y  are derived from a common base type, then shared candidate operators only

occur in the combined set once.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate operators for

the operation. Otherwise, the predefined binary operator op  implementations, including their lifted forms,

become the set of candidate operators for the operation. The predefined implementations of a given operator

are specified in the description of the operator (Arithmetic operators through Conditional logical operators). For

predefined enum and delegate operators, the only operators considered are those defined by an enum or

delegate type that is the binding-time type of one of the operands.

The overload resolution rules of Overload resolution are applied to the set of candidate operators to select the

best operator with respect to the argument list (x,y) , and this operator becomes the result of the overload

resolution process. If overload resolution fails to select a single best operator, a binding-time error occurs.

Given a type T  and an operation operator op(A) , where op  is an overloadable operator and A  is an argument

list, the set of candidate user-defined operators provided by T  for operator op(A)  is determined as follows:

Determine the type T0 . If T  is a nullable type, T0  is its underlying type, otherwise T0  is equal to T .

For all operator op  declarations in T0  and all lifted forms of such operators, if at least one operator is

applicable (Applicable function member) with respect to the argument list A , then the set of candidate

operators consists of all such applicable operators in T0 .

Otherwise, if T0  is object , the set of candidate operators is empty.

Otherwise, the set of candidate operators provided by T0  is the set of candidate operators provided by the

direct base class of T0 , or the effective base class of T0  if T0  is a type parameter.

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the

predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather an

effect of applying overload resolution to the predefined operators. Numeric promotion specifically does not affect

evaluation of user-defined operators, although user-defined operators can be implemented to exhibit similar

effects.

As an example of numeric promotion, consider the predefined implementations of the binary *  operator :

When overload resolution rules (Overload resolution) are applied to this set of operators, the effect is to select the



  

Unary numeric promotionsUnary numeric promotions

Binary numeric promotionsBinary numeric promotions

decimal AddPercent(decimal x, double percent) {
    return x * (1.0 + percent / 100.0);
}

decimal AddPercent(decimal x, double percent) {
    return x * (decimal)(1.0 + percent / 100.0);
}

first of the operators for which implicit conversions exist from the operand types. For example, for the operation 

b * s , where b  is a byte  and s  is a short , overload resolution selects operator *(int,int)  as the best

operator. Thus, the effect is that b  and s  are converted to int , and the type of the result is int . Likewise, for

the operation i * d , where i  is an int  and d  is a double , overload resolution selects 

operator *(double,double)  as the best operator.

Unary numeric promotion occurs for the operands of the predefined + , - , and ~  unary operators. Unary

numeric promotion simply consists of converting operands of type sbyte , byte , short , ushort , or char  to type

int . Additionally, for the unary -  operator, unary numeric promotion converts operands of type uint  to type 

long .

Binary numeric promotion occurs for the operands of the predefined + , - , * , / , % , & , | , ^ , == , != , > , 

< , >= , and <=  binary operators. Binary numeric promotion implicitly converts both operands to a common type

which, in case of the non-relational operators, also becomes the result type of the operation. Binary numeric

promotion consists of applying the following rules, in the order they appear here:

If either operand is of type decimal , the other operand is converted to type decimal , or a binding-time error

occurs if the other operand is of type float  or double .

Otherwise, if either operand is of type double , the other operand is converted to type double .

Otherwise, if either operand is of type float , the other operand is converted to type float .

Otherwise, if either operand is of type ulong , the other operand is converted to type ulong , or a binding-time

error occurs if the other operand is of type sbyte , short , int , or long .

Otherwise, if either operand is of type long , the other operand is converted to type long .

Otherwise, if either operand is of type uint  and the other operand is of type sbyte , short , or int , both

operands are converted to type long .

Otherwise, if either operand is of type uint , the other operand is converted to type uint .

Otherwise, both operands are converted to type int .

Note that the first rule disallows any operations that mix the decimal  type with the double  and float  types. The

rule follows from the fact that there are no implicit conversions between the decimal  type and the double  and 

float  types.

Also note that it is not possible for an operand to be of type ulong  when the other operand is of a signed integral

type. The reason is that no integral type exists that can represent the full range of ulong  as well as the signed

integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is

compatible with the other operand.

In the example

a binding-time error occurs because a decimal  cannot be multiplied by a double . The error is resolved by

explicitly converting the second operand to decimal , as follows:



            

Lifted operatorsLifted operators

Member lookup

Lifted operatorsL ifted operators  permit predefined and user-defined operators that operate on non-nullable value types to also

be used with nullable forms of those types. Lifted operators are constructed from predefined and user-defined

operators that meet certain requirements, as described in the following:

+  ++  -  --  !  ~

+  -  *  /  %  &  |  ^  <<  >>

==  !=

<  >  <=  >=

For the unary operators

a lifted form of an operator exists if the operand and result types are both non-nullable value types. The

lifted form is constructed by adding a single ?  modifier to the operand and result types. The lifted operator

produces a null value if the operand is null. Otherwise, the lifted operator unwraps the operand, applies the

underlying operator, and wraps the result.

For the binary operators

a lifted form of an operator exists if the operand and result types are all non-nullable value types. The lifted

form is constructed by adding a single ?  modifier to each operand and result type. The lifted operator

produces a null value if one or both operands are null (an exception being the &  and |  operators of the 

bool?  type, as described in Boolean logical operators). Otherwise, the lifted operator unwraps the

operands, applies the underlying operator, and wraps the result.

For the equality operators

a lifted form of an operator exists if the operand types are both non-nullable value types and if the result

type is bool . The lifted form is constructed by adding a single ?  modifier to each operand type. The lifted

operator considers two null values equal, and a null value unequal to any non-null value. If both operands

are non-null, the lifted operator unwraps the operands and applies the underlying operator to produce the 

bool  result.

For the relational operators

a lifted form of an operator exists if the operand types are both non-nullable value types and if the result

type is bool . The lifted form is constructed by adding a single ?  modifier to each operand type. The lifted

operator produces the value false  if one or both operands are null. Otherwise, the lifted operator unwraps

the operands and applies the underlying operator to produce the bool  result.

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A member

lookup can occur as part of evaluating a simple_name (Simple names) or a member_access (Member access) in an

expression. If the simple_name or member_access occurs as the primary_expression of an invocation_expression

(Method invocations), the member is said to be invoked.

If a member is a method or event, or if it is a constant, field or property of either a delegate type (Delegates) or the

type dynamic  (The dynamic type), then the member is said to be invocable.



Base typesBase types

Member lookup considers not only the name of a member but also the number of type parameters the member

has and whether the member is accessible. For the purposes of member lookup, generic methods and nested

generic types have the number of type parameters indicated in their respective declarations and all other members

have zero type parameters.

A member lookup of a name N  with K  type parameters in a type T  is processed as follows:

First, a set of accessible members named N  is determined:

Next, if K  is zero, all nested types whose declarations include type parameters are removed. If K  is not zero,

all members with a different number of type parameters are removed. Note that when K  is zero, methods

having type parameters are not removed, since the type inference process (Type inference) might be able to

infer the type arguments.

Next, if the member is invoked, all non-invocable members are removed from the set.

Next, members that are hidden by other members are removed from the set. For every member S.M  in the set,

where S  is the type in which the member M  is declared, the following rules are applied:

Next, interface members that are hidden by class members are removed from the set. This step only has an

effect if T  is a type parameter and T  has both an effective base class other than object  and a non-empty

effective interface set (Type parameter constraints). For every member S.M  in the set, where S  is the type in

which the member M  is declared, the following rules are applied if S  is a class declaration other than object :

Finally, having removed hidden members, the result of the lookup is determined:

If T  is a type parameter, then the set is the union of the sets of accessible members named N  in each of

the types specified as a primary constraint or secondary constraint (Type parameter constraints) for T ,

along with the set of accessible members named N  in object .

Otherwise, the set consists of all accessible (Member access) members named N  in T , including

inherited members and the accessible members named N  in object . If T  is a constructed type, the set

of members is obtained by substituting type arguments as described in Members of constructed types.

Members that include an override  modifier are excluded from the set.

If M  is a constant, field, property, event, or enumeration member, then all members declared in a base

type of S  are removed from the set.

If M  is a type declaration, then all non-types declared in a base type of S  are removed from the set, and

all type declarations with the same number of type parameters as M  declared in a base type of S  are

removed from the set.

If M  is a method, then all non-method members declared in a base type of S  are removed from the set.

If M  is a constant, field, property, event, enumeration member, or type declaration, then all members

declared in an interface declaration are removed from the set.

If M  is a method, then all non-method members declared in an interface declaration are removed from

the set, and all methods with the same signature as M  declared in an interface declaration are removed

from the set.

If the set consists of a single member that is not a method, then this member is the result of the lookup.

Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.

Otherwise, the lookup is ambiguous, and a binding-time error occurs.

For member lookups in types other than type parameters and interfaces, and member lookups in interfaces that

are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one direct base interface),

the effect of the lookup rules is simply that derived members hide base members with the same name or

signature. Such single-inheritance lookups are never ambiguous. The ambiguities that can possibly arise from

member lookups in multiple-inheritance interfaces are described in Interface member access.

For purposes of member lookup, a type T  is considered to have the following base types:



       Function members
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Method invocation F(x,y) Overload resolution is applied to select
the best method F  in the containing

class or struct. The method is invoked
with the argument list (x,y) . If the

method is not static , the instance

expression is this .

If T  is object , then T  has no base type.

If T  is an enum_type, the base types of T  are the class types System.Enum , System.ValueType , and object .

If T  is a struct_type, the base types of T  are the class types System.ValueType  and object .

If T  is a class_type, the base types of T  are the base classes of T , including the class type object .

If T  is an interface_type, the base types of T  are the base interfaces of T  and the class type object .

If T  is an array_type, the base types of T  are the class types System.Array  and object .

If T  is a delegate_type, the base types of T  are the class types System.Delegate  and object .

Function members are members that contain executable statements. Function members are always members of

types and cannot be members of namespaces. C# defines the following categories of function members:

Methods

Properties

Events

Indexers

User-defined operators

Instance constructors

Static constructors

Destructors

Except for destructors and static constructors (which cannot be invoked explicitly), the statements contained in

function members are executed through function member invocations. The actual syntax for writing a function

member invocation depends on the particular function member category.

The argument list (Argument lists) of a function member invocation provides actual values or variable references

for the parameters of the function member.

Invocations of generic methods may employ type inference to determine the set of type arguments to pass to the

method. This process is described in Type inference.

Invocations of methods, indexers, operators and instance constructors employ overload resolution to determine

which of a candidate set of function members to invoke. This process is described in Overload resolution.

Once a particular function member has been identified at binding-time, possibly through overload resolution, the

actual run-time process of invoking the function member is described in Compile-time checking of dynamic

overload resolution.

The following table summarizes the processing that takes place in constructs involving the six categories of

function members that can be explicitly invoked. In the table, e , x , y , and value  indicate expressions classified

as variables or values, T  indicates an expression classified as a type, F  is the simple name of a method, and P  is

the simple name of a property.



T.F(x,y) Overload resolution is applied to select
the best method F  in the class or

struct T . A binding-time error occurs if

the method is not static . The

method is invoked with the argument
list (x,y) .

e.F(x,y) Overload resolution is applied to select
the best method F in the class, struct,
or interface given by the type of e . A

binding-time error occurs if the method
is static . The method is invoked with

the instance expression e  and the

argument list (x,y) .

Property access P The get  accessor of the property P

in the containing class or struct is
invoked. A compile-time error occurs if 
P  is write-only. If P  is not static ,

the instance expression is this .

P = value The set  accessor of the property P

in the containing class or struct is
invoked with the argument list 
(value) . A compile-time error occurs

if P  is read-only. If P  is not static ,

the instance expression is this .

T.P The get  accessor of the property P

in the class or struct T  is invoked. A

compile-time error occurs if P  is not 

static  or if P  is write-only.

T.P = value The set  accessor of the property P

in the class or struct T  is invoked with

the argument list (value) . A compile-

time error occurs if P  is not static

or if P  is read-only.

e.P The get  accessor of the property P

in the class, struct, or interface given by
the type of e  is invoked with the

instance expression e . A binding-time

error occurs if P  is static  or if P  is

write-only.

e.P = value The set  accessor of the property P

in the class, struct, or interface given by
the type of e  is invoked with the

instance expression e  and the

argument list (value) . A binding-time

error occurs if P  is static  or if P  is

read-only.
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Event access E += value The add  accessor of the event E  in

the containing class or struct is invoked.
If E  is not static, the instance

expression is this .

E -= value The remove  accessor of the event E

in the containing class or struct is
invoked. If E  is not static, the instance

expression is this .

T.E += value The add  accessor of the event E  in

the class or struct T  is invoked. A

binding-time error occurs if E  is not

static.

T.E -= value The remove  accessor of the event E

in the class or struct T  is invoked. A

binding-time error occurs if E  is not

static.

e.E += value The add  accessor of the event E  in

the class, struct, or interface given by
the type of e  is invoked with the

instance expression e . A binding-time

error occurs if E  is static.

e.E -= value The remove  accessor of the event E

in the class, struct, or interface given by
the type of e  is invoked with the

instance expression e . A binding-time

error occurs if E  is static.

Indexer access e[x,y] Overload resolution is applied to select
the best indexer in the class, struct, or
interface given by the type of e. The 
get  accessor of the indexer is invoked

with the instance expression e  and

the argument list (x,y) . A binding-

time error occurs if the indexer is write-
only.

e[x,y] = value Overload resolution is applied to select
the best indexer in the class, struct, or
interface given by the type of e . The 

set  accessor of the indexer is invoked

with the instance expression e  and

the argument list (x,y,value) . A

binding-time error occurs if the indexer
is read-only.

Operator invocation -x Overload resolution is applied to select
the best unary operator in the class or
struct given by the type of x . The

selected operator is invoked with the
argument list (x) .
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x + y Overload resolution is applied to select
the best binary operator in the classes
or structs given by the types of x  and 

y . The selected operator is invoked

with the argument list (x,y) .

Instance constructor invocation new T(x,y) Overload resolution is applied to select
the best instance constructor in the
class or struct T . The instance

constructor is invoked with the
argument list (x,y) .
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Argument listsArgument lists

argument_list
    : argument (',' argument)*
    ;

argument
    : argument_name? argument_value
    ;

argument_name
    : identifier ':'
    ;

argument_value
    : expression
    | 'ref' variable_reference
    | 'out' variable_reference
    ;

Every function member and delegate invocation includes an argument list which provides actual values or variable

references for the parameters of the function member. The syntax for specifying the argument list of a function

member invocation depends on the function member category:

For instance constructors, methods, indexers and delegates, the arguments are specified as an argument_list, as

described below. For indexers, when invoking the set  accessor, the argument list additionally includes the

expression specified as the right operand of the assignment operator.

For properties, the argument list is empty when invoking the get  accessor, and consists of the expression

specified as the right operand of the assignment operator when invoking the set  accessor.

For events, the argument list consists of the expression specified as the right operand of the +=  or -=

operator.

For user-defined operators, the argument list consists of the single operand of the unary operator or the two

operands of the binary operator.

The arguments of properties (Properties), events (Events), and user-defined operators (Operators) are always

passed as value parameters (Value parameters). The arguments of indexers (Indexers) are always passed as value

parameters (Value parameters) or parameter arrays (Parameter arrays). Reference and output parameters are not

supported for these categories of function members.

The arguments of an instance constructor, method, indexer or delegate invocation are specified as an

argument_list:

An argument_list consists of one or more arguments, separated by commas. Each argument consists of an optional

argument_name followed by an argument_value. An argument with an argument_name is referred to as a namednamed



  Corresponding parametersCorresponding parameters

Run-time evaluation of argument listsRun-time evaluation of argument lists

argumentargument, whereas an argument without an argument_name is a positional argumentpositional argument. It is an error for a

positional argument to appear after a named argument in an argument_list.

The argument_value can take one of the following forms:

An expression, indicating that the argument is passed as a value parameter (Value parameters).

The keyword ref  followed by a variable_reference (Variable references), indicating that the argument is passed

as a reference parameter (Reference parameters). A variable must be definitely assigned (Definite assignment)

before it can be passed as a reference parameter. The keyword out  followed by a variable_reference (Variable

references), indicating that the argument is passed as an output parameter (Output parameters). A variable is

considered definitely assigned (Definite assignment) following a function member invocation in which the

variable is passed as an output parameter.

For each argument in an argument list there has to be a corresponding parameter in the function member or

delegate being invoked.

The parameter list used in the following is determined as follows:

For virtual methods and indexers defined in classes, the parameter list is picked from the most specific

declaration or override of the function member, starting with the static type of the receiver, and searching

through its base classes.

For interface methods and indexers, the parameter list is picked form the most specific definition of the

member, starting with the interface type and searching through the base interfaces. If no unique parameter list

is found, a parameter list with inaccessible names and no optional parameters is constructed, so that

invocations cannot use named parameters or omit optional arguments.

For partial methods, the parameter list of the defining partial method declaration is used.

For all other function members and delegates there is only a single parameter list, which is the one used.

The position of an argument or parameter is defined as the number of arguments or parameters preceding it in

the argument list or parameter list.

The corresponding parameters for function member arguments are established as follows:

Arguments in the argument_list of instance constructors, methods, indexers and delegates:

For properties, when invoking the get  accessor there are no arguments. When invoking the set  accessor, the

expression specified as the right operand of the assignment operator corresponds to the implicit value

parameter of the set  accessor declaration.

For user-defined unary operators (including conversions), the single operand corresponds to the single

parameter of the operator declaration.

For user-defined binary operators, the left operand corresponds to the first parameter, and the right operand

corresponds to the second parameter of the operator declaration.

A positional argument where a fixed parameter occurs at the same position in the parameter list

corresponds to that parameter.

A positional argument of a function member with a parameter array invoked in its normal form

corresponds to the parameter array, which must occur at the same position in the parameter list.

A positional argument of a function member with a parameter array invoked in its expanded form,

where no fixed parameter occurs at the same position in the parameter list, corresponds to an element in

the parameter array.

A named argument corresponds to the parameter of the same name in the parameter list.

For indexers, when invoking the set  accessor, the expression specified as the right operand of the

assignment operator corresponds to the implicit value  parameter of the set  accessor declaration.



class Test
{
    static void F(int x, int y = -1, int z = -2) {
        System.Console.WriteLine("x = {0}, y = {1}, z = {2}", x, y, z);
    }

    static void Main() {
        int i = 0;
        F(i++, i++, i++);
        F(z: i++, x: i++);
    }
}

x = 0, y = 1, z = 2
x = 4, y = -1, z = 3

During the run-time processing of a function member invocation (Compile-time checking of dynamic overload

resolution), the expressions or variable references of an argument list are evaluated in order, from left to right, as

follows:

For a value parameter, the argument expression is evaluated and an implicit conversion (Implicit conversions) to

the corresponding parameter type is performed. The resulting value becomes the initial value of the value

parameter in the function member invocation.

For a reference or output parameter, the variable reference is evaluated and the resulting storage location

becomes the storage location represented by the parameter in the function member invocation. If the variable

reference given as a reference or output parameter is an array element of a reference_type, a run-time check is

performed to ensure that the element type of the array is identical to the type of the parameter. If this check

fails, a System.ArrayTypeMismatchException  is thrown.

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter array

(Parameter arrays). Such function members are invoked either in their normal form or in their expanded form

depending on which is applicable (Applicable function member):

When a function member with a parameter array is invoked in its normal form, the argument given for the

parameter array must be a single expression that is implicitly convertible (Implicit conversions) to the

parameter array type. In this case, the parameter array acts precisely like a value parameter.

When a function member with a parameter array is invoked in its expanded form, the invocation must specify

zero or more positional arguments for the parameter array, where each argument is an expression that is

implicitly convertible (Implicit conversions) to the element type of the parameter array. In this case, the

invocation creates an instance of the parameter array type with a length corresponding to the number of

arguments, initializes the elements of the array instance with the given argument values, and uses the newly

created array instance as the actual argument.

The expressions of an argument list are always evaluated in the order they are written. Thus, the example

produces the output

The array co-variance rules (Array covariance) permit a value of an array type A[]  to be a reference to an instance

of an array type B[] , provided an implicit reference conversion exists from B  to A . Because of these rules, when

an array element of a reference_type is passed as a reference or output parameter, a run-time check is required to

ensure that the actual element type of the array is identical to that of the parameter. In the example



                            

class Test
{
    static void F(ref object x) {...}

    static void Main() {
        object[] a = new object[10];
        object[] b = new string[10];
        F(ref a[0]);        // Ok
        F(ref b[1]);        // ArrayTypeMismatchException
    }
}

void F(int x, int y, params object[] args);

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

F(10, 20, new object[] {});
F(10, 20, new object[] {30, 40});
F(10, 20, new object[] {1, "hello", 3.0});

Type inferenceType inference

class Chooser
{
    static Random rand = new Random();

    public static T Choose<T>(T first, T second) {
        return (rand.Next(2) == 0)? first: second;
    }
}

the second invocation of F  causes a System.ArrayTypeMismatchException  to be thrown because the actual element

type of b  is string  and not object .

When a function member with a parameter array is invoked in its expanded form, the invocation is processed

exactly as if an array creation expression with an array initializer (Array creation expressions) was inserted around

the expanded parameters. For example, given the declaration

the following invocations of the expanded form of the method

correspond exactly to

In particular, note that an empty array is created when there are zero arguments given for the parameter array.

When arguments are omitted from a function member with corresponding optional parameters, the default

arguments of the function member declaration are implicitly passed. Because these are always constant, their

evaluation will not impact the evaluation order of the remaining arguments.

When a generic method is called without specifying type arguments, a type inferencetype inference process attempts to infer

type arguments for the call. The presence of type inference allows a more convenient syntax to be used for calling

a generic method, and allows the programmer to avoid specifying redundant type information. For example, given

the method declaration:

it is possible to invoke the Choose  method without explicitly specifying a type argument:



int i = Chooser.Choose(5, 213);                 // Calls Choose<int>

string s = Chooser.Choose("foo", "bar");        // Calls Choose<string>

Tr M<X1,...,Xn>(T1 x1, ..., Tm xm)

The first phaseThe first phase

The second phaseThe second phase

Through type inference, the type arguments int  and string  are determined from the arguments to the method.

Type inference occurs as part of the binding-time processing of a method invocation (Method invocations) and

takes place before the overload resolution step of the invocation. When a particular method group is specified in a

method invocation, and no type arguments are specified as part of the method invocation, type inference is

applied to each generic method in the method group. If type inference succeeds, then the inferred type arguments

are used to determine the types of arguments for subsequent overload resolution. If overload resolution chooses a

generic method as the one to invoke, then the inferred type arguments are used as the actual type arguments for

the invocation. If type inference for a particular method fails, that method does not participate in overload

resolution. The failure of type inference, in and of itself, does not cause a binding-time error. However, it often leads

to a binding-time error when overload resolution then fails to find any applicable methods.

If the supplied number of arguments is different than the number of parameters in the method, then inference

immediately fails. Otherwise, assume that the generic method has the following signature:

With a method call of the form M(E1...Em)  the task of type inference is to find unique type arguments S1...Sn

for each of the type parameters X1...Xn  so that the call M<S1...Sn>(E1...Em)  becomes valid.

During the process of inference each type parameter Xi  is either fixed to a particular type Si  or unfixed with an

associated set of bounds. Each of the bounds is some type T . Initially each type variable Xi  is unfixed with an

empty set of bounds.

Type inference takes place in phases. Each phase will try to infer type arguments for more type variables based on

the findings of the previous phase. The first phase makes some initial inferences of bounds, whereas the second

phase fixes type variables to specific types and infers further bounds. The second phase may have to be repeated a

number of times.

Note: Type inference takes place not only when a generic method is called. Type inference for conversion of

method groups is described in Type inference for conversion of method groups and finding the best common type

of a set of expressions is described in Finding the best common type of a set of expressions.

For each of the method arguments Ei :

If Ei  is an anonymous function, an explicit parameter type inference (Explicit parameter type inferences) is

made from Ei  to Ti

Otherwise, if Ei  has a type U  and xi  is a value parameter then a lower-bound inference is made from U  to 

Ti .

Otherwise, if Ei  has a type U  and xi  is a ref  or out  parameter then an exact inference is made from U  to

Ti .

Otherwise, no inference is made for this argument.

The second phase proceeds as follows:

All unfixed type variables Xi  which do not depend on (Dependence) any Xj  are fixed (Fixing).

If no such type variables exist, all unfixed type variables Xi  are fixed for which all of the following hold:

There is at least one type variable Xj  that depends on Xi



  

  

  

  

  

  

  

Input typesInput types

Output typesOutput types

DependenceDependence

Output type inferencesOutput type inferences

Explicit parameter type inferencesExplicit parameter type inferences

Exact inferencesExact inferences

Lower-bound inferencesLower-bound inferences

If no such type variables exist and there are still unfixed type variables, type inference fails.

Otherwise, if no further unfixed type variables exist, type inference succeeds.

Otherwise, for all arguments Ei  with corresponding parameter type Ti  where the output types (Output

types) contain unfixed type variables Xj  but the input types (Input types) do not, an output type inference

(Output type inferences) is made from Ei  to Ti . Then the second phase is repeated.

Xi  has a non-empty set of bounds

If E  is a method group or implicitly typed anonymous function and T  is a delegate type or expression tree type

then all the parameter types of T  are input types of E  with type T .

If E  is a method group or an anonymous function and T  is a delegate type or expression tree type then the

return type of T  is an output type of E  with type T .

An unfixed type variable Xi  depends directly on an unfixed type variable Xj  if for some argument Ek  with type 

Tk  Xj  occurs in an input type of Ek  with type Tk  and Xi  occurs in an output type of Ek  with type Tk .

Xj  depends on Xi  if Xj  depends directly on Xi  or if Xi  depends directly on Xk  and Xk  depends on Xj .

Thus "depends on" is the transitive but not reflexive closure of "depends directly on".

An output type inference is made from an expression E  to a type T  in the following way:

If E  is an anonymous function with inferred return type U  (Inferred return type) and T  is a delegate type or

expression tree type with return type Tb , then a lower-bound inference (Lower-bound inferences) is made

from U  to Tb .

Otherwise, if E  is a method group and T  is a delegate type or expression tree type with parameter types 

T1...Tk  and return type Tb , and overload resolution of E  with the types T1...Tk  yields a single method

with return type U , then a lower-bound inference is made from U  to Tb .

Otherwise, if E  is an expression with type U , then a lower-bound inference is made from U  to T .

Otherwise, no inferences are made.

An explicit parameter type inference is made from an expression E  to a type T  in the following way:

If E  is an explicitly typed anonymous function with parameter types U1...Uk  and T  is a delegate type or

expression tree type with parameter types V1...Vk  then for each Ui  an exact inference (Exact inferences) is

made from Ui  to the corresponding Vi .

An exact inference from a type U  to a type V  is made as follows:

If V  is one of the unfixed Xi  then U  is added to the set of exact bounds for Xi .

Otherwise, sets V1...Vk  and U1...Uk  are determined by checking if any of the following cases apply:

V  is an array type V1[...]  and U  is an array type U1[...]  of the same rank

V  is the type V1?  and U  is the type U1?

V  is a constructed type C<V1...Vk> and U  is a constructed type C<U1...Uk>

If any of these cases apply then an exact inference is made from each Ui  to the corresponding Vi .

Otherwise no inferences are made.



Upper-bound inferencesUpper-bound inferences

A lower-bound inference from a type U  to a type V  is made as follows:

If V  is one of the unfixed Xi  then U  is added to the set of lower bounds for Xi .

Otherwise, if V  is the type V1? and U  is the type U1?  then a lower bound inference is made from U1  to 

V1 .

Otherwise, sets U1...Uk  and V1...Vk  are determined by checking if any of the following cases apply:

V  is an array type V1[...]  and U  is an array type U1[...]  (or a type parameter whose effective

base type is U1[...] ) of the same rank

V  is one of IEnumerable<V1> , ICollection<V1>  or IList<V1>  and U  is a one-dimensional array

type U1[] (or a type parameter whose effective base type is U1[] )

V  is a constructed class, struct, interface or delegate type C<V1...Vk>  and there is a unique type 

C<U1...Uk>  such that U  (or, if U  is a type parameter, its effective base class or any member of its

effective interface set) is identical to, inherits from (directly or indirectly), or implements (directly or

indirectly) C<U1...Uk> .

(The "uniqueness" restriction means that in the case interface C<T> {} class U: C<X>, C<Y> {} , then

no inference is made when inferring from U  to C<T>  because U1  could be X  or Y .)

If any of these cases apply then an inference is made from each Ui  to the corresponding Vi  as follows:

If Ui  is not known to be a reference type then an exact inference is made

Otherwise, if U  is an array type then a lower-bound inference is made

Otherwise, if V  is C<V1...Vk>  then inference depends on the i-th type parameter of C :

If it is covariant then a lower-bound inference is made.

If it is contravariant then an upper-bound inference is made.

If it is invariant then an exact inference is made.

Otherwise, no inferences are made.

An upper-bound inference from a type U  to a type V  is made as follows:

If V  is one of the unfixed Xi  then U  is added to the set of upper bounds for Xi .

Otherwise, sets V1...Vk  and U1...Uk  are determined by checking if any of the following cases apply:

U  is an array type U1[...]  and V  is an array type V1[...]  of the same rank

U  is one of IEnumerable<Ue> , ICollection<Ue>  or IList<Ue>  and V  is a one-dimensional array

type Ve[]

U  is the type U1?  and V  is the type V1?

U  is constructed class, struct, interface or delegate type C<U1...Uk>  and V  is a class, struct,

interface or delegate type which is identical to, inherits from (directly or indirectly), or implements

(directly or indirectly) a unique type C<V1...Vk>

(The "uniqueness" restriction means that if we have interface C<T>{} class V<Z>: C<X<Z>>, C<Y<Z>>{}

, then no inference is made when inferring from C<U1>  to V<Q> . Inferences are not made from U1

to either X<Q>  or Y<Q> .)

If any of these cases apply then an inference is made from each Ui  to the corresponding Vi  as follows:

If Ui  is not known to be a reference type then an exact inference is made



  

    

FixingFixing

Inferred return typeInferred return type

Otherwise, if V  is an array type then an upper-bound inference is made

Otherwise, if U  is C<U1...Uk>  then inference depends on the i-th type parameter of C :

If it is covariant then an upper-bound inference is made.

If it is contravariant then a lower-bound inference is made.

If it is invariant then an exact inference is made.

Otherwise, no inferences are made.

An unfixed type variable Xi  with a set of bounds is fixed as follows:

The set of candidate types Uj  starts out as the set of all types in the set of bounds for Xi .

We then examine each bound for Xi  in turn: For each exact bound U  of Xi  all types Uj  which are not

identical to U  are removed from the candidate set. For each lower bound U  of Xi  all types Uj  to which

there is not an implicit conversion from U  are removed from the candidate set. For each upper bound U  of 

Xi  all types Uj  from which there is not an implicit conversion to U  are removed from the candidate set.

If among the remaining candidate types Uj  there is a unique type V  from which there is an implicit

conversion to all the other candidate types, then Xi  is fixed to V .

Otherwise, type inference fails.

The inferred return type of an anonymous function F  is used during type inference and overload resolution. The

inferred return type can only be determined for an anonymous function where all parameter types are known,

either because they are explicitly given, provided through an anonymous function conversion or inferred during

type inference on an enclosing generic method invocation.

The inferred result typeinferred result type is determined as follows:

If the body of F  is an expression that has a type, then the inferred result type of F  is the type of that

expression.

If the body of F  is a block and the set of expressions in the block's return  statements has a best common type

T  (Finding the best common type of a set of expressions), then the inferred result type of F  is T .

Otherwise, a result type cannot be inferred for F .

The inferred return typeinferred return type is determined as follows:

If F  is async and the body of F  is either an expression classified as nothing (Expression classifications), or a

statement block where no return statements have expressions, the inferred return type is 

System.Threading.Tasks.Task

If F  is async and has an inferred result type T , the inferred return type is System.Threading.Tasks.Task<T> .

If F  is non-async and has an inferred result type T , the inferred return type is T .

Otherwise a return type cannot be inferred for F .

As an example of type inference involving anonymous functions, consider the Select  extension method declared

in the System.Linq.Enumerable  class:



  

namespace System.Linq
{
    public static class Enumerable
    {
        public static IEnumerable<TResult> Select<TSource,TResult>(
            this IEnumerable<TSource> source,
            Func<TSource,TResult> selector)
        {
            foreach (TSource element in source) yield return selector(element);
        }
    }
}

List<Customer> customers = GetCustomerList();
IEnumerable<string> names = customers.Select(c => c.Name);

IEnumerable<string> names = Enumerable.Select(customers, c => c.Name);

Sequence.Select<Customer,string>(customers, (Customer c) => c.Name)

static Z F<X,Y,Z>(X value, Func<X,Y> f1, Func<Y,Z> f2) {
    return f2(f1(value));
}

double seconds = F("1:15:30", s => TimeSpan.Parse(s), t => t.TotalSeconds);

Type inference for conversion of method groupsType inference for conversion of method groups

Assuming the System.Linq  namespace was imported with a using  clause, and given a class Customer  with a 

Name  property of type string , the Select  method can be used to select the names of a list of customers:

The extension method invocation (Extension method invocations) of Select  is processed by rewriting the

invocation to a static method invocation:

Since type arguments were not explicitly specified, type inference is used to infer the type arguments. First, the 

customers  argument is related to the source  parameter, inferring T  to be Customer . Then, using the anonymous

function type inference process described above, c  is given type Customer , and the expression c.Name  is related

to the return type of the selector  parameter, inferring S  to be string . Thus, the invocation is equivalent to

and the result is of type IEnumerable<string> .

The following example demonstrates how anonymous function type inference allows type information to "flow"

between arguments in a generic method invocation. Given the method:

Type inference for the invocation:

proceeds as follows: First, the argument "1:15:30"  is related to the value  parameter, inferring X  to be string .

Then, the parameter of the first anonymous function, s , is given the inferred type string , and the expression 

TimeSpan.Parse(s)  is related to the return type of f1 , inferring Y  to be System.TimeSpan . Finally, the parameter

of the second anonymous function, t , is given the inferred type System.TimeSpan , and the expression 

t.TotalSeconds  is related to the return type of f2 , inferring Z  to be double . Thus, the result of the invocation is

of type double .

Similar to calls of generic methods, type inference must also be applied when a method group M  containing a



      

                            

Tr M<X1...Xn>(T1 x1 ... Tm xm)

M<S1...Sn>

Finding the best common type of a set of expressionsFinding the best common type of a set of expressions

Tr M<X>(X x1 ... X xm)

Overload resolutionOverload resolution

generic method is converted to a given delegate type D  (Method group conversions). Given a method

and the method group M  being assigned to the delegate type D  the task of type inference is to find type

arguments S1...Sn  so that the expression:

becomes compatible (Delegate declarations) with D .

Unlike the type inference algorithm for generic method calls, in this case there are only argument types, no

argument expressions. In particular, there are no anonymous functions and hence no need for multiple phases of

inference.

Instead, all Xi  are considered unfixed, and a lower-bound inference is made from each argument type Uj  of D

to the corresponding parameter type Tj  of M . If for any of the Xi  no bounds were found, type inference fails.

Otherwise, all Xi  are fixed to corresponding Si , which are the result of type inference.

In some cases, a common type needs to be inferred for a set of expressions. In particular, the element types of

implicitly typed arrays and the return types of anonymous functions with block bodies are found in this way.

Intuitively, given a set of expressions E1...Em  this inference should be equivalent to calling a method

with the Ei  as arguments.

More precisely, the inference starts out with an unfixed type variable X . Output type inferences are then made

from each Ei  to X . Finally, X  is fixed and, if successful, the resulting type S  is the resulting best common type

for the expressions. If no such S  exists, the expressions have no best common type.

Overload resolution is a binding-time mechanism for selecting the best function member to invoke given an

argument list and a set of candidate function members. Overload resolution selects the function member to invoke

in the following distinct contexts within C#:

Invocation of a method named in an invocation_expression (Method invocations).

Invocation of an instance constructor named in an object_creation_expression (Object creation expressions).

Invocation of an indexer accessor through an element_access (Element access).

Invocation of a predefined or user-defined operator referenced in an expression (Unary operator overload

resolution and Binary operator overload resolution).

Each of these contexts defines the set of candidate function members and the list of arguments in its own unique

way, as described in detail in the sections listed above. For example, the set of candidates for a method invocation

does not include methods marked override  (Member lookup), and methods in a base class are not candidates if

any method in a derived class is applicable (Method invocations).

Once the candidate function members and the argument list have been identified, the selection of the best function

member is the same in all cases:

Given the set of applicable candidate function members, the best function member in that set is located. If the

set contains only one function member, then that function member is the best function member. Otherwise, the



                                

  

Applicable function memberApplicable function member

Better function memberBetter function member

best function member is the one function member that is better than all other function members with respect

to the given argument list, provided that each function member is compared to all other function members

using the rules in Better function member. If there is not exactly one function member that is better than all

other function members, then the function member invocation is ambiguous and a binding-time error occurs.

The following sections define the exact meanings of the terms applicable function memberapplicable function member  and betterbetter

function memberfunction member .

A function member is said to be an applicable function memberapplicable function member  with respect to an argument list A  when all of

the following are true:

Each argument in A  corresponds to a parameter in the function member declaration as described in

Corresponding parameters, and any parameter to which no argument corresponds is an optional parameter.

For each argument in A , the parameter passing mode of the argument (i.e., value, ref , or out ) is identical to

the parameter passing mode of the corresponding parameter, and

for a value parameter or a parameter array, an implicit conversion (Implicit conversions) exists from the

argument to the type of the corresponding parameter, or

for a ref  or out  parameter, the type of the argument is identical to the type of the corresponding

parameter. After all, a ref  or out  parameter is an alias for the argument passed.

For a function member that includes a parameter array, if the function member is applicable by the above rules, it

is said to be applicable in its normal formnormal form . If a function member that includes a parameter array is not applicable

in its normal form, the function member may instead be applicable in its expanded formexpanded form :

The expanded form is constructed by replacing the parameter array in the function member declaration with

zero or more value parameters of the element type of the parameter array such that the number of arguments

in the argument list A  matches the total number of parameters. If A  has fewer arguments than the number of

fixed parameters in the function member declaration, the expanded form of the function member cannot be

constructed and is thus not applicable.

Otherwise, the expanded form is applicable if for each argument in A  the parameter passing mode of the

argument is identical to the parameter passing mode of the corresponding parameter, and

for a fixed value parameter or a value parameter created by the expansion, an implicit conversion

(Implicit conversions) exists from the type of the argument to the type of the corresponding parameter,

or

for a ref  or out  parameter, the type of the argument is identical to the type of the corresponding

parameter.

For the purposes of determining the better function member, a stripped-down argument list A is constructed

containing just the argument expressions themselves in the order they appear in the original argument list.

Parameter lists for each of the candidate function members are constructed in the following way:

The expanded form is used if the function member was applicable only in the expanded form.

Optional parameters with no corresponding arguments are removed from the parameter list

The parameters are reordered so that they occur at the same position as the corresponding argument in the

argument list.

Given an argument list A  with a set of argument expressions {E1, E2, ..., En}  and two applicable function

members Mp  and Mq  with parameter types {P1, P2, ..., Pn}  and {Q1, Q2, ..., Qn} , Mp  is defined to be a

better function memberbetter function member  than Mq  if

for each argument, the implicit conversion from Ex  to Qx  is not better than the implicit conversion from Ex

to Px , and



  

  

Better conversion from expressionBetter conversion from expression

Exactly matching ExpressionExactly matching Expression

Better conversion targetBetter conversion target

for at least one argument, the conversion from Ex  to Px  is better than the conversion from Ex  to Qx .

When performing this evaluation, if Mp  or Mq  is applicable in its expanded form, then Px  or Qx  refers to a

parameter in the expanded form of the parameter list.

In case the parameter type sequences {P1, P2, ..., Pn}  and {Q1, Q2, ..., Qn}  are equivalent (i.e. each Pi  has

an identity conversion to the corresponding Qi ), the following tie-breaking rules are applied, in order, to

determine the better function member.

If Mp  is a non-generic method and Mq  is a generic method, then Mp  is better than Mq .

Otherwise, if Mp  is applicable in its normal form and Mq  has a params  array and is applicable only in its

expanded form, then Mp  is better than Mq .

Otherwise, if Mp  has more declared parameters than Mq , then Mp  is better than Mq . This can occur if both

methods have params  arrays and are applicable only in their expanded forms.

Otherwise if all parameters of Mp  have a corresponding argument whereas default arguments need to be

substituted for at least one optional parameter in Mq  then Mp  is better than Mq .

Otherwise, if Mp  has more specific parameter types than Mq , then Mp  is better than Mq . Let 

{R1, R2, ..., Rn}  and {S1, S2, ..., Sn}  represent the uninstantiated and unexpanded parameter types of 

Mp  and Mq . Mp 's parameter types are more specific than Mq 's if, for each parameter, Rx  is not less specific

than Sx , and, for at least one parameter, Rx  is more specific than Sx :

Otherwise if one member is a non-lifted operator and the other is a lifted operator, the non-lifted one is better.

Otherwise, neither function member is better.

A type parameter is less specific than a non-type parameter.

Recursively, a constructed type is more specific than another constructed type (with the same number of

type arguments) if at least one type argument is more specific and no type argument is less specific than

the corresponding type argument in the other.

An array type is more specific than another array type (with the same number of dimensions) if the

element type of the first is more specific than the element type of the second.

Given an implicit conversion C1  that converts from an expression E  to a type T1 , and an implicit conversion 

C2  that converts from an expression E  to a type T2 , C1  is a better conversionbetter conversion than C2  if E  does not exactly

match T2  and at least one of the following holds:

E  exactly matches T1  (Exactly matching Expression)

T1  is a better conversion target than T2  (Better conversion target)

Given an expression E  and a type T , E  exactly matches T  if one of the following holds:

E  has a type S , and an identity conversion exists from S  to T

E  is an anonymous function, T  is either a delegate type D  or an expression tree type Expression<D>  and one

of the following holds:

An inferred return type X  exists for E  in the context of the parameter list of D  (Inferred return type),

and an identity conversion exists from X  to the return type of D

Either E  is non-async and D  has a return type Y  or E  is async and D  has a return type Task<Y> , and

one of the following holds:

The body of E  is an expression that exactly matches Y

The body of E  is a statement block where every return statement returns an expression that

exactly matches Y



                                    

Overloading in generic classesOverloading in generic classes

interface I1<T> {...}

interface I2<T> {...}

class G1<U>
{
    int F1(U u);                  // Overload resolution for G<int>.F1
    int F1(int i);                // will pick non-generic

    void F2(I1<U> a);             // Valid overload
    void F2(I2<U> a);
}

class G2<U,V>
{
    void F3(U u, V v);            // Valid, but overload resolution for
    void F3(V v, U u);            // G2<int,int>.F3 will fail

    void F4(U u, I1<V> v);        // Valid, but overload resolution for    
    void F4(I1<V> v, U u);        // G2<I1<int>,int>.F4 will fail

    void F5(U u1, I1<V> v2);      // Valid overload
    void F5(V v1, U u2);

    void F6(ref U u);             // valid overload
    void F6(out V v);
}

Compile-time checking of dynamic overload resolutionCompile-time checking of dynamic overload resolution

Given two different types T1  and T2 , T1  is a better conversion target than T2  if no implicit conversion from 

T2  to T1  exists, and at least one of the following holds:

An implicit conversion from T1  to T2  exists

T1  is either a delegate type D1  or an expression tree type Expression<D1> , T2  is either a delegate type D2  or

an expression tree type Expression<D2> , D1  has a return type S1  and one of the following holds:

T1  is Task<S1> , T2  is Task<S2> , and S1  is a better conversion target than S2

T1  is S1  or S1?  where S1  is a signed integral type, and T2  is S2  or S2?  where S2  is an unsigned

integral type. Specifically:

D2  is void returning

D2  has a return type S2 , and S1  is a better conversion target than S2

S1  is sbyte  and S2  is byte , ushort , uint , or ulong

S1  is short  and S2  is ushort , uint , or ulong

S1  is int  and S2  is uint , or ulong

S1  is long  and S2  is ulong

While signatures as declared must be unique, it is possible that substitution of type arguments results in identical

signatures. In such cases, the tie-breaking rules of overload resolution above will pick the most specific member.

The following examples show overloads that are valid and invalid according to this rule:

For most dynamically bound operations the set of possible candidates for resolution is unknown at compile-time.

In certain cases, however the candidate set is known at compile-time:

Static method calls with dynamic arguments

Instance method calls where the receiver is not a dynamic expression

Indexer calls where the receiver is not a dynamic expression



Function member invocationFunction member invocation

Constructor calls with dynamic arguments

In these cases a limited compile-time check is performed for each candidate to see if any of them could possibly

apply at run-time.This check consists of the following steps:

Partial type inference: Any type argument that does not depend directly or indirectly on an argument of type 

dynamic  is inferred using the rules of Type inference. The remaining type arguments are unknown.

Partial applicability check: Applicability is checked according to Applicable function member, but ignoring

parameters whose types are unknown.

If no candidate passes this test, a compile-time error occurs.

This section describes the process that takes place at run-time to invoke a particular function member. It is

assumed that a binding-time process has already determined the particular member to invoke, possibly by

applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

Static function members. These are instance constructors, static methods, static property accessors, and user-

defined operators. Static function members are always non-virtual.

Instance function members. These are instance methods, instance property accessors, and indexer accessors.

Instance function members are either non-virtual or virtual, and are always invoked on a particular instance.

The instance is computed by an instance expression, and it becomes accessible within the function member as 

this  (This access).

The run-time processing of a function member invocation consists of the following steps, where M  is the function

member and, if M  is an instance member, E  is the instance expression:

If M  is a static function member:

The argument list is evaluated as described in Argument lists.

M  is invoked.

If M  is an instance function member declared in a value_type:

E  is evaluated. If this evaluation causes an exception, then no further steps are executed.

If E  is not classified as a variable, then a temporary local variable of E 's type is created and the value of

E  is assigned to that variable. E  is then reclassified as a reference to that temporary local variable. The

temporary variable is accessible as this  within M , but not in any other way. Thus, only when E  is a

true variable is it possible for the caller to observe the changes that M  makes to this .

The argument list is evaluated as described in Argument lists.

M  is invoked. The variable referenced by E  becomes the variable referenced by this .

If M  is an instance function member declared in a reference_type:

E  is evaluated. If this evaluation causes an exception, then no further steps are executed.

The argument list is evaluated as described in Argument lists.

If the type of E  is a value_type, a boxing conversion (Boxing conversions) is performed to convert E  to

type object , and E  is considered to be of type object  in the following steps. In this case, M  could

only be a member of System.Object .

The value of E  is checked to be valid. If the value of E  is null , a System.NullReferenceException  is

thrown and no further steps are executed.

The function member implementation to invoke is determined:

If the binding-time type of E  is an interface, the function member to invoke is the

implementation of M  provided by the run-time type of the instance referenced by E . This



  

    

Invocations on boxed instancesInvocations on boxed instances

Primary expressions

The function member implementation determined in the step above is invoked. The object referenced by 

E  becomes the object referenced by this .

function member is determined by applying the interface mapping rules (Interface mapping) to

determine the implementation of M  provided by the run-time type of the instance referenced by 

E .

Otherwise, if M  is a virtual function member, the function member to invoke is the

implementation of M  provided by the run-time type of the instance referenced by E . This

function member is determined by applying the rules for determining the most derived

implementation (Virtual methods) of M  with respect to the run-time type of the instance

referenced by E .

Otherwise, M  is a non-virtual function member, and the function member to invoke is M  itself.

A function member implemented in a value_type can be invoked through a boxed instance of that value_type in

the following situations:

When the function member is an override  of a method inherited from type object  and is invoked through an

instance expression of type object .

When the function member is an implementation of an interface function member and is invoked through an

instance expression of an interface_type.

When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value_type, and this variable

becomes the variable referenced by this  within the function member invocation. In particular, this means that

when a function member is invoked on a boxed instance, it is possible for the function member to modify the value

contained in the boxed instance.

Primary expressions include the simplest forms of expressions.



    

                

primary_expression
    : primary_no_array_creation_expression
    | array_creation_expression
    ;

primary_no_array_creation_expression
    : literal
    | interpolated_string_expression
    | simple_name
    | parenthesized_expression
    | member_access
    | invocation_expression
    | element_access
    | this_access
    | base_access
    | post_increment_expression
    | post_decrement_expression
    | object_creation_expression
    | delegate_creation_expression
    | anonymous_object_creation_expression
    | typeof_expression
    | checked_expression
    | unchecked_expression
    | default_value_expression
    | nameof_expression
    | anonymous_method_expression
    | primary_no_array_creation_expression_unsafe
    ;

object o = new int[3][1];

object o = (new int[3])[1];

LiteralsLiterals

Interpolated stringsInterpolated strings

Primary expressions are divided between array_creation_expressions and primary_no_array_creation_expressions.

Treating array-creation-expression in this way, rather than listing it along with the other simple expression forms,

enables the grammar to disallow potentially confusing code such as

which would otherwise be interpreted as

A primary_expression that consists of a literal (Literals) is classified as a value.

An interpolated_string_expression consists of a $  sign followed by a regular or verbatim string literal, wherein

holes, delimited by {  and } , enclose expressions and formatting specifications. An interpolated string expression

is the result of an interpolated_string_literal that has been broken up into individual tokens, as described in

Interpolated string literals.



                                        

interpolated_string_expression
    : '$' interpolated_regular_string
    | '$' interpolated_verbatim_string
    ;

interpolated_regular_string
    : interpolated_regular_string_whole
    | interpolated_regular_string_start interpolated_regular_string_body interpolated_regular_string_end
    ;

interpolated_regular_string_body
    : interpolation (interpolated_regular_string_mid interpolation)*
    ;

interpolation
    : expression
    | expression ',' constant_expression
    ;

interpolated_verbatim_string
    : interpolated_verbatim_string_whole
    | interpolated_verbatim_string_start interpolated_verbatim_string_body interpolated_verbatim_string_end
    ;

interpolated_verbatim_string_body
    : interpolation (interpolated_verbatim_string_mid interpolation)+
    ;

Simple namesSimple names

The constant_expression in an interpolation must have an implicit conversion to int .

An interpolated_string_expression is classified as a value. If it is immediately converted to System.IFormattable  or 

System.FormattableString  with an implicit interpolated string conversion (Implicit interpolated string conversions),

the interpolated string expression has that type. Otherwise, it has the type string .

If the type of an interpolated string is System.IFormattable  or System.FormattableString , the meaning is a call to 

System.Runtime.CompilerServices.FormattableStringFactory.Create . If the type is string , the meaning of the

expression is a call to string.Format . In both cases, the argument list of the call consists of a format string literal

with placeholders for each interpolation, and an argument for each expression corresponding to the place holders.

The format string literal is constructed as follows, where N  is the number of interpolations in the

interpolated_string_expression:

If an interpolated_regular_string_whole or an interpolated_verbatim_string_whole follows the $  sign, then the

format string literal is that token.

Otherwise, the format string literal consists of:

First the interpolated_regular_string_start or interpolated_verbatim_string_start

Then for each number I  from 0  to N-1 :

The decimal representation of I

Then, if the corresponding interpolation has a constant_expression, a ,  (comma) followed by the

decimal representation of the value of the constant_expression

Then the interpolated_regular_string_mid, interpolated_regular_string_end,

interpolated_verbatim_string_mid or interpolated_verbatim_string_end immediately following the

corresponding interpolation.

The subsequent arguments are simply the expressions from the interpolations (if any), in order.

TODO: examples.



simple_name
    : identifier type_argument_list?
    ;

A simple_name consists of an identifier, optionally followed by a type argument list:

A simple_name is either of the form I  or of the form I<A1,...,Ak> , where I  is a single identifier and 

<A1,...,Ak>  is an optional type_argument_list. When no type_argument_list is specified, consider K  to be zero.

The simple_name is evaluated and classified as follows:

If K  is zero and the simple_name appears within a block and if the block's (or an enclosing block's) local

variable declaration space (Declarations) contains a local variable, parameter or constant with name I ,

then the simple_name refers to that local variable, parameter or constant and is classified as a variable or

value.

If K  is zero and the simple_name appears within the body of a generic method declaration and if that

declaration includes a type parameter with name I , then the simple_name refers to that type parameter.

Otherwise, for each instance type T  (The instance type), starting with the instance type of the immediately

enclosing type declaration and continuing with the instance type of each enclosing class or struct

declaration (if any):

If K  is zero and the declaration of T  includes a type parameter with name I , then the simple_name

refers to that type parameter.

Otherwise, if a member lookup (Member lookup) of I  in T  with K  type arguments produces a match:

If T  is the instance type of the immediately enclosing class or struct type and the lookup

identifies one or more methods, the result is a method group with an associated instance

expression of this . If a type argument list was specified, it is used in calling a generic method

(Method invocations).

Otherwise, if T  is the instance type of the immediately enclosing class or struct type, if the

lookup identifies an instance member, and if the reference occurs within the body of an instance

constructor, an instance method, or an instance accessor, the result is the same as a member

access (Member access) of the form this.I . This can only happen when K  is zero.

Otherwise, the result is the same as a member access (Member access) of the form T.I  or 

T.I<A1,...,Ak> . In this case, it is a binding-time error for the simple_name to refer to an instance

member.

Otherwise, for each namespace N , starting with the namespace in which the simple_name occurs,

continuing with each enclosing namespace (if any), and ending with the global namespace, the following

steps are evaluated until an entity is located:

If K  is zero and I  is the name of a namespace in N , then:

Otherwise, if N  contains an accessible type having name I  and K  type parameters, then:

If the location where the simple_name occurs is enclosed by a namespace declaration for N  and

the namespace declaration contains an extern_alias_directive or using_alias_directive that

associates the name I  with a namespace or type, then the simple_name is ambiguous and a

compile-time error occurs.

Otherwise, the simple_name refers to the namespace named I  in N .

If K  is zero and the location where the simple_name occurs is enclosed by a namespace

declaration for N  and the namespace declaration contains an extern_alias_directive or

using_alias_directive that associates the name I  with a namespace or type, then the

simple_name is ambiguous and a compile-time error occurs.

Otherwise, the namespace_or_type_name refers to the type constructed with the given type



      

                                                                

Parenthesized expressionsParenthesized expressions

parenthesized_expression
    : '(' expression ')'
    ;

Member accessMember access

member_access
    : primary_expression '.' identifier type_argument_list?
    | predefined_type '.' identifier type_argument_list?
    | qualified_alias_member '.' identifier
    ;

predefined_type
    : 'bool'   | 'byte'  | 'char'  | 'decimal' | 'double' | 'float' | 'int' | 'long'
    | 'object' | 'sbyte' | 'short' | 'string'  | 'uint'   | 'ulong' | 'ushort'
    ;

Otherwise, if the location where the simple_name occurs is enclosed by a namespace declaration for N :

arguments.

If K  is zero and the namespace declaration contains an extern_alias_directive or

using_alias_directive that associates the name I  with an imported namespace or type, then the

simple_name refers to that namespace or type.

Otherwise, if the namespaces and type declarations imported by the using_namespace_directives

and using_static_directives of the namespace declaration contain exactly one accessible type or

non-extension static member having name I  and K  type parameters, then the simple_name

refers to that type or member constructed with the given type arguments.

Otherwise, if the namespaces and types imported by the using_namespace_directives of the

namespace declaration contain more than one accessible type or non-extension-method static

member having name I  and K  type parameters, then the simple_name is ambiguous and an

error occurs.

Note that this entire step is exactly parallel to the corresponding step in the processing of a

namespace_or_type_name (Namespace and type names).

Otherwise, the simple_name is undefined and a compile-time error occurs.

A parenthesized_expression consists of an expression enclosed in parentheses.

A parenthesized_expression is evaluated by evaluating the expression within the parentheses. If the expression

within the parentheses denotes a namespace or type, a compile-time error occurs. Otherwise, the result of the

parenthesized_expression is the result of the evaluation of the contained expression.

A member_access consists of a primary_expression, a predefined_type, or a qualified_alias_member, followed by a

" . " token, followed by an identifier, optionally followed by a type_argument_list.

The qualified_alias_member production is defined in Namespace alias qualifiers.

A member_access is either of the form E.I  or of the form E.I<A1, ..., Ak> , where E  is a primary-expression, 

I  is a single identifier and <A1, ..., Ak>  is an optional type_argument_list. When no type_argument_list is

specified, consider K  to be zero.

A member_access with a primary_expression of type dynamic  is dynamically bound (Dynamic binding). In this

case the compiler classifies the member access as a property access of type dynamic . The rules below to determine

the meaning of the member_access are then applied at run-time, using the run-time type instead of the compile-

time type of the primary_expression. If this run-time classification leads to a method group, then the member

access must be the primary_expression of an invocation_expression.



The member_access is evaluated and classified as follows:

If K  is zero and E  is a namespace and E  contains a nested namespace with name I , then the result is that

namespace.

Otherwise, if E  is a namespace and E  contains an accessible type having name I  and K  type parameters,

then the result is that type constructed with the given type arguments.

If E  is a predefined_type or a primary_expression classified as a type, if E  is not a type parameter, and if a

member lookup (Member lookup) of I  in E  with K  type parameters produces a match, then E.I  is

evaluated and classified as follows:

If E  is a property access, indexer access, variable, or value, the type of which is T , and a member lookup

(Member lookup) of I  in T  with K  type arguments produces a match, then E.I  is evaluated and classified

as follows:

If I  identifies a type, then the result is that type constructed with the given type arguments.

If I  identifies one or more methods, then the result is a method group with no associated instance

expression. If a type argument list was specified, it is used in calling a generic method (Method

invocations).

If I  identifies a static  property, then the result is a property access with no associated instance

expression.

If I  identifies a static  field:

If I  identifies a static  event:

If I  identifies a constant, then the result is a value, namely the value of that constant.

If I  identifies an enumeration member, then the result is a value, namely the value of that enumeration

member.

Otherwise, E.I  is an invalid member reference, and a compile-time error occurs.

If the field is readonly  and the reference occurs outside the static constructor of the class or struct

in which the field is declared, then the result is a value, namely the value of the static field I  in E

.

Otherwise, the result is a variable, namely the static field I  in E .

If the reference occurs within the class or struct in which the event is declared, and the event was

declared without event_accessor_declarations (Events), then E.I  is processed exactly as if I

were a static field.

Otherwise, the result is an event access with no associated instance expression.

First, if E  is a property or indexer access, then the value of the property or indexer access is obtained

(Values of expressions) and E  is reclassified as a value.

If I  identifies one or more methods, then the result is a method group with an associated instance

expression of E . If a type argument list was specified, it is used in calling a generic method (Method

invocations).

If I  identifies an instance property,

If T  is a class_type and I  identifies an instance field of that class_type:

If E  is this , I  identifies an automatically implemented property (Automatically implemented

properties) without a setter, and the reference occurs within an instance constructor for a class or

struct type T , then the result is a variable, namely the hidden backing field for the auto-property

given by I  in the instance of T  given by this .

Otherwise, the result is a property access with an associated instance expression of E .

If the value of E  is null , then a System.NullReferenceException  is thrown.

Otherwise, if the field is readonly  and the reference occurs outside an instance constructor of the

class in which the field is declared, then the result is a value, namely the value of the field I  in the

object referenced by E .



Identical simple names and type namesIdentical simple names and type names

struct Color
{
    public static readonly Color White = new Color(...);
    public static readonly Color Black = new Color(...);

    public Color Complement() {...}
}

class A
{
    public Color Color;                // Field Color of type Color

    void F() {
        Color = Color.Black;           // References Color.Black static member
        Color = Color.Complement();    // Invokes Complement() on Color field
    }

    static void G() {
        Color c = Color.White;         // References Color.White static member
    }
}

Grammar ambiguitiesGrammar ambiguities

F(G<A,B>(7));

Otherwise, an attempt is made to process E.I  as an extension method invocation (Extension method

invocations). If this fails, E.I  is an invalid member reference, and a binding-time error occurs.

If T  is a struct_type and I  identifies an instance field of that struct_type:

If I  identifies an instance event:

Otherwise, the result is a variable, namely the field I  in the object referenced by E .

If E  is a value, or if the field is readonly  and the reference occurs outside an instance constructor

of the struct in which the field is declared, then the result is a value, namely the value of the field 

I  in the struct instance given by E .

Otherwise, the result is a variable, namely the field I  in the struct instance given by E .

If the reference occurs within the class or struct in which the event is declared, and the event was

declared without event_accessor_declarations (Events), and the reference does not occur as the

left-hand side of a +=  or -=  operator, then E.I  is processed exactly as if I  was an instance

field.

Otherwise, the result is an event access with an associated instance expression of E .

In a member access of the form E.I , if E  is a single identifier, and if the meaning of E  as a simple_name (Simple

names) is a constant, field, property, local variable, or parameter with the same type as the meaning of E  as a

type_name (Namespace and type names), then both possible meanings of E  are permitted. The two possible

meanings of E.I  are never ambiguous, since I  must necessarily be a member of the type E  in both cases. In

other words, the rule simply permits access to the static members and nested types of E  where a compile-time

error would otherwise have occurred. For example:

The productions for simple_name (Simple names) and member_access (Member access) can give rise to

ambiguities in the grammar for expressions. For example, the statement:

could be interpreted as a call to F  with two arguments, G < A  and B > (7) . Alternatively, it could be interpreted

as a call to F  with one argument, which is a call to a generic method G  with two type arguments and one regular

argument.
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F(G<A,B>(7));

F(G < A, B > 7);
F(G < A, B >> 7);

x = F < A > +y;

x = y is C<T> + z;

Invocation expressionsInvocation expressions

invocation_expression
    : primary_expression '(' argument_list? ')'
    ;

If a sequence of tokens can be parsed (in context) as a simple_name (Simple names), member_access (Member

access), or pointer_member_access (Pointer member access) ending with a type_argument_list (Type arguments),

the token immediately following the closing >  token is examined. If it is one of

then the type_argument_list is retained as part of the simple_name, member_access or pointer_member_access

and any other possible parse of the sequence of tokens is discarded. Otherwise, the type_argument_list is not

considered to be part of the simple_name, member_access or pointer_member_access, even if there is no other

possible parse of the sequence of tokens. Note that these rules are not applied when parsing a type_argument_list

in a namespace_or_type_name (Namespace and type names). The statement

will, according to this rule, be interpreted as a call to F  with one argument, which is a call to a generic method G

with two type arguments and one regular argument. The statements

will each be interpreted as a call to F  with two arguments. The statement

will be interpreted as a less than operator, greater than operator, and unary plus operator, as if the statement had

been written x = (F < A) > (+y) , instead of as a simple_name with a type_argument_list followed by a binary plus

operator. In the statement

the tokens C<T>  are interpreted as a namespace_or_type_name with a type_argument_list.

An invocation_expression is used to invoke a method.

An invocation_expression is dynamically bound (Dynamic binding) if at least one of the following holds:

The primary_expression has compile-time type dynamic .

At least one argument of the optional argument_list has compile-time type dynamic  and the

primary_expression does not have a delegate type.

In this case the compiler classifies the invocation_expression as a value of type dynamic . The rules below to

determine the meaning of the invocation_expression are then applied at run-time, using the run-time type instead

of the compile-time type of those of the primary_expression and arguments which have the compile-time type 

dynamic . If the primary_expression does not have compile-time type dynamic , then the method invocation

undergoes a limited compile time check as described in Compile-time checking of dynamic overload resolution.



                                  Method invocationsMethod invocations

The primary_expression of an invocation_expression must be a method group or a value of a delegate_type. If the

primary_expression is a method group, the invocation_expression is a method invocation (Method invocations). If

the primary_expression is a value of a delegate_type, the invocation_expression is a delegate invocation (Delegate

invocations). If the primary_expression is neither a method group nor a value of a delegate_type, a binding-time

error occurs.

The optional argument_list (Argument lists) provides values or variable references for the parameters of the

method.

The result of evaluating an invocation_expression is classified as follows:

If the invocation_expression invokes a method or delegate that returns void , the result is nothing. An

expression that is classified as nothing is permitted only in the context of a statement_expression (Expression

statements) or as the body of a lambda_expression (Anonymous function expressions). Otherwise a binding-

time error occurs.

Otherwise, the result is a value of the type returned by the method or delegate.

For a method invocation, the primary_expression of the invocation_expression must be a method group. The

method group identifies the one method to invoke or the set of overloaded methods from which to choose a

specific method to invoke. In the latter case, determination of the specific method to invoke is based on the context

provided by the types of the arguments in the argument_list.

The binding-time processing of a method invocation of the form M(A) , where M  is a method group (possibly

including a type_argument_list), and A  is an optional argument_list, consists of the following steps:

The set of candidate methods for the method invocation is constructed. For each method F  associated with the

method group M :

The set of candidate methods is reduced to contain only methods from the most derived types: For each

method C.F  in the set, where C  is the type in which the method F  is declared, all methods declared in a base

type of C  are removed from the set. Furthermore, if C  is a class type other than object , all methods declared

in an interface type are removed from the set. (This latter rule only has affect when the method group was the

result of a member lookup on a type parameter having an effective base class other than object and a non-

empty effective interface set.)

If the resulting set of candidate methods is empty, then further processing along the following steps are

abandoned, and instead an attempt is made to process the invocation as an extension method invocation

(Extension method invocations). If this fails, then no applicable methods exist, and a binding-time error occurs.

The best method of the set of candidate methods is identified using the overload resolution rules of Overload

If F  is non-generic, F  is a candidate when:

If F  is generic and M  has no type argument list, F  is a candidate when:

If F  is generic and M  includes a type argument list, F  is a candidate when:

M  has no type argument list, and

F  is applicable with respect to A  (Applicable function member).

Type inference (Type inference) succeeds, inferring a list of type arguments for the call, and

Once the inferred type arguments are substituted for the corresponding method type parameters,

all constructed types in the parameter list of F satisfy their constraints (Satisfying constraints), and

the parameter list of F  is applicable with respect to A  (Applicable function member).

F  has the same number of method type parameters as were supplied in the type argument list,

and

Once the type arguments are substituted for the corresponding method type parameters, all

constructed types in the parameter list of F satisfy their constraints (Satisfying constraints), and

the parameter list of F  is applicable with respect to A  (Applicable function member).



              Extension method invocationsExtension method invocations

expr . identifier ( )

expr . identifier ( args )

expr . identifier < typeargs > ( )

expr . identifier < typeargs > ( args )

C . identifier ( expr )

C . identifier ( expr , args )

C . identifier < typeargs > ( expr )

C . identifier < typeargs > ( expr , args )

resolution. If a single best method cannot be identified, the method invocation is ambiguous, and a binding-

time error occurs. When performing overload resolution, the parameters of a generic method are considered

after substituting the type arguments (supplied or inferred) for the corresponding method type parameters.

Final validation of the chosen best method is performed:

The method is validated in the context of the method group: If the best method is a static method, the

method group must have resulted from a simple_name or a member_access through a type. If the best

method is an instance method, the method group must have resulted from a simple_name, a

member_access through a variable or value, or a base_access. If neither of these requirements is true, a

binding-time error occurs.

If the best method is a generic method, the type arguments (supplied or inferred) are checked against

the constraints (Satisfying constraints) declared on the generic method. If any type argument does not

satisfy the corresponding constraint(s) on the type parameter, a binding-time error occurs.

Once a method has been selected and validated at binding-time by the above steps, the actual run-time invocation

is processed according to the rules of function member invocation described in Compile-time checking of dynamic

overload resolution.

The intuitive effect of the resolution rules described above is as follows: To locate the particular method invoked by

a method invocation, start with the type indicated by the method invocation and proceed up the inheritance chain

until at least one applicable, accessible, non-override method declaration is found. Then perform type inference

and overload resolution on the set of applicable, accessible, non-override methods declared in that type and invoke

the method thus selected. If no method was found, try instead to process the invocation as an extension method

invocation.

In a method invocation (Invocations on boxed instances) of one of the forms

if the normal processing of the invocation finds no applicable methods, an attempt is made to process the

construct as an extension method invocation. If expr or any of the args has compile-time type dynamic , extension

methods will not apply.

The objective is to find the best type_name C , so that the corresponding static method invocation can take place:

An extension method Ci.Mj  is eligibleeligible if:

Ci  is a non-generic, non-nested class

The name of Mj  is identifier

Mj  is accessible and applicable when applied to the arguments as a static method as shown above

An implicit identity, reference or boxing conversion exists from expr to the type of the first parameter of Mj .



public static class E
{
    public static void F(this object obj, int i) { }

    public static void F(this object obj, string s) { }
}

class A { }

class B
{
    public void F(int i) { }
}

class C
{
    public void F(object obj) { }
}

class X
{
    static void Test(A a, B b, C c) {
        a.F(1);              // E.F(object, int)
        a.F("hello");        // E.F(object, string)

        b.F(1);              // B.F(int)
        b.F("hello");        // E.F(object, string)

        c.F(1);              // C.F(object)
        c.F("hello");        // C.F(object)
    }
}

The search for C  proceeds as follows:

Starting with the closest enclosing namespace declaration, continuing with each enclosing namespace

declaration, and ending with the containing compilation unit, successive attempts are made to find a candidate

set of extension methods:

If no candidate set is found in any enclosing namespace declaration or compilation unit, a compile-time error

occurs.

Otherwise, overload resolution is applied to the candidate set as described in (Overload resolution). If no single

best method is found, a compile-time error occurs.

C  is the type within which the best method is declared as an extension method.

If the given namespace or compilation unit directly contains non-generic type declarations Ci  with

eligible extension methods Mj , then the set of those extension methods is the candidate set.

If types Ci  imported by using_static_declarations and directly declared in namespaces imported by

using_namespace_directives in the given namespace or compilation unit directly contain eligible

extension methods Mj , then the set of those extension methods is the candidate set.

Using C  as a target, the method call is then processed as a static method invocation (Compile-time checking of

dynamic overload resolution).

The preceding rules mean that instance methods take precedence over extension methods, that extension methods

available in inner namespace declarations take precedence over extension methods available in outer namespace

declarations, and that extension methods declared directly in a namespace take precedence over extension

methods imported into that same namespace with a using namespace directive. For example:

In the example, B 's method takes precedence over the first extension method, and C 's method takes precedence

over both extension methods.



    

public static class C
{
    public static void F(this int i) { Console.WriteLine("C.F({0})", i); }
    public static void G(this int i) { Console.WriteLine("C.G({0})", i); }
    public static void H(this int i) { Console.WriteLine("C.H({0})", i); }
}

namespace N1
{
    public static class D
    {
        public static void F(this int i) { Console.WriteLine("D.F({0})", i); }
        public static void G(this int i) { Console.WriteLine("D.G({0})", i); }
    }
}

namespace N2
{
    using N1;

    public static class E
    {
        public static void F(this int i) { Console.WriteLine("E.F({0})", i); }
    }

    class Test
    {
        static void Main(string[] args)
        {
            1.F();
            2.G();
            3.H();
        }
    }
}

E.F(1)
D.G(2)
C.H(3)

Delegate invocationsDelegate invocations

The output of this example is:

D.G  takes precedence over C.G , and E.F  takes precedence over both D.F  and C.F .

For a delegate invocation, the primary_expression of the invocation_expression must be a value of a delegate_type.

Furthermore, considering the delegate_type to be a function member with the same parameter list as the

delegate_type, the delegate_type must be applicable (Applicable function member) with respect to the

argument_list of the invocation_expression.

The run-time processing of a delegate invocation of the form D(A) , where D  is a primary_expression of a

delegate_type and A  is an optional argument_list, consists of the following steps:

D  is evaluated. If this evaluation causes an exception, no further steps are executed.

The value of D  is checked to be valid. If the value of D  is null , a System.NullReferenceException  is thrown

and no further steps are executed.

Otherwise, D  is a reference to a delegate instance. Function member invocations (Compile-time checking of

dynamic overload resolution) are performed on each of the callable entities in the invocation list of the

delegate. For callable entities consisting of an instance and instance method, the instance for the invocation is

the instance contained in the callable entity.



        

    

Element accessElement access

element_access
    : primary_no_array_creation_expression '[' expression_list ']'
    ;

Array accessArray access

An element_access consists of a primary_no_array_creation_expression, followed by a " [ " token, followed by an

argument_list, followed by a " ] " token. The argument_list consists of one or more arguments, separated by

commas.

The argument_list of an element_access is not allowed to contain ref  or out  arguments.

An element_access is dynamically bound (Dynamic binding) if at least one of the following holds:

The primary_no_array_creation_expression has compile-time type dynamic .

At least one expression of the argument_list has compile-time type dynamic  and the

primary_no_array_creation_expression does not have an array type.

In this case the compiler classifies the element_access as a value of type dynamic . The rules below to determine the

meaning of the element_access are then applied at run-time, using the run-time type instead of the compile-time

type of those of the primary_no_array_creation_expression and argument_list expressions which have the compile-

time type dynamic . If the primary_no_array_creation_expression does not have compile-time type dynamic , then

the element access undergoes a limited compile time check as described in Compile-time checking of dynamic

overload resolution.

If the primary_no_array_creation_expression of an element_access is a value of an array_type, the element_access

is an array access (Array access). Otherwise, the primary_no_array_creation_expression must be a variable or value

of a class, struct, or interface type that has one or more indexer members, in which case the element_access is an

indexer access (Indexer access).

For an array access, the primary_no_array_creation_expression of the element_access must be a value of an

array_type. Furthermore, the argument_list of an array access is not allowed to contain named arguments.The

number of expressions in the argument_list must be the same as the rank of the array_type, and each expression

must be of type int , uint , long , ulong , or must be implicitly convertible to one or more of these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array element

selected by the value(s) of the expression(s) in the argument_list.

The run-time processing of an array access of the form P[A] , where P  is a

primary_no_array_creation_expression of an array_type and A  is an argument_list, consists of the following steps:

P  is evaluated. If this evaluation causes an exception, no further steps are executed.

The index expressions of the argument_list are evaluated in order, from left to right. Following evaluation of

each index expression, an implicit conversion (Implicit conversions) to one of the following types is performed: 

int , uint , long , ulong . The first type in this list for which an implicit conversion exists is chosen. For

instance, if the index expression is of type short  then an implicit conversion to int  is performed, since

implicit conversions from short  to int  and from short  to long  are possible. If evaluation of an index

expression or the subsequent implicit conversion causes an exception, then no further index expressions are

evaluated and no further steps are executed.

The value of P  is checked to be valid. If the value of P  is null , a System.NullReferenceException  is thrown

and no further steps are executed.

The value of each expression in the argument_list is checked against the actual bounds of each dimension of the

array instance referenced by P . If one or more values are out of range, a System.IndexOutOfRangeException  is

thrown and no further steps are executed.



        

                            

Indexer accessIndexer access

This accessThis access

this_access
    : 'this'
    ;

The location of the array element given by the index expression(s) is computed, and this location becomes the

result of the array access.

For an indexer access, the primary_no_array_creation_expression of the element_access must be a variable or

value of a class, struct, or interface type, and this type must implement one or more indexers that are applicable

with respect to the argument_list of the element_access.

The binding-time processing of an indexer access of the form P[A] , where P  is a

primary_no_array_creation_expression of a class, struct, or interface type T , and A  is an argument_list, consists

of the following steps:

The set of indexers provided by T  is constructed. The set consists of all indexers declared in T  or a base type

of T  that are not override  declarations and are accessible in the current context (Member access).

The set is reduced to those indexers that are applicable and not hidden by other indexers. The following rules

are applied to each indexer S.I  in the set, where S  is the type in which the indexer I  is declared:

If the resulting set of candidate indexers is empty, then no applicable indexers exist, and a binding-time error

occurs.

The best indexer of the set of candidate indexers is identified using the overload resolution rules of Overload

resolution. If a single best indexer cannot be identified, the indexer access is ambiguous, and a binding-time

error occurs.

The index expressions of the argument_list are evaluated in order, from left to right. The result of processing the

indexer access is an expression classified as an indexer access. The indexer access expression references the

indexer determined in the step above, and has an associated instance expression of P  and an associated

argument list of A .

If I  is not applicable with respect to A  (Applicable function member), then I  is removed from the set.

If I  is applicable with respect to A  (Applicable function member), then all indexers declared in a base

type of S  are removed from the set.

If I  is applicable with respect to A  (Applicable function member) and S  is a class type other than 

object , all indexers declared in an interface are removed from the set.

Depending on the context in which it is used, an indexer access causes invocation of either the get accessor or the

set accessor of the indexer. If the indexer access is the target of an assignment, the set accessor is invoked to assign

a new value (Simple assignment). In all other cases, the get accessor is invoked to obtain the current value (Values

of expressions).

A this_access consists of the reserved word this .

A this_access is permitted only in the block of an instance constructor, an instance method, or an instance accessor.

It has one of the following meanings:

When this  is used in a primary_expression within an instance constructor of a class, it is classified as a value.

The type of the value is the instance type (The instance type) of the class within which the usage occurs, and the

value is a reference to the object being constructed.

When this  is used in a primary_expression within an instance method or instance accessor of a class, it is

classified as a value. The type of the value is the instance type (The instance type) of the class within which the

usage occurs, and the value is a reference to the object for which the method or accessor was invoked.

When this  is used in a primary_expression within an instance constructor of a struct, it is classified as a



              

                  

Base accessBase access

base_access
    : 'base' '.' identifier
    | 'base' '[' expression_list ']'
    ;

Postfix increment and decrement operatorsPostfix increment and decrement operators

post_increment_expression
    : primary_expression '++'
    ;

post_decrement_expression
    : primary_expression '--'
    ;

variable. The type of the variable is the instance type (The instance type) of the struct within which the usage

occurs, and the variable represents the struct being constructed. The this  variable of an instance constructor

of a struct behaves exactly the same as an out  parameter of the struct type—in particular, this means that the

variable must be definitely assigned in every execution path of the instance constructor.

When this  is used in a primary_expression within an instance method or instance accessor of a struct, it is

classified as a variable. The type of the variable is the instance type (The instance type) of the struct within which

the usage occurs.

If the method or accessor is not an iterator (Iterators), the this  variable represents the struct for which

the method or accessor was invoked, and behaves exactly the same as a ref  parameter of the struct

type.

If the method or accessor is an iterator, the this  variable represents a copy of the struct for which the

method or accessor was invoked, and behaves exactly the same as a value parameter of the struct type.

Use of this  in a primary_expression in a context other than the ones listed above is a compile-time error. In

particular, it is not possible to refer to this  in a static method, a static property accessor, or in a variable_initializer

of a field declaration.

A base_access consists of the reserved word base  followed by either a " . " token and an identifier or an

argument_list enclosed in square brackets:

A base_access is used to access base class members that are hidden by similarly named members in the current

class or struct. A base_access is permitted only in the block of an instance constructor, an instance method, or an

instance accessor. When base.I  occurs in a class or struct, I  must denote a member of the base class of that

class or struct. Likewise, when base[E]  occurs in a class, an applicable indexer must exist in the base class.

At binding-time, base_access expressions of the form base.I  and base[E]  are evaluated exactly as if they were

written ((B)this).I  and ((B)this)[E] , where B  is the base class of the class or struct in which the construct

occurs. Thus, base.I  and base[E]  correspond to this.I  and this[E] , except this  is viewed as an instance of

the base class.

When a base_access references a virtual function member (a method, property, or indexer), the determination of

which function member to invoke at run-time (Compile-time checking of dynamic overload resolution) is changed.

The function member that is invoked is determined by finding the most derived implementation (Virtual methods)

of the function member with respect to B  (instead of with respect to the run-time type of this , as would be

usual in a non-base access). Thus, within an override  of a virtual  function member, a base_access can be used

to invoke the inherited implementation of the function member. If the function member referenced by a

base_access is abstract, a binding-time error occurs.



    The new operatorThe new operator

The operand of a postfix increment or decrement operation must be an expression classified as a variable, a

property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the primary_expression has the compile-time type dynamic  then the operator is dynamically bound (Dynamic

binding), the post_increment_expression or post_decrement_expression has the compile-time type dynamic  and

the following rules are applied at run-time using the run-time type of the primary_expression.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or

indexer must have both a get  and a set  accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (Unary operator overload resolution) is applied to select a specific operator

implementation. Predefined ++  and --  operators exist for the following types: sbyte , byte , short , ushort , 

int , uint , long , ulong , char , float , double , decimal , and any enum type. The predefined ++  operators

return the value produced by adding 1 to the operand, and the predefined --  operators return the value

produced by subtracting 1 from the operand. In a checked  context, if the result of this addition or subtraction is

outside the range of the result type and the result type is an integral type or enum type, a 

System.OverflowException  is thrown.

The run-time processing of a postfix increment or decrement operation of the form x++  or x--  consists of the

following steps:

If x  is classified as a variable:

If x  is classified as a property or indexer access:

x  is evaluated to produce the variable.

The value of x  is saved.

The selected operator is invoked with the saved value of x  as its argument.

The value returned by the operator is stored in the location given by the evaluation of x .

The saved value of x  becomes the result of the operation.

The instance expression (if x  is not static ) and the argument list (if x  is an indexer access) associated

with x  are evaluated, and the results are used in the subsequent get  and set  accessor invocations.

The get  accessor of x  is invoked and the returned value is saved.

The selected operator is invoked with the saved value of x  as its argument.

The set  accessor of x  is invoked with the value returned by the operator as its value  argument.

The saved value of x  becomes the result of the operation.

The ++  and --  operators also support prefix notation (Prefix increment and decrement operators). Typically, the

result of x++  or x--  is the value of x  before the operation, whereas the result of ++x  or --x  is the value of x

after the operation. In either case, x  itself has the same value after the operation.

An operator ++  or operator --  implementation can be invoked using either postfix or prefix notation. It is not

possible to have separate operator implementations for the two notations.

The new  operator is used to create new instances of types.

There are three forms of new  expressions:

Object creation expressions are used to create new instances of class types and value types.

Array creation expressions are used to create new instances of array types.

Delegate creation expressions are used to create new instances of delegate types.

The new  operator implies creation of an instance of a type, but does not necessarily imply dynamic allocation of

memory. In particular, instances of value types require no additional memory beyond the variables in which they

reside, and no dynamic allocations occur when new  is used to create instances of value types.



                  Object creation expressionsObject creation expressions

object_creation_expression
    : 'new' type '(' argument_list? ')' object_or_collection_initializer?
    | 'new' type object_or_collection_initializer
    ;

object_or_collection_initializer
    : object_initializer
    | collection_initializer
    ;

An object_creation_expression is used to create a new instance of a class_type or a value_type.

The type of an object_creation_expression must be a class_type, a value_type or a type_parameter. The type cannot

be an abstract  class_type.

The optional argument_list (Argument lists) is permitted only if the type is a class_type or a struct_type.

An object creation expression can omit the constructor argument list and enclosing parentheses provided it

includes an object initializer or collection initializer. Omitting the constructor argument list and enclosing

parentheses is equivalent to specifying an empty argument list.

Processing of an object creation expression that includes an object initializer or collection initializer consists of first

processing the instance constructor and then processing the member or element initializations specified by the

object initializer (Object initializers) or collection initializer (Collection initializers).

If any of the arguments in the optional argument_list has the compile-time type dynamic  then the

object_creation_expression is dynamically bound (Dynamic binding) and the following rules are applied at run-

time using the run-time type of those arguments of the argument_list that have the compile time type dynamic .

However, the object creation undergoes a limited compile time check as described in Compile-time checking of

dynamic overload resolution.

The binding-time processing of an object_creation_expression of the form new T(A) , where T  is a class_type or a

value_type and A  is an optional argument_list, consists of the following steps:

If T  is a value_type and A  is not present:

Otherwise, if T  is a type_parameter and A  is not present:

Otherwise, if T  is a class_type or a struct_type:

Otherwise, the object_creation_expression is invalid, and a binding-time error occurs.

The object_creation_expression is a default constructor invocation. The result of the

object_creation_expression is a value of type T , namely the default value for T  as defined in The

System.ValueType type.

If no value type constraint or constructor constraint (Type parameter constraints) has been specified for 

T , a binding-time error occurs.

The result of the object_creation_expression is a value of the run-time type that the type parameter has

been bound to, namely the result of invoking the default constructor of that type. The run-time type may

be a reference type or a value type.

If T  is an abstract  class_type, a compile-time error occurs.

The instance constructor to invoke is determined using the overload resolution rules of Overload

resolution. The set of candidate instance constructors consists of all accessible instance constructors

declared in T  which are applicable with respect to A  (Applicable function member). If the set of

candidate instance constructors is empty, or if a single best instance constructor cannot be identified, a

binding-time error occurs.

The result of the object_creation_expression is a value of type T , namely the value produced by

invoking the instance constructor determined in the step above.



      Object initializersObject initializers

object_initializer
    : '{' member_initializer_list? '}'
    | '{' member_initializer_list ',' '}'
    ;

member_initializer_list
    : member_initializer (',' member_initializer)*
    ;

member_initializer
    : initializer_target '=' initializer_value
    ;

initializer_target
    : identifier
    | '[' argument_list ']'
    ;

initializer_value
    : expression
    | object_or_collection_initializer
    ;

Even if the object_creation_expression is dynamically bound, the compile-time type is still T .

The run-time processing of an object_creation_expression of the form new T(A) , where T  is class_type or a

struct_type and A  is an optional argument_list, consists of the following steps:

If T  is a class_type:

If T  is a struct_type:

A new instance of class T  is allocated. If there is not enough memory available to allocate the new

instance, a System.OutOfMemoryException  is thrown and no further steps are executed.

All fields of the new instance are initialized to their default values (Default values).

The instance constructor is invoked according to the rules of function member invocation (Compile-time

checking of dynamic overload resolution). A reference to the newly allocated instance is automatically

passed to the instance constructor and the instance can be accessed from within that constructor as 

this .

An instance of type T  is created by allocating a temporary local variable. Since an instance constructor

of a struct_type is required to definitely assign a value to each field of the instance being created, no

initialization of the temporary variable is necessary.

The instance constructor is invoked according to the rules of function member invocation (Compile-time

checking of dynamic overload resolution). A reference to the newly allocated instance is automatically

passed to the instance constructor and the instance can be accessed from within that constructor as 

this .

An object initializerobject initializer  specifies values for zero or more fields, properties or indexed elements of an object.

An object initializer consists of a sequence of member initializers, enclosed by {  and }  tokens and separated by

commas. Each member_initializer designates a target for the initialization. An identifier must name an accessible

field or property of the object being initialized, whereas an argument_list enclosed in square brackets must specify

arguments for an accessible indexer on the object being initialized. It is an error for an object initializer to include

more than one member initializer for the same field or property.

Each initializer_target is followed by an equals sign and either an expression, an object initializer or a collection

initializer. It is not possible for expressions within the object initializer to refer to the newly created object it is

initializing.



public class Point
{
    int x, y;

    public int X { get { return x; } set { x = value; } }
    public int Y { get { return y; } set { y = value; } }
}

Point a = new Point { X = 0, Y = 1 };

Point __a = new Point();
__a.X = 0;
__a.Y = 1; 
Point a = __a;

public class Rectangle
{
    Point p1, p2;

    public Point P1 { get { return p1; } set { p1 = value; } }
    public Point P2 { get { return p2; } set { p2 = value; } }
}

Rectangle r = new Rectangle {
    P1 = new Point { X = 0, Y = 1 },
    P2 = new Point { X = 2, Y = 3 }
};

A member initializer that specifies an expression after the equals sign is processed in the same way as an

assignment (Simple assignment) to the target.

A member initializer that specifies an object initializer after the equals sign is a nested object initializernested object initializer , i.e. an

initialization of an embedded object. Instead of assigning a new value to the field or property, the assignments in

the nested object initializer are treated as assignments to members of the field or property. Nested object

initializers cannot be applied to properties with a value type, or to read-only fields with a value type.

A member initializer that specifies a collection initializer after the equals sign is an initialization of an embedded

collection. Instead of assigning a new collection to the target field, property or indexer, the elements given in the

initializer are added to the collection referenced by the target. The target must be of a collection type that satisfies

the requirements specified in Collection initializers.

The arguments to an index initializer will always be evaluated exactly once. Thus, even if the arguments end up

never getting used (e.g. because of an empty nested initializer), they will be evaluated for their side effects.

The following class represents a point with two coordinates:

An instance of Point  can be created and initialized as follows:

which has the same effect as

where __a  is an otherwise invisible and inaccessible temporary variable. The following class represents a

rectangle created from two points:

An instance of Rectangle  can be created and initialized as follows:

which has the same effect as



Rectangle __r = new Rectangle();
Point __p1 = new Point();
__p1.X = 0;
__p1.Y = 1;
__r.P1 = __p1;
Point __p2 = new Point();
__p2.X = 2;
__p2.Y = 3;
__r.P2 = __p2; 
Rectangle r = __r;

public class Rectangle
{
    Point p1 = new Point();
    Point p2 = new Point();

    public Point P1 { get { return p1; } }
    public Point P2 { get { return p2; } }
}

Rectangle r = new Rectangle {
    P1 = { X = 0, Y = 1 },
    P2 = { X = 2, Y = 3 }
};

Rectangle __r = new Rectangle();
__r.P1.X = 0;
__r.P1.Y = 1;
__r.P2.X = 2;
__r.P2.Y = 3;
Rectangle r = __r;

var c = new C {
    x = true,
    y = { a = "Hello" },
    z = { 1, 2, 3 },
    ["x"] = 5,
    [0,0] = { "a", "b" },
    [1,2] = {}
};

where __r , __p1  and __p2  are temporary variables that are otherwise invisible and inaccessible.

If Rectangle 's constructor allocates the two embedded Point  instances

the following construct can be used to initialize the embedded Point  instances instead of assigning new instances:

which has the same effect as

Given an appropriate definition of C, the following example:

is equivalent to this series of assignments:



        

C __c = new C();
__c.x = true;
__c.y.a = "Hello";
__c.z.Add(1); 
__c.z.Add(2);
__c.z.Add(3);
string __i1 = "x";
__c[__i1] = 5;
int __i2 = 0, __i3 = 0;
__c[__i2,__i3].Add("a");
__c[__i2,__i3].Add("b");
int __i4 = 1, __i5 = 2;
var c = __c;

Collection initializersCollection initializers

collection_initializer
    : '{' element_initializer_list '}'
    | '{' element_initializer_list ',' '}'
    ;

element_initializer_list
    : element_initializer (',' element_initializer)*
    ;

element_initializer
    : non_assignment_expression
    | '{' expression_list '}'
    ;

expression_list
    : expression (',' expression)*
    ;

List<int> digits = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

where __c , etc., are generated variables that are invisible and inaccessible to the source code. Note that the

arguments for [0,0]  are evaluated only once, and the arguments for [1,2]  are evaluated once even though they

are never used.

A collection initializer specifies the elements of a collection.

A collection initializer consists of a sequence of element initializers, enclosed by {  and }  tokens and separated

by commas. Each element initializer specifies an element to be added to the collection object being initialized, and

consists of a list of expressions enclosed by {  and }  tokens and separated by commas. A single-expression

element initializer can be written without braces, but cannot then be an assignment expression, to avoid ambiguity

with member initializers. The non_assignment_expression production is defined in Expression.

The following is an example of an object creation expression that includes a collection initializer :

The collection object to which a collection initializer is applied must be of a type that implements 

System.Collections.IEnumerable  or a compile-time error occurs. For each specified element in order, the collection

initializer invokes an Add  method on the target object with the expression list of the element initializer as

argument list, applying normal member lookup and overload resolution for each invocation. Thus, the collection

object must have an applicable instance or extension method with the name Add  for each element initializer.

The following class represents a contact with a name and a list of phone numbers:



            

public class Contact
{
    string name;
    List<string> phoneNumbers = new List<string>();

    public string Name { get { return name; } set { name = value; } }

    public List<string> PhoneNumbers { get { return phoneNumbers; } }
}

var contacts = new List<Contact> {
    new Contact {
        Name = "Chris Smith",
        PhoneNumbers = { "206-555-0101", "425-882-8080" }
    },
    new Contact {
        Name = "Bob Harris",
        PhoneNumbers = { "650-555-0199" }
    }
};

var __clist = new List<Contact>();
Contact __c1 = new Contact();
__c1.Name = "Chris Smith";
__c1.PhoneNumbers.Add("206-555-0101");
__c1.PhoneNumbers.Add("425-882-8080");
__clist.Add(__c1);
Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
__c2.PhoneNumbers.Add("650-555-0199");
__clist.Add(__c2);
var contacts = __clist;

Array creation expressionsArray creation expressions

array_creation_expression
    : 'new' non_array_type '[' expression_list ']' rank_specifier* array_initializer?
    | 'new' array_type array_initializer
    | 'new' rank_specifier array_initializer
    ;

A List<Contact>  can be created and initialized as follows:

which has the same effect as

where __clist , __c1  and __c2  are temporary variables that are otherwise invisible and inaccessible.

An array_creation_expression is used to create a new instance of an array_type.

An array creation expression of the first form allocates an array instance of the type that results from deleting each

of the individual expressions from the expression list. For example, the array creation expression new int[10,20]

produces an array instance of type int[,] , and the array creation expression new int[10][,]  produces an array

of type int[][,] . Each expression in the expression list must be of type int , uint , long , or ulong , or implicitly

convertible to one or more of these types. The value of each expression determines the length of the

corresponding dimension in the newly allocated array instance. Since the length of an array dimension must be

nonnegative, it is a compile-time error to have a constant_expression with a negative value in the expression list.

Except in an unsafe context (Unsafe contexts), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each expression in the expression list



new int[,] {{0, 1}, {2, 3}, {4, 5}}

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}}

int[][] a = new int[100][];

int[][] a = new int[100][5];        // Error

must be a constant and the rank and dimension lengths specified by the expression list must match those of the

array initializer.

In an array creation expression of the second or third form, the rank of the specified array type or rank specifier

must match that of the array initializer. The individual dimension lengths are inferred from the number of elements

in each of the corresponding nesting levels of the array initializer. Thus, the expression

exactly corresponds to

An array creation expression of the third form is referred to as an implicitly typed array creation expressionimplicitly typed array creation expression.

It is similar to the second form, except that the element type of the array is not explicitly given, but determined as

the best common type (Finding the best common type of a set of expressions) of the set of expressions in the array

initializer. For a multidimensional array, i.e., one where the rank_specifier contains at least one comma, this set

comprises all expressions found in nested array_initializers.

Array initializers are described further in Array initializers.

The result of evaluating an array creation expression is classified as a value, namely a reference to the newly

allocated array instance. The run-time processing of an array creation expression consists of the following steps:

The dimension length expressions of the expression_list are evaluated in order, from left to right. Following

evaluation of each expression, an implicit conversion (Implicit conversions) to one of the following types is

performed: int , uint , long , ulong . The first type in this list for which an implicit conversion exists is chosen.

If evaluation of an expression or the subsequent implicit conversion causes an exception, then no further

expressions are evaluated and no further steps are executed.

The computed values for the dimension lengths are validated as follows. If one or more of the values are less

than zero, a System.OverflowException  is thrown and no further steps are executed.

An array instance with the given dimension lengths is allocated. If there is not enough memory available to

allocate the new instance, a System.OutOfMemoryException  is thrown and no further steps are executed.

All elements of the new array instance are initialized to their default values (Default values).

If the array creation expression contains an array initializer, then each expression in the array initializer is

evaluated and assigned to its corresponding array element. The evaluations and assignments are performed in

the order the expressions are written in the array initializer—in other words, elements are initialized in

increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or the

subsequent assignment to the corresponding array element causes an exception, then no further elements are

initialized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the elements of

such an array must be manually initialized. For example, the statement

creates a single-dimensional array with 100 elements of type int[] . The initial value of each element is null . It is

not possible for the same array creation expression to also instantiate the sub-arrays, and the statement

results in a compile-time error. Instantiation of the sub-arrays must instead be performed manually, as in



      

int[][] a = new int[100][];
for (int i = 0; i < 100; i++) a[i] = new int[5];

int[,] = new int[100, 5];

var a = new[] { 1, 10, 100, 1000 };                       // int[]

var b = new[] { 1, 1.5, 2, 2.5 };                         // double[]

var c = new[,] { { "hello", null }, { "world", "!" } };   // string[,]

var d = new[] { 1, "one", 2, "two" };                     // Error

var contacts = new[] {
    new {
        Name = "Chris Smith",
        PhoneNumbers = new[] { "206-555-0101", "425-882-8080" }
    },
    new {
        Name = "Bob Harris",
        PhoneNumbers = new[] { "650-555-0199" }
    }
};

Delegate creation expressionsDelegate creation expressions

delegate_creation_expression
    : 'new' delegate_type '(' expression ')'
    ;

When an array of arrays has a "rectangular" shape, that is when the sub-arrays are all of the same length, it is more

efficient to use a multi-dimensional array. In the example above, instantiation of the array of arrays creates 101

objects—one outer array and 100 sub-arrays. In contrast,

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single statement.

The following are examples of implicitly typed array creation expressions:

The last expression causes a compile-time error because neither int  nor string  is implicitly convertible to the

other, and so there is no best common type. An explicitly typed array creation expression must be used in this case,

for example specifying the type to be object[] . Alternatively, one of the elements can be cast to a common base

type, which would then become the inferred element type.

Implicitly typed array creation expressions can be combined with anonymous object initializers (Anonymous object

creation expressions) to create anonymously typed data structures. For example:

A delegate_creation_expression is used to create a new instance of a delegate_type.

The argument of a delegate creation expression must be a method group, an anonymous function or a value of

either the compile time type dynamic  or a delegate_type. If the argument is a method group, it identifies the

method and, for an instance method, the object for which to create a delegate. If the argument is an anonymous

function it directly defines the parameters and method body of the delegate target. If the argument is a value it

identifies a delegate instance of which to create a copy.

If the expression has the compile-time type dynamic , the delegate_creation_expression is dynamically bound

(Dynamic binding), and the rules below are applied at run-time using the run-time type of the expression.



delegate double DoubleFunc(double x);

class A
{
    DoubleFunc f = new DoubleFunc(Square);

    static float Square(float x) {
        return x * x;
    }

    static double Square(double x) {
        return x * x;
    }
}

Otherwise the rules are applied at compile-time.

The binding-time processing of a delegate_creation_expression of the form new D(E) , where D  is a delegate_type

and E  is an expression, consists of the following steps:

If E  is a method group, the delegate creation expression is processed in the same way as a method group

conversion (Method group conversions) from E  to D .

If E  is an anonymous function, the delegate creation expression is processed in the same way as an

anonymous function conversion (Anonymous function conversions) from E  to D .

If E  is a value, E  must be compatible (Delegate declarations) with D , and the result is a reference to a newly

created delegate of type D  that refers to the same invocation list as E . If E  is not compatible with D , a

compile-time error occurs.

The run-time processing of a delegate_creation_expression of the form new D(E) , where D  is a delegate_type and

E  is an expression, consists of the following steps:

If E  is a method group, the delegate creation expression is evaluated as a method group conversion (Method

group conversions) from E  to D .

If E  is an anonymous function, the delegate creation is evaluated as an anonymous function conversion from 

E  to D  (Anonymous function conversions).

If E  is a value of a delegate_type:

E  is evaluated. If this evaluation causes an exception, no further steps are executed.

If the value of E  is null , a System.NullReferenceException  is thrown and no further steps are executed.

A new instance of the delegate type D  is allocated. If there is not enough memory available to allocate

the new instance, a System.OutOfMemoryException  is thrown and no further steps are executed.

The new delegate instance is initialized with the same invocation list as the delegate instance given by E

.

The invocation list of a delegate is determined when the delegate is instantiated and then remains constant for the

entire lifetime of the delegate. In other words, it is not possible to change the target callable entities of a delegate

once it has been created. When two delegates are combined or one is removed from another (Delegate

declarations), a new delegate results; no existing delegate has its contents changed.

It is not possible to create a delegate that refers to a property, indexer, user-defined operator, instance constructor,

destructor, or static constructor.

As described above, when a delegate is created from a method group, the formal parameter list and return type of

the delegate determine which of the overloaded methods to select. In the example

the A.f  field is initialized with a delegate that refers to the second Square  method because that method exactly

matches the formal parameter list and return type of DoubleFunc . Had the second Square  method not been



              Anonymous object creation expressionsAnonymous object creation expressions

anonymous_object_creation_expression
    : 'new' anonymous_object_initializer
    ;

anonymous_object_initializer
    : '{' member_declarator_list? '}'
    | '{' member_declarator_list ',' '}'
    ;

member_declarator_list
    : member_declarator (',' member_declarator)*
    ;

member_declarator
    : simple_name
    | member_access
    | base_access
    | null_conditional_member_access
    | identifier '=' expression
    ;

new { p1 = e1, p2 = e2, ..., pn = en }

class __Anonymous1
{
    private readonly T1 f1;
    private readonly T2 f2;
    ...
    private readonly Tn fn;

    public __Anonymous1(T1 a1, T2 a2, ..., Tn an) {
        f1 = a1;
        f2 = a2;
        ...
        fn = an;
    }

    public T1 p1 { get { return f1; } }
    public T2 p2 { get { return f2; } }
    ...
    public Tn pn { get { return fn; } }

    public override bool Equals(object __o) { ... }
    public override int GetHashCode() { ... }
}

present, a compile-time error would have occurred.

An anonymous_object_creation_expression is used to create an object of an anonymous type.

An anonymous object initializer declares an anonymous type and returns an instance of that type. An anonymous

type is a nameless class type that inherits directly from object . The members of an anonymous type are a

sequence of read-only properties inferred from the anonymous object initializer used to create an instance of the

type. Specifically, an anonymous object initializer of the form

declares an anonymous type of the form

where each Tx  is the type of the corresponding expression ex . The expression used in a member_declarator

must have a type. Thus, it is a compile-time error for an expression in a member_declarator to be null or an

anonymous function. It is also a compile-time error for the expression to have an unsafe type.



                

var p1 = new { Name = "Lawnmower", Price = 495.00 };
var p2 = new { Name = "Shovel", Price = 26.95 };
p1 = p2;

identifier
expr.identifier

identifier = identifier
identifier = expr.identifier

The typeof operatorThe typeof operator

typeof_expression
    : 'typeof' '(' type ')'
    | 'typeof' '(' unbound_type_name ')'
    | 'typeof' '(' 'void' ')'
    ;

unbound_type_name
    : identifier generic_dimension_specifier?
    | identifier '::' identifier generic_dimension_specifier?
    | unbound_type_name '.' identifier generic_dimension_specifier?
    ;

generic_dimension_specifier
    : '<' comma* '>'
    ;

comma
    : ','
    ;

The names of an anonymous type and of the parameter to its Equals  method are automatically generated by the

compiler and cannot be referenced in program text.

Within the same program, two anonymous object initializers that specify a sequence of properties of the same

names and compile-time types in the same order will produce instances of the same anonymous type.

In the example

the assignment on the last line is permitted because p1  and p2  are of the same anonymous type.

The Equals  and GetHashcode  methods on anonymous types override the methods inherited from object , and

are defined in terms of the Equals  and GetHashcode  of the properties, so that two instances of the same

anonymous type are equal if and only if all their properties are equal.

A member declarator can be abbreviated to a simple name (Type inference), a member access (Compile-time

checking of dynamic overload resolution), a base access (Base access) or a null-conditional member access (Null-

conditional expressions as projection initializers). This is called a projection initializerprojection initializer  and is shorthand for a

declaration of and assignment to a property with the same name. Specifically, member declarators of the forms

are precisely equivalent to the following, respectively:

Thus, in a projection initializer the identifier selects both the value and the field or property to which the value is

assigned. Intuitively, a projection initializer projects not just a value, but also the name of the value.

The typeof  operator is used to obtain the System.Type  object for a type.



The first form of typeof_expression consists of a typeof  keyword followed by a parenthesized type. The result of

an expression of this form is the System.Type  object for the indicated type. There is only one System.Type  object

for any given type. This means that for a type T , typeof(T) == typeof(T)  is always true. The type cannot be 

dynamic .

The second form of typeof_expression consists of a typeof  keyword followed by a parenthesized

unbound_type_name. An unbound_type_name is very similar to a type_name (Namespace and type names) except

that an unbound_type_name contains generic_dimension_specifiers where a type_name contains

type_argument_lists. When the operand of a typeof_expression is a sequence of tokens that satisfies the grammars

of both unbound_type_name and type_name, namely when it contains neither a generic_dimension_specifier nor a

type_argument_list, the sequence of tokens is considered to be a type_name. The meaning of an

unbound_type_name is determined as follows:

Convert the sequence of tokens to a type_name by replacing each generic_dimension_specifier with a

type_argument_list having the same number of commas and the keyword object  as each type_argument.

Evaluate the resulting type_name, while ignoring all type parameter constraints.

The unbound_type_name resolves to the unbound generic type associated with the resulting constructed type

(Bound and unbound types).

The result of the typeof_expression is the System.Type  object for the resulting unbound generic type.

The third form of typeof_expression consists of a typeof  keyword followed by a parenthesized void  keyword.

The result of an expression of this form is the System.Type  object that represents the absence of a type. The type

object returned by typeof(void)  is distinct from the type object returned for any type. This special type object is

useful in class libraries that allow reflection onto methods in the language, where those methods wish to have a

way to represent the return type of any method, including void methods, with an instance of System.Type .

The typeof  operator can be used on a type parameter. The result is the System.Type  object for the run-time type

that was bound to the type parameter. The typeof  operator can also be used on a constructed type or an unbound

generic type (Bound and unbound types). The System.Type  object for an unbound generic type is not the same as

the System.Type  object of the instance type. The instance type is always a closed constructed type at run-time so

its System.Type  object depends on the run-time type arguments in use, while the unbound generic type has no

type arguments.

The example



                    

using System;

class X<T>
{
    public static void PrintTypes() {
        Type[] t = {
            typeof(int),
            typeof(System.Int32),
            typeof(string),
            typeof(double[]),
            typeof(void),
            typeof(T),
            typeof(X<T>),
            typeof(X<X<T>>),
            typeof(X<>)
        };
        for (int i = 0; i < t.Length; i++) {
            Console.WriteLine(t[i]);
        }
    }
}

class Test
{
    static void Main() {
        X<int>.PrintTypes();
    }
}

System.Int32
System.Int32
System.String
System.Double[]
System.Void
System.Int32
X`1[System.Int32]
X`1[X`1[System.Int32]]
X`1[T]

The checked and unchecked operatorsThe checked and unchecked operators

checked_expression
    : 'checked' '(' expression ')'
    ;

unchecked_expression
    : 'unchecked' '(' expression ')'
    ;

produces the following output:

Note that int  and System.Int32  are the same type.

Also note that the result of typeof(X<>)  does not depend on the type argument but the result of typeof(X<T>)

does.

The checked  and unchecked  operators are used to control the overflow checking contextoverflow checking context for integral-type

arithmetic operations and conversions.

The checked  operator evaluates the contained expression in a checked context, and the unchecked  operator

evaluates the contained expression in an unchecked context. A checked_expression or unchecked_expression

corresponds exactly to a parenthesized_expression (Parenthesized expressions), except that the contained



class Test
{
    static readonly int x = 1000000;
    static readonly int y = 1000000;

    static int F() {
        return checked(x * y);      // Throws OverflowException
    }

    static int G() {
        return unchecked(x * y);    // Returns -727379968
    }

    static int H() {
        return x * y;               // Depends on default
    }
}

expression is evaluated in the given overflow checking context.

The overflow checking context can also be controlled through the checked  and unchecked  statements (The

checked and unchecked statements).

The following operations are affected by the overflow checking context established by the checked  and unchecked

operators and statements:

The predefined ++  and --  unary operators (Postfix increment and decrement operators and Prefix increment

and decrement operators), when the operand is of an integral type.

The predefined -  unary operator (Unary minus operator), when the operand is of an integral type.

The predefined + , - , * , and /  binary operators (Arithmetic operators), when both operands are of integral

types.

Explicit numeric conversions (Explicit numeric conversions) from one integral type to another integral type, or

from float  or double  to an integral type.

When one of the above operations produce a result that is too large to represent in the destination type, the

context in which the operation is performed controls the resulting behavior :

In a checked  context, if the operation is a constant expression (Constant expressions), a compile-time error

occurs. Otherwise, when the operation is performed at run-time, a System.OverflowException  is thrown.

In an unchecked  context, the result is truncated by discarding any high-order bits that do not fit in the

destination type.

For non-constant expressions (expressions that are evaluated at run-time) that are not enclosed by any checked  or

unchecked  operators or statements, the default overflow checking context is unchecked  unless external factors

(such as compiler switches and execution environment configuration) call for checked  evaluation.

For constant expressions (expressions that can be fully evaluated at compile-time), the default overflow checking

context is always checked . Unless a constant expression is explicitly placed in an unchecked  context, overflows that

occur during the compile-time evaluation of the expression always cause compile-time errors.

The body of an anonymous function is not affected by checked  or unchecked  contexts in which the anonymous

function occurs.

In the example

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At run-

time, the F  method throws a System.OverflowException , and the G  method returns -727379968 (the lower 32

bits of the out-of-range result). The behavior of the H  method depends on the default overflow checking context



class Test
{
    const int x = 1000000;
    const int y = 1000000;

    static int F() {
        return checked(x * y);      // Compile error, overflow
    }

    static int G() {
        return unchecked(x * y);    // Returns -727379968
    }

    static int H() {
        return x * y;               // Compile error, overflow
    }
}

class Test
{
    static int Multiply(int x, int y) {
        return x * y;
    }

    static int F() {
        return checked(Multiply(1000000, 1000000));
    }
}

class Test
{
    public const int AllBits = unchecked((int)0xFFFFFFFF);

    public const int HighBit = unchecked((int)0x80000000);
}

for the compilation, but it is either the same as F  or the same as G .

In the example

the overflows that occur when evaluating the constant expressions in F  and H  cause compile-time errors to be

reported because the expressions are evaluated in a checked  context. An overflow also occurs when evaluating the

constant expression in G , but since the evaluation takes place in an unchecked  context, the overflow is not

reported.

The checked  and unchecked  operators only affect the overflow checking context for those operations that are

textually contained within the " ( " and " ) " tokens. The operators have no effect on function members that are

invoked as a result of evaluating the contained expression. In the example

the use of checked  in F  does not affect the evaluation of x * y  in Multiply , so x * y  is evaluated in the

default overflow checking context.

The unchecked  operator is convenient when writing constants of the signed integral types in hexadecimal notation.

For example:

Both of the hexadecimal constants above are of type uint . Because the constants are outside the int  range,

without the unchecked  operator, the casts to int  would produce compile-time errors.

The checked  and unchecked  operators and statements allow programmers to control certain aspects of some



        

    

Default value expressionsDefault value expressions

default_value_expression
    : 'default' '(' type ')'
    ;

Nameof expressionsNameof expressions

nameof_expression
    : 'nameof' '(' named_entity ')'
    ;

named_entity
    : simple_name
    | named_entity_target '.' identifier type_argument_list?
    ;

named_entity_target
    : 'this'
    | 'base'
    | named_entity 
    | predefined_type 
    | qualified_alias_member
    ;

numeric calculations. However, the behavior of some numeric operators depends on their operands' data types.

For example, multiplying two decimals always results in an exception on overflow even within an explicitly 

unchecked  construct. Similarly, multiplying two floats never results in an exception on overflow even within an

explicitly checked  construct. In addition, other operators are never affected by the mode of checking, whether

default or explicit.

A default value expression is used to obtain the default value (Default values) of a type. Typically a default value

expression is used for type parameters, since it may not be known if the type parameter is a value type or a

reference type. (No conversion exists from the null  literal to a type parameter unless the type parameter is

known to be a reference type.)

If the type in a default_value_expression evaluates at run-time to a reference type, the result is null  converted to

that type. If the type in a default_value_expression evaluates at run-time to a value type, the result is the

value_type's default value (Default constructors).

A default_value_expression is a constant expression (Constant expressions) if the type is a reference type or a type

parameter that is known to be a reference type (Type parameter constraints). In addition, a

default_value_expression is a constant expression if the type is one of the following value types: sbyte , byte , 

short , ushort , int , uint , long , ulong , char , float , double , decimal , bool , or any enumeration type.

A nameof_expression is used to obtain the name of a program entity as a constant string.

Grammatically speaking, the named_entity operand is always an expression. Because nameof  is not a reserved

keyword, a nameof expression is always syntactically ambiguous with an invocation of the simple name nameof .

For compatibility reasons, if a name lookup (Simple names) of the name nameof  succeeds, the expression is

treated as an invocation_expression -- regardless of whether the invocation is legal. Otherwise it is a

nameof_expression.

The meaning of the named_entity of a nameof_expression is the meaning of it as an expression; that is, either as a

simple_name, a base_access or a member_access. However, where the lookup described in Simple names and

Member access results in an error because an instance member was found in a static context, a nameof_expression

produces no such error.

It is a compile-time error for a named_entity designating a method group to have a type_argument_list. It is a



   

Anonymous method expressionsAnonymous method expressions

Unary operators

unary_expression
    : primary_expression
    | null_conditional_expression
    | '+' unary_expression
    | '-' unary_expression
    | '!' unary_expression
    | '~' unary_expression
    | pre_increment_expression
    | pre_decrement_expression
    | cast_expression
    | await_expression
    | unary_expression_unsafe
    ;

Null-conditional operatorNull-conditional operator

null_conditional_expression
    : primary_expression null_conditional_operations
    ;

null_conditional_operations
    : null_conditional_operations? '?' '.' identifier type_argument_list?
    | null_conditional_operations? '?' '[' argument_list ']'
    | null_conditional_operations '.' identifier type_argument_list?
    | null_conditional_operations '[' argument_list ']'
    | null_conditional_operations '(' argument_list? ')'
    ;

compile time error for a named_entity_target to have the type dynamic .

A nameof_expression is a constant expression of type string , and has no effect at runtime. Specifically, its

named_entity is not evaluated, and is ignored for the purposes of definite assignment analysis (General rules for

simple expressions). Its value is the last identifier of the named_entity before the optional final type_argument_list,

transformed in the following way:

The prefix " @ ", if used, is removed.

Each unicode_escape_sequence is transformed into its corresponding Unicode character.

Any formatting_characters are removed.

These are the same transformations applied in Identifiers when testing equality between identifiers.

TODO: examples

An anonymous_method_expression is one of two ways of defining an anonymous function. These are further

described in Anonymous function expressions.

The ? , + , - , ! , ~ , ++ , -- , cast, and await  operators are called the unary operators.

If the operand of a unary_expression has the compile-time type dynamic , it is dynamically bound (Dynamic

binding). In this case the compile-time type of the unary_expression is dynamic , and the resolution described

below will take place at run-time using the run-time type of the operand.

The null-conditional operator applies a list of operations to its operand only if that operand is non-null. Otherwise

the result of applying the operator is null .

The list of operations can include member access and element access operations (which may themselves be null-



a.b?[0]?.c();

conditional), as well as invocation.

For example, the expression a.b?[0]?.c()  is a null_conditional_expression with a primary_expression a.b  and

null_conditional_operations ?[0]  (null-conditional element access), ?.c  (null-conditional member access) and 

()  (invocation).

For a null_conditional_expression E  with a primary_expression P , let E0  be the expression obtained by textually

removing the leading ?  from each of the null_conditional_operations of E  that have one. Conceptually, E0  is the

expression that will be evaluated if none of the null checks represented by the ? s do find a null .

Also, let E1  be the expression obtained by textually removing the leading ?  from just the first of the

null_conditional_operations in E . This may lead to a primary-expression (if there was just one ? ) or to another

null_conditional_expression.

For example, if E  is the expression a.b?[0]?.c() , then E0  is the expression a.b[0].c()  and E1  is the

expression a.b[0]?.c() .

If E0  is classified as nothing, then E  is classified as nothing. Otherwise E is classified as a value.

E0  and E1  are used to determine the meaning of E :

if ((object)P != null) E1;

If E  occurs as a statement_expression the meaning of E  is the same as the statement

except that P is evaluated only once.

Otherwise, if E0  is classified as nothing a compile-time error occurs.

Otherwise, let T0  be the type of E0 .

((object)P == null) ? (T0?)null : E1

((object)P == null) ? null : E1

If T0  is a type parameter that is not known to be a reference type or a non-nullable value type, a

compile-time error occurs.

If T0  is a non-nullable value type, then the type of E  is T0? , and the meaning of E  is the same as

except that P  is evaluated only once.

Otherwise the type of E is T0, and the meaning of E is the same as

except that P  is evaluated only once.

If E1  is itself a null_conditional_expression, then these rules are applied again, nesting the tests for null  until

there are no further ? 's, and the expression has been reduced all the way down to the primary-expression E0 .

For example, if the expression a.b?[0]?.c()  occurs as a statement-expression, as in the statement:

its meaning is equivalent to:



  

if (a.b != null) a.b[0]?.c();

if (a.b != null) if (a.b[0] != null) a.b[0].c();

var x = a.b?[0]?.c();

var x = (a.b == null) ? null : (a.b[0] == null) ? null : a.b[0].c();

Null-conditional expressions as projection initializersNull-conditional expressions as projection initializers

null_conditional_member_access
    : primary_expression null_conditional_operations? '?' '.' identifier type_argument_list?
    | primary_expression null_conditional_operations '.' identifier type_argument_list?
    ;

Null-conditional expressions as statement expressionsNull-conditional expressions as statement expressions

null_conditional_invocation_expression
    : primary_expression null_conditional_operations '(' argument_list? ')'
    ;

Unary plus operatorUnary plus operator

which again is equivalent to:

Except that a.b  and a.b[0]  are evaluated only once.

If it occurs in a context where its value is used, as in:

and assuming that the type of the final invocation is not a non-nullable value type, its meaning is equivalent to:

except that a.b  and a.b[0]  are evaluated only once.

A null-conditional expression is only allowed as a member_declarator in an

anonymous_object_creation_expression (Anonymous object creation expressions) if it ends with an (optionally

null-conditional) member access. Grammatically, this requirement can be expressed as:

This is a special case of the grammar for null_conditional_expression above. The production for

member_declarator in Anonymous object creation expressions then includes only

null_conditional_member_access.

A null-conditional expression is only allowed as a statement_expression (Expression statements) if it ends with an

invocation. Grammatically, this requirement can be expressed as:

This is a special case of the grammar for null_conditional_expression above. The production for

statement_expression in Expression statements then includes only null_conditional_invocation_expression.

For an operation of the form +x , unary operator overload resolution (Unary operator overload resolution) is

applied to select a specific operator implementation. The operand is converted to the parameter type of the

selected operator, and the type of the result is the return type of the operator. The predefined unary plus operators

are:



          

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

Unary minus operatorUnary minus operator

Logical negation operatorLogical negation operator

For each of these operators, the result is simply the value of the operand.

For an operation of the form -x , unary operator overload resolution (Unary operator overload resolution) is

applied to select a specific operator implementation. The operand is converted to the parameter type of the

selected operator, and the type of the result is the return type of the operator. The predefined negation operators

are:

int operator -(int x);
long operator -(long x);

float operator -(float x);
double operator -(double x);

decimal operator -(decimal x);

Integer negation:

The result is computed by subtracting x  from zero. If the value of x  is the smallest representable value of

the operand type (-2^31 for int  or -2^63 for long ), then the mathematical negation of x  is not

representable within the operand type. If this occurs within a checked  context, a System.OverflowException

is thrown; if it occurs within an unchecked  context, the result is the value of the operand and the overflow is

not reported.

If the operand of the negation operator is of type uint , it is converted to type long , and the type of the

result is long . An exception is the rule that permits the int  value -2147483648 (-2^31) to be written as a

decimal integer literal (Integer literals).

If the operand of the negation operator is of type ulong , a compile-time error occurs. An exception is the

rule that permits the long  value -9223372036854775808 (-2^63) to be written as a decimal integer literal

(Integer literals).

Floating-point negation:

The result is the value of x  with its sign inverted. If x  is NaN, the result is also NaN.

Decimal negation:

The result is computed by subtracting x  from zero. Decimal negation is equivalent to using the unary

minus operator of type System.Decimal .

For an operation of the form !x , unary operator overload resolution (Unary operator overload resolution) is

applied to select a specific operator implementation. The operand is converted to the parameter type of the

selected operator, and the type of the result is the return type of the operator. Only one predefined logical negation

operator exists:



  

                  

bool operator !(bool x);

Bitwise complement operatorBitwise complement operator

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

E operator ~(E x);

Prefix increment and decrement operatorsPrefix increment and decrement operators

pre_increment_expression
    : '++' unary_expression
    ;

pre_decrement_expression
    : '--' unary_expression
    ;

This operator computes the logical negation of the operand: If the operand is true , the result is false . If the

operand is false , the result is true .

For an operation of the form ~x , unary operator overload resolution (Unary operator overload resolution) is

applied to select a specific operator implementation. The operand is converted to the parameter type of the

selected operator, and the type of the result is the return type of the operator. The predefined bitwise complement

operators are:

For each of these operators, the result of the operation is the bitwise complement of x .

Every enumeration type E  implicitly provides the following bitwise complement operator :

The result of evaluating ~x , where x  is an expression of an enumeration type E  with an underlying type U , is

exactly the same as evaluating (E)(~(U)x) , except that the conversion to E  is always performed as if in an 

unchecked  context (The checked and unchecked operators).

The operand of a prefix increment or decrement operation must be an expression classified as a variable, a

property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or

indexer must have both a get  and a set  accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (Unary operator overload resolution) is applied to select a specific operator

implementation. Predefined ++  and --  operators exist for the following types: sbyte , byte , short , ushort , 

int , uint , long , ulong , char , float , double , decimal , and any enum type. The predefined ++  operators

return the value produced by adding 1 to the operand, and the predefined --  operators return the value

produced by subtracting 1 from the operand. In a checked  context, if the result of this addition or subtraction is

outside the range of the result type and the result type is an integral type or enum type, a 

System.OverflowException  is thrown.

The run-time processing of a prefix increment or decrement operation of the form ++x  or --x  consists of the

following steps:

If x  is classified as a variable:



                  Cast expressionsCast expressions

cast_expression
    : '(' type ')' unary_expression
    ;

If x  is classified as a property or indexer access:

x  is evaluated to produce the variable.

The selected operator is invoked with the value of x  as its argument.

The value returned by the operator is stored in the location given by the evaluation of x .

The value returned by the operator becomes the result of the operation.

The instance expression (if x  is not static ) and the argument list (if x  is an indexer access) associated

with x  are evaluated, and the results are used in the subsequent get  and set  accessor invocations.

The get  accessor of x  is invoked.

The selected operator is invoked with the value returned by the get  accessor as its argument.

The set  accessor of x  is invoked with the value returned by the operator as its value  argument.

The value returned by the operator becomes the result of the operation.

The ++  and --  operators also support postfix notation (Postfix increment and decrement operators). Typically,

the result of x++  or x--  is the value of x  before the operation, whereas the result of ++x  or --x  is the value of

x  after the operation. In either case, x  itself has the same value after the operation.

An operator++  or operator--  implementation can be invoked using either postfix or prefix notation. It is not

possible to have separate operator implementations for the two notations.

A cast_expression is used to explicitly convert an expression to a given type.

A cast_expression of the form (T)E , where T  is a type and E  is a unary_expression, performs an explicit

conversion (Explicit conversions) of the value of E  to type T . If no explicit conversion exists from E  to T , a

binding-time error occurs. Otherwise, the result is the value produced by the explicit conversion. The result is

always classified as a value, even if E  denotes a variable.

The grammar for a cast_expression leads to certain syntactic ambiguities. For example, the expression (x)-y  could

either be interpreted as a cast_expression (a cast of -y  to type x ) or as an additive_expression combined with a

parenthesized_expression (which computes the value x - y) .

To resolve cast_expression ambiguities, the following rule exists: A sequence of one or more tokens (White space)

enclosed in parentheses is considered the start of a cast_expression only if at least one of the following are true:

The sequence of tokens is correct grammar for a type, but not for an expression.

The sequence of tokens is correct grammar for a type, and the token immediately following the closing

parentheses is the token " ~ ", the token " ! ", the token " ( ", an identifier (Unicode character escape

sequences), a literal (Literals), or any keyword (Keywords) except as  and is .

The term "correct grammar" above means only that the sequence of tokens must conform to the particular

grammatical production. It specifically does not consider the actual meaning of any constituent identifiers. For

example, if x  and y  are identifiers, then x.y  is correct grammar for a type, even if x.y  doesn't actually denote

a type.

From the disambiguation rule it follows that, if x  and y  are identifiers, (x)y , (x)(y) , and (x)(-y)  are

cast_expressions, but (x)-y  is not, even if x  identifies a type. However, if x  is a keyword that identifies a

predefined type (such as int ), then all four forms are cast_expressions (because such a keyword could not

possibly be an expression by itself).



    Await expressionsAwait expressions

await_expression
    : 'await' unary_expression
    ;

Awaitable expressionsAwaitable expressions

Classification of await expressionsClassification of await expressions

The await operator is used to suspend evaluation of the enclosing async function until the asynchronous operation

represented by the operand has completed.

An await_expression is only allowed in the body of an async function (Iterators). Within the nearest enclosing async

function, an await_expression may not occur in these places:

Inside a nested (non-async) anonymous function

Inside the block of a lock_statement

In an unsafe context

Note that an await_expression cannot occur in most places within a query_expression, because those are

syntactically transformed to use non-async lambda expressions.

Inside of an async function, await  cannot be used as an identifier. There is therefore no syntactic ambiguity

between await-expressions and various expressions involving identifiers. Outside of async functions, await  acts as

a normal identifier.

The operand of an await_expression is called the tasktask . It represents an asynchronous operation that may or may

not be complete at the time the await_expression is evaluated. The purpose of the await operator is to suspend

execution of the enclosing async function until the awaited task is complete, and then obtain its outcome.

The task of an await expression is required to be awaitableawaitable. An expression t  is awaitable if one of the following

holds:

t  is of compile time type dynamic

t  has an accessible instance or extension method called GetAwaiter  with no parameters and no type

parameters, and a return type A  for which all of the following hold:

A  implements the interface System.Runtime.CompilerServices.INotifyCompletion  (hereafter known as 

INotifyCompletion  for brevity)

A  has an accessible, readable instance property IsCompleted  of type bool

A  has an accessible instance method GetResult  with no parameters and no type parameters

The purpose of the GetAwaiter  method is to obtain an awaiterawaiter  for the task. The type A  is called the awaiterawaiter

typetype for the await expression.

The purpose of the IsCompleted  property is to determine if the task is already complete. If so, there is no need to

suspend evaluation.

The purpose of the INotifyCompletion.OnCompleted  method is to sign up a "continuation" to the task; i.e. a delegate

(of type System.Action ) that will be invoked once the task is complete.

The purpose of the GetResult  method is to obtain the outcome of the task once it is complete. This outcome may

be successful completion, possibly with a result value, or it may be an exception which is thrown by the GetResult

method.

The expression await t  is classified the same way as the expression (t).GetAwaiter().GetResult() . Thus, if the

return type of GetResult  is void , the await_expression is classified as nothing. If it has a non-void return type T ,

the await_expression is classified as a value of type T .



      

Runtime evaluation of await expressionsRuntime evaluation of await expressions

Arithmetic operators

multiplicative_expression
    : unary_expression
    | multiplicative_expression '*' unary_expression
    | multiplicative_expression '/' unary_expression
    | multiplicative_expression '%' unary_expression
    ;

additive_expression
    : multiplicative_expression
    | additive_expression '+' multiplicative_expression
    | additive_expression '-' multiplicative_expression
    ;

Multiplication operatorMultiplication operator

At runtime, the expression await t  is evaluated as follows:

An awaiter a  is obtained by evaluating the expression (t).GetAwaiter() .

A bool  b  is obtained by evaluating the expression (a).IsCompleted .

If b  is false  then evaluation depends on whether a  implements the interface 

System.Runtime.CompilerServices.ICriticalNotifyCompletion  (hereafter known as ICriticalNotifyCompletion  for

brevity). This check is done at binding time; i.e. at runtime if a  has the compile time type dynamic , and at

compile time otherwise. Let r  denote the resumption delegate (Iterators):

Either immediately after (if b  was true ), or upon later invocation of the resumption delegate (if b  was 

false ), the expression (a).GetResult()  is evaluated. If it returns a value, that value is the result of the

await_expression. Otherwise the result is nothing.

If a  does not implement ICriticalNotifyCompletion , then the expression 

(a as (INotifyCompletion)).OnCompleted(r)  is evaluated.

If a  does implement ICriticalNotifyCompletion , then the expression 

(a as (ICriticalNotifyCompletion)).UnsafeOnCompleted(r)  is evaluated.

Evaluation is then suspended, and control is returned to the current caller of the async function.

An awaiter's implementation of the interface methods INotifyCompletion.OnCompleted  and 

ICriticalNotifyCompletion.UnsafeOnCompleted  should cause the delegate r  to be invoked at most once. Otherwise,

the behavior of the enclosing async function is undefined.

The * , / , % , + , and -  operators are called the arithmetic operators.

If an operand of an arithmetic operator has the compile-time type dynamic , then the expression is dynamically

bound (Dynamic binding). In this case the compile-time type of the expression is dynamic , and the resolution

described below will take place at run-time using the run-time type of those operands that have the compile-time

type dynamic .

For an operation of the form x * y , binary operator overload resolution (Binary operator overload resolution) is

applied to select a specific operator implementation. The operands are converted to the parameter types of the

selected operator, and the type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the product of x  and y .

Integer multiplication:



      Division operatorDivision operator

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

float operator *(float x, float y);
double operator *(double x, double y);

+y -y +0 -0 +inf -inf NaN

+x +z -z +0 -0 +inf -inf NaN

-x -z +z -0 +0 -inf +inf NaN

+0 +0 -0 +0 -0 NaN NaN NaN

-0 -0 +0 -0 +0 NaN NaN NaN

+inf +inf -inf NaN NaN +inf -inf NaN

-inf -inf +inf NaN NaN -inf +inf NaN

NaN NaN NaN NaN NaN NaN NaN NaN

decimal operator *(decimal x, decimal y);

In a checked  context, if the product is outside the range of the result type, a System.OverflowException  is

thrown. In an unchecked  context, overflows are not reported and any significant high-order bits outside the

range of the result type are discarded.

Floating-point multiplication:

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of

all possible combinations of nonzero finite values, zeros, infinities, and NaN's. In the table, x  and y  are

positive finite values. z  is the result of x * y . If the result is too large for the destination type, z  is infinity.

If the result is too small for the destination type, z  is zero.

Decimal multiplication:

If the resulting value is too large to represent in the decimal  format, a System.OverflowException  is thrown.

If the result value is too small to represent in the decimal  format, the result is zero. The scale of the result,

before any rounding, is the sum of the scales of the two operands.

Decimal multiplication is equivalent to using the multiplication operator of type System.Decimal .

For an operation of the form x / y , binary operator overload resolution (Binary operator overload resolution) is

applied to select a specific operator implementation. The operands are converted to the parameter types of the

selected operator, and the type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of x  and y .



int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

float operator /(float x, float y);
double operator /(double x, double y);

+y -y +0 -0 +inf -inf NaN

+x +z -z +inf -inf +0 -0 NaN

-x -z +z -inf +inf -0 +0 NaN

+0 +0 -0 NaN NaN +0 -0 NaN

-0 -0 +0 NaN NaN -0 +0 NaN

+inf +inf -inf +inf -inf NaN NaN NaN

-inf -inf +inf -inf +inf NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

decimal operator /(decimal x, decimal y);

Integer division:

If the value of the right operand is zero, a System.DivideByZeroException  is thrown.

The division rounds the result towards zero. Thus the absolute value of the result is the largest possible

integer that is less than or equal to the absolute value of the quotient of the two operands. The result is zero

or positive when the two operands have the same sign and zero or negative when the two operands have

opposite signs.

If the left operand is the smallest representable int  or long  value and the right operand is -1 , an

overflow occurs. In a checked  context, this causes a System.ArithmeticException  (or a subclass thereof) to

be thrown. In an unchecked  context, it is implementation-defined as to whether a 

System.ArithmeticException  (or a subclass thereof) is thrown or the overflow goes unreported with the

resulting value being that of the left operand.

Floating-point division:

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results

of all possible combinations of nonzero finite values, zeros, infinities, and NaN's. In the table, x  and y  are

positive finite values. z  is the result of x / y . If the result is too large for the destination type, z  is infinity.

If the result is too small for the destination type, z  is zero.

Decimal division:

If the value of the right operand is zero, a System.DivideByZeroException  is thrown. If the resulting value is

too large to represent in the decimal  format, a System.OverflowException  is thrown. If the result value is too



Remainder operatorRemainder operator

small to represent in the decimal  format, the result is zero. The scale of the result is the smallest scale that

will preserve a result equal to the nearest representable decimal value to the true mathematical result.

Decimal division is equivalent to using the division operator of type System.Decimal .

For an operation of the form x % y , binary operator overload resolution (Binary operator overload resolution) is

applied to select a specific operator implementation. The operands are converted to the parameter types of the

selected operator, and the type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the division

between x  and y .

int operator %(int x, int y);
uint operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

float operator %(float x, float y);
double operator %(double x, double y);

+y -y +0 -0 +inf -inf NaN

+x +z +z NaN NaN x x NaN

-x -z -z NaN NaN -x -x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

-0 -0 -0 NaN NaN -0 -0 NaN

+inf NaN NaN NaN NaN NaN NaN NaN

-inf NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Integer remainder :

The result of x % y  is the value produced by x - (x / y) * y . If y  is zero, a System.DivideByZeroException

is thrown.

If the left operand is the smallest int  or long  value and the right operand is -1 , a 

System.OverflowException  is thrown. In no case does x % y  throw an exception where x / y  would not

throw an exception.

Floating-point remainder :

The following table lists the results of all possible combinations of nonzero finite values, zeros, infinities, and

NaN's. In the table, x  and y  are positive finite values. z  is the result of x % y  and is computed as 

x - n * y , where n  is the largest possible integer that is less than or equal to x / y . This method of

computing the remainder is analogous to that used for integer operands, but differs from the IEEE 754

definition (in which n  is the integer closest to x / y ).



      Addition operatorAddition operator

decimal operator %(decimal x, decimal y);

Decimal remainder :

If the value of the right operand is zero, a System.DivideByZeroException  is thrown. The scale of the result,

before any rounding, is the larger of the scales of the two operands, and the sign of the result, if non-zero, is

the same as that of x .

Decimal remainder is equivalent to using the remainder operator of type System.Decimal .

For an operation of the form x + y , binary operator overload resolution (Binary operator overload resolution) is

applied to select a specific operator implementation. The operands are converted to the parameter types of the

selected operator, and the type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined addition

operators compute the sum of the two operands. When one or both operands are of type string, the predefined

addition operators concatenate the string representation of the operands.

int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y);

float operator +(float x, float y);
double operator +(double x, double y);

y +0 -0 +inf -inf NaN

x z x x +inf -inf NaN

+0 y +0 +0 +inf -inf NaN

-0 y +0 -0 +inf -inf NaN

+inf +inf +inf +inf +inf NaN NaN

-inf -inf -inf -inf NaN -inf NaN

Integer addition:

In a checked  context, if the sum is outside the range of the result type, a System.OverflowException  is

thrown. In an unchecked  context, overflows are not reported and any significant high-order bits outside the

range of the result type are discarded.

Floating-point addition:

The sum is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of all

possible combinations of nonzero finite values, zeros, infinities, and NaN's. In the table, x  and y  are

nonzero finite values, and z  is the result of x + y . If x  and y  have the same magnitude but opposite

signs, z  is positive zero. If x + y  is too large to represent in the destination type, z  is an infinity with the

same sign as x + y .



NaN NaN NaN NaN NaN NaN NaN

decimal operator +(decimal x, decimal y);

E operator +(E x, U y);
E operator +(U x, E y);

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

using System;

class Test
{
    static void Main() {
        string s = null;
        Console.WriteLine("s = >" + s + "<");        // displays s = ><
        int i = 1;
        Console.WriteLine("i = " + i);               // displays i = 1
        float f = 1.2300E+15F;
        Console.WriteLine("f = " + f);               // displays f = 1.23E+15
        decimal d = 2.900m;
        Console.WriteLine("d = " + d);               // displays d = 2.900
    }
}

Decimal addition:

If the resulting value is too large to represent in the decimal  format, a System.OverflowException  is thrown.

The scale of the result, before any rounding, is the larger of the scales of the two operands.

Decimal addition is equivalent to using the addition operator of type System.Decimal .

Enumeration addition. Every enumeration type implicitly provides the following predefined operators,

where E  is the enum type, and U  is the underlying type of E :

At run-time these operators are evaluated exactly as (E)((U)x + (U)y) .

String concatenation:

These overloads of the binary +  operator perform string concatenation. If an operand of string

concatenation is null , an empty string is substituted. Otherwise, any non-string argument is converted to

its string representation by invoking the virtual ToString  method inherited from type object . If ToString

returns null , an empty string is substituted.

The result of the string concatenation operator is a string that consists of the characters of the left operand

followed by the characters of the right operand. The string concatenation operator never returns a null

value. A System.OutOfMemoryException  may be thrown if there is not enough memory available to allocate

the resulting string.

Delegate combination. Every delegate type implicitly provides the following predefined operator, where D

is the delegate type:



        Subtraction operatorSubtraction operator

D operator +(D x, D y);

The binary +  operator performs delegate combination when both operands are of some delegate type D .

(If the operands have different delegate types, a binding-time error occurs.) If the first operand is null , the

result of the operation is the value of the second operand (even if that is also null ). Otherwise, if the

second operand is null , then the result of the operation is the value of the first operand. Otherwise, the

result of the operation is a new delegate instance that, when invoked, invokes the first operand and then

invokes the second operand. For examples of delegate combination, see Subtraction operator and Delegate

invocation. Since System.Delegate  is not a delegate type, operator  +  is not defined for it.

For an operation of the form x - y , binary operator overload resolution (Binary operator overload resolution) is

applied to select a specific operator implementation. The operands are converted to the parameter types of the

selected operator, and the type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y  from x .

int operator -(int x, int y);
uint operator -(uint x, uint y);
long operator -(long x, long y);
ulong operator -(ulong x, ulong y);

float operator -(float x, float y);
double operator -(double x, double y);

y +0 -0 +inf -inf NaN

x z x x -inf +inf NaN

+0 -y +0 +0 -inf +inf NaN

-0 -y -0 +0 -inf +inf NaN

+inf +inf +inf +inf NaN +inf NaN

-inf -inf -inf -inf -inf NaN NaN

NaN NaN NaN NaN NaN NaN NaN

Integer subtraction:

In a checked  context, if the difference is outside the range of the result type, a System.OverflowException  is

thrown. In an unchecked  context, overflows are not reported and any significant high-order bits outside the

range of the result type are discarded.

Floating-point subtraction:

The difference is computed according to the rules of IEEE 754 arithmetic. The following table lists the results

of all possible combinations of nonzero finite values, zeros, infinities, and NaNs. In the table, x  and y  are

nonzero finite values, and z  is the result of x - y . If x  and y  are equal, z  is positive zero. If x - y  is

too large to represent in the destination type, z  is an infinity with the same sign as x - y .



decimal operator -(decimal x, decimal y);

U operator -(E x, E y);

E operator -(E x, U y);

D operator -(D x, D y);

Decimal subtraction:

If the resulting value is too large to represent in the decimal  format, a System.OverflowException  is thrown.

The scale of the result, before any rounding, is the larger of the scales of the two operands.

Decimal subtraction is equivalent to using the subtraction operator of type System.Decimal .

Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,

where E  is the enum type, and U  is the underlying type of E :

This operator is evaluated exactly as (U)((U)x - (U)y) . In other words, the operator computes the

difference between the ordinal values of x  and y , and the type of the result is the underlying type of the

enumeration.

This operator is evaluated exactly as (E)((U)x - y) . In other words, the operator subtracts a value from the

underlying type of the enumeration, yielding a value of the enumeration.

Delegate removal. Every delegate type implicitly provides the following predefined operator, where D  is the

delegate type:

The binary -  operator performs delegate removal when both operands are of some delegate type D . If

the operands have different delegate types, a binding-time error occurs. If the first operand is null , the

result of the operation is null . Otherwise, if the second operand is null , then the result of the operation is

the value of the first operand. Otherwise, both operands represent invocation lists (Delegate declarations)

having one or more entries, and the result is a new invocation list consisting of the first operand's list with

the second operand's entries removed from it, provided the second operand's list is a proper contiguous

sublist of the first's. (To determine sublist equality, corresponding entries are compared as for the delegate

equality operator (Delegate equality operators).) Otherwise, the result is the value of the left operand.

Neither of the operands' lists is changed in the process. If the second operand's list matches multiple

sublists of contiguous entries in the first operand's list, the right-most matching sublist of contiguous entries

is removed. If removal results in an empty list, the result is null . For example:



   Shift operators

shift_expression
    : additive_expression
    | shift_expression '<<' additive_expression
    | shift_expression right_shift additive_expression
    ;

delegate void D(int x);

class C
{
    public static void M1(int i) { /* ... */ }
    public static void M2(int i) { /* ... */ }
}

class Test
{
    static void Main() { 
        D cd1 = new D(C.M1);
        D cd2 = new D(C.M2);
        D cd3 = cd1 + cd2 + cd2 + cd1;   // M1 + M2 + M2 + M1
        cd3 -= cd1;                      // => M1 + M2 + M2

        cd3 = cd1 + cd2 + cd2 + cd1;     // M1 + M2 + M2 + M1
        cd3 -= cd1 + cd2;                // => M2 + M1

        cd3 = cd1 + cd2 + cd2 + cd1;     // M1 + M2 + M2 + M1
        cd3 -= cd2 + cd2;                // => M1 + M1

        cd3 = cd1 + cd2 + cd2 + cd1;     // M1 + M2 + M2 + M1
        cd3 -= cd2 + cd1;                // => M1 + M2

        cd3 = cd1 + cd2 + cd2 + cd1;     // M1 + M2 + M2 + M1
        cd3 -= cd1 + cd1;                // => M1 + M2 + M2 + M1
    }
}

The <<  and >>  operators are used to perform bit shifting operations.

If an operand of a shift_expression has the compile-time type dynamic , then the expression is dynamically bound

(Dynamic binding). In this case the compile-time type of the expression is dynamic , and the resolution described

below will take place at run-time using the run-time type of those operands that have the compile-time type 

dynamic .

For an operation of the form x << count  or x >> count , binary operator overload resolution (Binary operator

overload resolution) is applied to select a specific operator implementation. The operands are converted to the

parameter types of the selected operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct

containing the operator declaration, and the type of the second operand must always be int .

The predefined shift operators are listed below.

Shift left:



     Relational and type-testing operators

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The <<  operator shifts x  left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x  are discarded, the remaining bits are shifted

left, and the low-order empty bit positions are set to zero.

Shift right:

The >>  operator shifts x  right by a number of bits computed as described below.

When x  is of type int  or long , the low-order bits of x  are discarded, the remaining bits are shifted

right, and the high-order empty bit positions are set to zero if x  is non-negative and set to one if x  is

negative.

When x  is of type uint  or ulong , the low-order bits of x  are discarded, the remaining bits are shifted

right, and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

When the type of x  is int  or uint , the shift count is given by the low-order five bits of count . In other

words, the shift count is computed from count & 0x1F .

When the type of x  is long  or ulong , the shift count is given by the low-order six bits of count . In other

words, the shift count is computed from count & 0x3F .

If the resulting shift count is zero, the shift operators simply return the value of x .

Shift operations never cause overflows and produce the same results in checked  and unchecked  contexts.

When the left operand of the >>  operator is of a signed integral type, the operator performs an arithmetic shift

right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the high-order

empty bit positions. When the left operand of the >>  operator is of an unsigned integral type, the operator

performs a logical shift right wherein high-order empty bit positions are always set to zero. To perform the

opposite operation of that inferred from the operand type, explicit casts can be used. For example, if x  is a

variable of type int , the operation unchecked((int)((uint)x >> y))  performs a logical shift right of x .

The == , != , < , > , <= , >= , is  and as  operators are called the relational and type-testing operators.



relational_expression
    : shift_expression
    | relational_expression '<' shift_expression
    | relational_expression '>' shift_expression
    | relational_expression '<=' shift_expression
    | relational_expression '>=' shift_expression
    | relational_expression 'is' type
    | relational_expression 'as' type
    ;

equality_expression
    : relational_expression
    | equality_expression '==' relational_expression
    | equality_expression '!=' relational_expression
    ;

O P ERAT IO NO P ERAT IO N RESULTRESULT

x == y true  if x  is equal to y , false  otherwise

x != y true  if x  is not equal to y , false  otherwise

x < y true  if x  is less than y , false  otherwise

x > y true  if x  is greater than y , false  otherwise

x <= y true  if x  is less than or equal to y , false  otherwise

x >= y true  if x  is greater than or equal to y , false  otherwise

Integer comparison operatorsInteger comparison operators

The is  operator is described in The is operator and the as  operator is described in The as operator.

The == , != , < , > , <=  and >=  operators are comparison operatorscomparison operators .

If an operand of a comparison operator has the compile-time type dynamic , then the expression is dynamically

bound (Dynamic binding). In this case the compile-time type of the expression is dynamic , and the resolution

described below will take place at run-time using the run-time type of those operands that have the compile-time

type dynamic .

For an operation of the form x  op y , where op is a comparison operator, overload resolution (Binary operator

overload resolution) is applied to select a specific operator implementation. The operands are converted to the

parameter types of the selected operator, and the type of the result is the return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison operators

return a result of type bool , as described in the following table.

The predefined integer comparison operators are:



bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Floating-point comparison operatorsFloating-point comparison operators

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

Each of these operators compares the numeric values of the two integer operands and returns a bool  value that

indicates whether the particular relation is true  or false .

The predefined floating-point comparison operators are:

The operators compare the operands according to the rules of the IEEE 754 standard:

If either operand is NaN, the result is false  for all operators except != , for which the result is true . For

any two operands, x != y  always produces the same result as !(x == y) . However, when one or both

operands are NaN, the < , > , <= , and >=  operators do not produce the same results as the logical

negation of the opposite operator. For example, if either of x  and y  is NaN, then x < y  is false , but 

!(x >= y)  is true .



  

      

Decimal comparison operatorsDecimal comparison operators

bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Boolean equality operatorsBoolean equality operators

bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);

Enumeration comparison operatorsEnumeration comparison operators

bool operator ==(E x, E y);
bool operator !=(E x, E y);
bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

Reference type equality operatorsReference type equality operators

-inf < -max < ... < -min < -0.0 == +0.0 < +min < ... < +max < +inf

When neither operand is NaN, the operators compare the values of the two floating-point operands with

respect to the ordering

where min  and max  are the smallest and largest positive finite values that can be represented in the given

floating-point format. Notable effects of this ordering are:

Negative and positive zeros are considered equal.

A negative infinity is considered less than all other values, but equal to another negative infinity.

A positive infinity is considered greater than all other values, but equal to another positive infinity.

The predefined decimal comparison operators are:

Each of these operators compares the numeric values of the two decimal operands and returns a bool  value that

indicates whether the particular relation is true  or false . Each decimal comparison is equivalent to using the

corresponding relational or equality operator of type System.Decimal .

The predefined boolean equality operators are:

The result of ==  is true  if both x  and y  are true  or if both x  and y  are false . Otherwise, the result is 

false .

The result of !=  is false  if both x  and y  are true  or if both x  and y  are false . Otherwise, the result is 

true . When the operands are of type bool , the !=  operator produces the same result as the ^  operator.

Every enumeration type implicitly provides the following predefined comparison operators:

The result of evaluating x op y , where x  and y  are expressions of an enumeration type E  with an underlying

type U , and op  is one of the comparison operators, is exactly the same as evaluating ((U)x) op ((U)y) . In other

words, the enumeration type comparison operators simply compare the underlying integral values of the two

operands.



bool operator ==(object x, object y);
bool operator !=(object x, object y);

class C<T>
{
    void F(T x) {
        if (x == null) throw new ArgumentNullException();
        ...
    }
}

The predefined reference type equality operators are:

The operators return the result of comparing the two references for equality or non-equality.

Since the predefined reference type equality operators accept operands of type object , they apply to all types that

do not declare applicable operator ==  and operator !=  members. Conversely, any applicable user-defined

equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require one of the following:

Both operands are a value of a type known to be a reference_type or the literal null . Furthermore, an explicit

reference conversion (Explicit reference conversions) exists from the type of either operand to the type of the

other operand.

One operand is a value of type T  where T  is a type_parameter and the other operand is the literal null .

Furthermore T  does not have the value type constraint.

Unless one of these conditions are true, a binding-time error occurs. Notable implications of these rules are:

It is a binding-time error to use the predefined reference type equality operators to compare two references

that are known to be different at binding-time. For example, if the binding-time types of the operands are two

class types A  and B , and if neither A  nor B  derives from the other, then it would be impossible for the two

operands to reference the same object. Thus, the operation is considered a binding-time error.

The predefined reference type equality operators do not permit value type operands to be compared. Therefore,

unless a struct type declares its own equality operators, it is not possible to compare values of that struct type.

The predefined reference type equality operators never cause boxing operations to occur for their operands. It

would be meaningless to perform such boxing operations, since references to the newly allocated boxed

instances would necessarily differ from all other references.

If an operand of a type parameter type T  is compared to null , and the run-time type of T  is a value type, the

result of the comparison is false .

The following example checks whether an argument of an unconstrained type parameter type is null .

The x == null  construct is permitted even though T  could represent a value type, and the result is simply

defined to be false  when T  is a value type.

For an operation of the form x == y  or x != y , if any applicable operator ==  or operator !=  exists, the operator

overload resolution (Binary operator overload resolution) rules will select that operator instead of the predefined

reference type equality operator. However, it is always possible to select the predefined reference type equality

operator by explicitly casting one or both of the operands to type object . The example



        

      

using System;

class Test
{
    static void Main() {
        string s = "Test";
        string t = string.Copy(s);
        Console.WriteLine(s == t);
        Console.WriteLine((object)s == t);
        Console.WriteLine(s == (object)t);
        Console.WriteLine((object)s == (object)t);
    }
}

True
False
False
False

class Test
{
    static void Main() {
        int i = 123;
        int j = 123;
        System.Console.WriteLine((object)i == (object)j);
    }
}

String equality operatorsString equality operators

bool operator ==(string x, string y);
bool operator !=(string x, string y);

Delegate equality operatorsDelegate equality operators

produces the output

The s  and t  variables refer to two distinct string  instances containing the same characters. The first

comparison outputs True  because the predefined string equality operator (String equality operators) is selected

when both operands are of type string . The remaining comparisons all output False  because the predefined

reference type equality operator is selected when one or both of the operands are of type object .

Note that the above technique is not meaningful for value types. The example

outputs False  because the casts create references to two separate instances of boxed int  values.

The predefined string equality operators are:

Two string  values are considered equal when one of the following is true:

Both values are null .

Both values are non-null references to string instances that have identical lengths and identical characters in

each character position.

The string equality operators compare string values rather than string references. When two separate string

instances contain the exact same sequence of characters, the values of the strings are equal, but the references are

different. As described in Reference type equality operators, the reference type equality operators can be used to

compare string references instead of string values.



    

bool operator ==(System.Delegate x, System.Delegate y);
bool operator !=(System.Delegate x, System.Delegate y);

Equality operators and nullEquality operators and null

x == null
null == x
x != null
null != x

The is operatorThe is operator

Every delegate type implicitly provides the following predefined comparison operators:

Two delegate instances are considered equal as follows:

If either of the delegate instances is null , they are equal if and only if both are null .

If the delegates have different run-time type they are never equal.

If both of the delegate instances have an invocation list (Delegate declarations), those instances are equal if and

only if their invocation lists are the same length, and each entry in one's invocation list is equal (as defined

below) to the corresponding entry, in order, in the other's invocation list.

The following rules govern the equality of invocation list entries:

If two invocation list entries both refer to the same static method then the entries are equal.

If two invocation list entries both refer to the same non-static method on the same target object (as defined by

the reference equality operators) then the entries are equal.

Invocation list entries produced from evaluation of semantically identical anonymous_method_expressions or

lambda_expressions with the same (possibly empty) set of captured outer variable instances are permitted (but

not required) to be equal.

The ==  and !=  operators permit one operand to be a value of a nullable type and the other to be the null

literal, even if no predefined or user-defined operator (in unlifted or lifted form) exists for the operation.

For an operation of one of the forms

where x  is an expression of a nullable type, if operator overload resolution (Binary operator overload resolution)

fails to find an applicable operator, the result is instead computed from the HasValue  property of x . Specifically,

the first two forms are translated into !x.HasValue , and last two forms are translated into x.HasValue .

The is  operator is used to dynamically check if the run-time type of an object is compatible with a given type. The

result of the operation E is T , where E  is an expression and T  is a type, is a boolean value indicating whether 

E  can successfully be converted to type T  by a reference conversion, a boxing conversion, or an unboxing

conversion. The operation is evaluated as follows, after type arguments have been substituted for all type

parameters:

If E  is an anonymous function, a compile-time error occurs

If E  is a method group or the null  literal, of if the type of E  is a reference type or a nullable type and the

value of E  is null, the result is false.

Otherwise, let D  represent the dynamic type of E  as follows:

The result of the operation depends on D  and T  as follows:

If the type of E  is a reference type, D  is the run-time type of the instance reference by E .

If the type of E  is a nullable type, D  is the underlying type of that nullable type.

If the type of E  is a non-nullable value type, D  is the type of E .

If T  is a reference type, the result is true if D  and T  are the same type, if D  is a reference type and an



    The as operatorThe as operator

E is T ? (T)(E) : (T)null

E is T ? (T)(object)(E) : (T)null

class X
{

    public string F(object o) {
        return o as string;        // OK, string is a reference type
    }

    public T G<T>(object o) where T: Attribute {
        return o as T;             // Ok, T has a class constraint
    }

    public U H<U>(object o) {
        return o as U;             // Error, U is unconstrained 
    }
}

implicit reference conversion from D  to T  exists, or if D  is a value type and a boxing conversion from 

D  to T  exists.

If T  is a nullable type, the result is true if D  is the underlying type of T .

If T  is a non-nullable value type, the result is true if D  and T  are the same type.

Otherwise, the result is false.

Note that user defined conversions, are not considered by the is  operator.

The as  operator is used to explicitly convert a value to a given reference type or nullable type. Unlike a cast

expression (Cast expressions), the as  operator never throws an exception. Instead, if the indicated conversion is

not possible, the resulting value is null .

In an operation of the form E as T , E  must be an expression and T  must be a reference type, a type parameter

known to be a reference type, or a nullable type. Furthermore, at least one of the following must be true, or

otherwise a compile-time error occurs:

An identity (Identity conversion), implicit nullable (Implicit nullable conversions), implicit reference (Implicit

reference conversions), boxing (Boxing conversions), explicit nullable (Explicit nullable conversions), explicit

reference (Explicit reference conversions), or unboxing (Unboxing conversions) conversion exists from E  to T .

The type of E  or T  is an open type.

E  is the null  literal.

If the compile-time type of E  is not dynamic , the operation E as T  produces the same result as

except that E  is only evaluated once. The compiler can be expected to optimize E as T  to perform at most one

dynamic type check as opposed to the two dynamic type checks implied by the expansion above.

If the compile-time type of E  is dynamic , unlike the cast operator the as  operator is not dynamically bound

(Dynamic binding). Therefore the expansion in this case is:

Note that some conversions, such as user defined conversions, are not possible with the as  operator and should

instead be performed using cast expressions.

In the example



     

  

Logical operators

and_expression
    : equality_expression
    | and_expression '&' equality_expression
    ;

exclusive_or_expression
    : and_expression
    | exclusive_or_expression '^' and_expression
    ;

inclusive_or_expression
    : exclusive_or_expression
    | inclusive_or_expression '|' exclusive_or_expression
    ;

Integer logical operatorsInteger logical operators

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

Enumeration logical operatorsEnumeration logical operators

the type parameter T  of G  is known to be a reference type, because it has the class constraint. The type

parameter U  of H  is not however ; hence the use of the as  operator in H  is disallowed.

The & , ^ , and |  operators are called the logical operators.

If an operand of a logical operator has the compile-time type dynamic , then the expression is dynamically bound

(Dynamic binding). In this case the compile-time type of the expression is dynamic , and the resolution described

below will take place at run-time using the run-time type of those operands that have the compile-time type 

dynamic .

For an operation of the form x op y , where op  is one of the logical operators, overload resolution (Binary

operator overload resolution) is applied to select a specific operator implementation. The operands are converted

to the parameter types of the selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

The predefined integer logical operators are:

The &  operator computes the bitwise logical AND  of the two operands, the |  operator computes the bitwise

logical OR  of the two operands, and the ^  operator computes the bitwise logical exclusive OR  of the two

operands. No overflows are possible from these operations.

Every enumeration type E  implicitly provides the following predefined logical operators:



    

  

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

Boolean logical operatorsBoolean logical operators

bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator ^(bool x, bool y);

Nullable boolean logical operatorsNullable boolean logical operators

bool? operator &(bool? x, bool? y);
bool? operator |(bool? x, bool? y);

X Y X & Y X | Y

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

The result of evaluating x op y , where x  and y  are expressions of an enumeration type E  with an underlying

type U , and op  is one of the logical operators, is exactly the same as evaluating (E)((U)x op (U)y) . In other

words, the enumeration type logical operators simply perform the logical operation on the underlying type of the

two operands.

The predefined boolean logical operators are:

The result of x & y  is true  if both x  and y  are true . Otherwise, the result is false .

The result of x | y  is true  if either x  or y  is true . Otherwise, the result is false .

The result of x ^ y  is true  if x  is true  and y  is false , or x  is false  and y  is true . Otherwise, the result

is false . When the operands are of type bool , the ^  operator computes the same result as the !=  operator.

The nullable boolean type bool?  can represent three values, true , false , and null , and is conceptually similar

to the three-valued type used for boolean expressions in SQL. To ensure that the results produced by the &  and 

|  operators for bool?  operands are consistent with SQL's three-valued logic, the following predefined operators

are provided:

The following table lists the results produced by these operators for all combinations of the values true , false ,

and null .



     

  

null null null null

X Y X & Y X | Y

Conditional logical operators

conditional_and_expression
    : inclusive_or_expression
    | conditional_and_expression '&&' inclusive_or_expression
    ;

conditional_or_expression
    : conditional_and_expression
    | conditional_or_expression '||' conditional_and_expression
    ;

Boolean conditional logical operatorsBoolean conditional logical operators

The &&  and ||  operators are called the conditional logical operators. They are also called the "short-circuiting"

logical operators.

The &&  and ||  operators are conditional versions of the &  and |  operators:

The operation x && y  corresponds to the operation x & y , except that y  is evaluated only if x  is not false .

The operation x || y  corresponds to the operation x | y , except that y  is evaluated only if x  is not true .

If an operand of a conditional logical operator has the compile-time type dynamic , then the expression is

dynamically bound (Dynamic binding). In this case the compile-time type of the expression is dynamic , and the

resolution described below will take place at run-time using the run-time type of those operands that have the

compile-time type dynamic .

An operation of the form x && y  or x || y  is processed by applying overload resolution (Binary operator

overload resolution) as if the operation was written x & y  or x | y . Then,

If overload resolution fails to find a single best operator, or if overload resolution selects one of the predefined

integer logical operators, a binding-time error occurs.

Otherwise, if the selected operator is one of the predefined boolean logical operators (Boolean logical

operators) or nullable boolean logical operators (Nullable boolean logical operators), the operation is processed

as described in Boolean conditional logical operators.

Otherwise, the selected operator is a user-defined operator, and the operation is processed as described in

User-defined conditional logical operators.

It is not possible to directly overload the conditional logical operators. However, because the conditional logical

operators are evaluated in terms of the regular logical operators, overloads of the regular logical operators are,

with certain restrictions, also considered overloads of the conditional logical operators. This is described further in

User-defined conditional logical operators.

When the operands of &&  or ||  are of type bool , or when the operands are of types that do not define an

applicable operator &  or operator | , but do define implicit conversions to bool , the operation is processed as

follows:

The operation x && y  is evaluated as x ? y : false . In other words, x  is first evaluated and converted to

type bool . Then, if x  is true , y  is evaluated and converted to type bool , and this becomes the result of the

operation. Otherwise, the result of the operation is false .

The operation x || y  is evaluated as x ? true : y . In other words, x  is first evaluated and converted to type 



      

 

User-defined conditional logical operatorsUser-defined conditional logical operators

The null coalescing operator

null_coalescing_expression
    : conditional_or_expression
    | conditional_or_expression '??' null_coalescing_expression
    ;

bool . Then, if x  is true , the result of the operation is true . Otherwise, y  is evaluated and converted to

type bool , and this becomes the result of the operation.

When the operands of &&  or ||  are of types that declare an applicable user-defined operator &  or operator | ,

both of the following must be true, where T  is the type in which the selected operator is declared:

The return type and the type of each parameter of the selected operator must be T . In other words, the

operator must compute the logical AND  or the logical OR  of two operands of type T , and must return a result

of type T .

T  must contain declarations of operator true  and operator false .

A binding-time error occurs if either of these requirements is not satisfied. Otherwise, the &&  or ||  operation is

evaluated by combining the user-defined operator true  or operator false  with the selected user-defined

operator :

The operation x && y  is evaluated as T.false(x) ? x : T.&(x, y) , where T.false(x)  is an invocation of the 

operator false  declared in T , and T.&(x, y)  is an invocation of the selected operator & . In other words, x

is first evaluated and operator false  is invoked on the result to determine if x  is definitely false. Then, if x  is

definitely false, the result of the operation is the value previously computed for x . Otherwise, y  is evaluated,

and the selected operator &  is invoked on the value previously computed for x  and the value computed for 

y  to produce the result of the operation.

The operation x || y  is evaluated as T.true(x) ? x : T.|(x, y) , where T.true(x)  is an invocation of the 

operator true  declared in T , and T.|(x,y)  is an invocation of the selected operator| . In other words, x  is

first evaluated and operator true  is invoked on the result to determine if x  is definitely true. Then, if x  is

definitely true, the result of the operation is the value previously computed for x . Otherwise, y  is evaluated,

and the selected operator |  is invoked on the value previously computed for x  and the value computed for 

y  to produce the result of the operation.

In either of these operations, the expression given by x  is only evaluated once, and the expression given by y  is

either not evaluated or evaluated exactly once.

For an example of a type that implements operator true  and operator false , see Database boolean type.

The ??  operator is called the null coalescing operator.

A null coalescing expression of the form a ?? b  requires a  to be of a nullable type or reference type. If a  is non-

null, the result of a ?? b  is a ; otherwise, the result is b . The operation evaluates b  only if a  is null.

The null coalescing operator is right-associative, meaning that operations are grouped from right to left. For

example, an expression of the form a ?? b ?? c  is evaluated as a ?? (b ?? c) . In general terms, an expression of

the form E1 ?? E2 ?? ... ?? En  returns the first of the operands that is non-null, or null if all operands are null.

The type of the expression a ?? b  depends on which implicit conversions are available on the operands. In order

of preference, the type of a ?? b  is A0 , A , or B , where A  is the type of a  (provided that a  has a type), B  is

the type of b  (provided that b  has a type), and A0  is the underlying type of A  if A  is a nullable type, or A

otherwise. Specifically, a ?? b  is processed as follows:



   Conditional operator

conditional_expression
    : null_coalescing_expression
    | null_coalescing_expression '?' expression ':' expression
    ;

If A  exists and is not a nullable type or a reference type, a compile-time error occurs.

If b  is a dynamic expression, the result type is dynamic . At run-time, a  is first evaluated. If a  is not null, a  is

converted to dynamic, and this becomes the result. Otherwise, b  is evaluated, and this becomes the result.

Otherwise, if A  exists and is a nullable type and an implicit conversion exists from b  to A0 , the result type is 

A0 . At run-time, a  is first evaluated. If a  is not null, a  is unwrapped to type A0 , and this becomes the

result. Otherwise, b  is evaluated and converted to type A0 , and this becomes the result.

Otherwise, if A  exists and an implicit conversion exists from b  to A , the result type is A . At run-time, a  is

first evaluated. If a  is not null, a  becomes the result. Otherwise, b  is evaluated and converted to type A ,

and this becomes the result.

Otherwise, if b  has a type B  and an implicit conversion exists from a  to B , the result type is B . At run-

time, a  is first evaluated. If a  is not null, a  is unwrapped to type A0  (if A  exists and is nullable) and

converted to type B , and this becomes the result. Otherwise, b  is evaluated and becomes the result.

Otherwise, a  and b  are incompatible, and a compile-time error occurs.

The ?:  operator is called the conditional operator. It is at times also called the ternary operator.

A conditional expression of the form b ? x : y  first evaluates the condition b . Then, if b  is true , x  is

evaluated and becomes the result of the operation. Otherwise, y  is evaluated and becomes the result of the

operation. A conditional expression never evaluates both x  and y .

The conditional operator is right-associative, meaning that operations are grouped from right to left. For example,

an expression of the form a ? b : c ? d : e  is evaluated as a ? b : (c ? d : e) .

The first operand of the ?:  operator must be an expression that can be implicitly converted to bool , or an

expression of a type that implements operator true . If neither of these requirements is satisfied, a compile-time

error occurs.

The second and third operands, x  and y , of the ?:  operator control the type of the conditional expression.

If x  has type X  and y  has type Y  then

If only one of x  and y  has a type, and both x  and y , of are implicitly convertible to that type, then that is

the type of the conditional expression.

Otherwise, no expression type can be determined, and a compile-time error occurs.

If an implicit conversion (Implicit conversions) exists from X  to Y , but not from Y  to X , then Y  is the

type of the conditional expression.

If an implicit conversion (Implicit conversions) exists from Y  to X , but not from X  to Y , then X  is the

type of the conditional expression.

Otherwise, no expression type can be determined, and a compile-time error occurs.

The run-time processing of a conditional expression of the form b ? x : y  consists of the following steps:

First, b  is evaluated, and the bool  value of b  is determined:

If an implicit conversion from the type of b  to bool  exists, then this implicit conversion is performed to

produce a bool  value.

Otherwise, the operator true  defined by the type of b  is invoked to produce a bool  value.



             Anonymous function expressions

If the bool  value produced by the step above is true , then x  is evaluated and converted to the type of the

conditional expression, and this becomes the result of the conditional expression.

Otherwise, y  is evaluated and converted to the type of the conditional expression, and this becomes the result

of the conditional expression.

An anonymous functionanonymous function is an expression that represents an "in-line" method definition. An anonymous function

does not have a value or type in and of itself, but is convertible to a compatible delegate or expression tree type.

The evaluation of an anonymous function conversion depends on the target type of the conversion: If it is a

delegate type, the conversion evaluates to a delegate value referencing the method which the anonymous function

defines. If it is an expression tree type, the conversion evaluates to an expression tree which represents the

structure of the method as an object structure.

For historical reasons there are two syntactic flavors of anonymous functions, namely lambda_expressions and

anonymous_method_expressions. For almost all purposes, lambda_expressions are more concise and expressive

than anonymous_method_expressions, which remain in the language for backwards compatibility.



lambda_expression
    : anonymous_function_signature '=>' anonymous_function_body
    ;

anonymous_method_expression
    : 'delegate' explicit_anonymous_function_signature? block
    ;

anonymous_function_signature
    : explicit_anonymous_function_signature
    | implicit_anonymous_function_signature
    ;

explicit_anonymous_function_signature
    : '(' explicit_anonymous_function_parameter_list? ')'
    ;

explicit_anonymous_function_parameter_list
    : explicit_anonymous_function_parameter (',' explicit_anonymous_function_parameter)*
    ;

explicit_anonymous_function_parameter
    : anonymous_function_parameter_modifier? type identifier
    ;

anonymous_function_parameter_modifier
    : 'ref'
    | 'out'
    ;

implicit_anonymous_function_signature
    : '(' implicit_anonymous_function_parameter_list? ')'
    | implicit_anonymous_function_parameter
    ;

implicit_anonymous_function_parameter_list
    : implicit_anonymous_function_parameter (',' implicit_anonymous_function_parameter)*
    ;

implicit_anonymous_function_parameter
    : identifier
    ;

anonymous_function_body
    : expression
    | block
    ;

( param ) => expr

The =>  operator has the same precedence as assignment ( = ) and is right-associative.

An anonymous function with the async  modifier is an async function and follows the rules described in Iterators.

The parameters of an anonymous function in the form of a lambda_expression can be explicitly or implicitly typed.

In an explicitly typed parameter list, the type of each parameter is explicitly stated. In an implicitly typed parameter

list, the types of the parameters are inferred from the context in which the anonymous function occurs—

specifically, when the anonymous function is converted to a compatible delegate type or expression tree type, that

type provides the parameter types (Anonymous function conversions).

In an anonymous function with a single, implicitly typed parameter, the parentheses may be omitted from the

parameter list. In other words, an anonymous function of the form



param => expr

x => x + 1                              // Implicitly typed, expression body
x => { return x + 1; }                  // Implicitly typed, statement body
(int x) => x + 1                        // Explicitly typed, expression body
(int x) => { return x + 1; }            // Explicitly typed, statement body
(x, y) => x * y                         // Multiple parameters
() => Console.WriteLine()               // No parameters
async (t1,t2) => await t1 + await t2    // Async
delegate (int x) { return x + 1; }      // Anonymous method expression
delegate { return 1 + 1; }              // Parameter list omitted

Anonymous function signaturesAnonymous function signatures

can be abbreviated to

The parameter list of an anonymous function in the form of an anonymous_method_expression is optional. If

given, the parameters must be explicitly typed. If not, the anonymous function is convertible to a delegate with any

parameter list not containing out  parameters.

A block body of an anonymous function is reachable (End points and reachability) unless the anonymous function

occurs inside an unreachable statement.

Some examples of anonymous functions follow below:

The behavior of lambda_expressions and anonymous_method_expressions is the same except for the following

points:

anonymous_method_expressions permit the parameter list to be omitted entirely, yielding convertibility to

delegate types of any list of value parameters.

lambda_expressions permit parameter types to be omitted and inferred whereas

anonymous_method_expressions require parameter types to be explicitly stated.

The body of a lambda_expression can be an expression or a statement block whereas the body of an

anonymous_method_expression must be a statement block.

Only lambda_expressions have conversions to compatible expression tree types (Expression tree types).

The optional anonymous_function_signature of an anonymous function defines the names and optionally the

types of the formal parameters for the anonymous function. The scope of the parameters of the anonymous

function is the anonymous_function_body. (Scopes) Together with the parameter list (if given) the anonymous-

method-body constitutes a declaration space (Declarations). It is thus a compile-time error for the name of a

parameter of the anonymous function to match the name of a local variable, local constant or parameter whose

scope includes the anonymous_method_expression or lambda_expression.

If an anonymous function has an explicit_anonymous_function_signature, then the set of compatible delegate

types and expression tree types is restricted to those that have the same parameter types and modifiers in the

same order. In contrast to method group conversions (Method group conversions), contra-variance of anonymous

function parameter types is not supported. If an anonymous function does not have an

anonymous_function_signature, then the set of compatible delegate types and expression tree types is restricted to

those that have no out  parameters.

Note that an anonymous_function_signature cannot include attributes or a parameter array. Nevertheless, an

anonymous_function_signature may be compatible with a delegate type whose parameter list contains a

parameter array.

Note also that conversion to an expression tree type, even if compatible, may still fail at compile-time (Expression

tree types).



Anonymous function bodiesAnonymous function bodies

Overload resolution and anonymous functionsOverload resolution and anonymous functions

class ItemList<T>: List<T>
{
    public int Sum(Func<T,int> selector) {
        int sum = 0;
        foreach (T item in this) sum += selector(item);
        return sum;
    }

    public double Sum(Func<T,double> selector) {
        double sum = 0;
        foreach (T item in this) sum += selector(item);
        return sum;
    }
}

The body (expression or block) of an anonymous function is subject to the following rules:

If the anonymous function includes a signature, the parameters specified in the signature are available in the

body. If the anonymous function has no signature it can be converted to a delegate type or expression type

having parameters (Anonymous function conversions), but the parameters cannot be accessed in the body.

Except for ref  or out  parameters specified in the signature (if any) of the nearest enclosing anonymous

function, it is a compile-time error for the body to access a ref  or out  parameter.

When the type of this  is a struct type, it is a compile-time error for the body to access this . This is true

whether the access is explicit (as in this.x ) or implicit (as in x  where x  is an instance member of the struct).

This rule simply prohibits such access and does not affect whether member lookup results in a member of the

struct.

The body has access to the outer variables (Outer variables) of the anonymous function. Access of an outer

variable will reference the instance of the variable that is active at the time the lambda_expression or

anonymous_method_expression is evaluated (Evaluation of anonymous function expressions).

It is a compile-time error for the body to contain a goto  statement, break  statement, or continue  statement

whose target is outside the body or within the body of a contained anonymous function.

A return  statement in the body returns control from an invocation of the nearest enclosing anonymous

function, not from the enclosing function member. An expression specified in a return  statement must be

implicitly convertible to the return type of the delegate type or expression tree type to which the nearest

enclosing lambda_expression or anonymous_method_expression is converted (Anonymous function

conversions).

It is explicitly unspecified whether there is any way to execute the block of an anonymous function other than

through evaluation and invocation of the lambda_expression or anonymous_method_expression. In particular, the

compiler may choose to implement an anonymous function by synthesizing one or more named methods or

types. The names of any such synthesized elements must be of a form reserved for compiler use.

Anonymous functions in an argument list participate in type inference and overload resolution. Please refer to

Type inference and Overload resolution for the exact rules.

The following example illustrates the effect of anonymous functions on overload resolution.

The ItemList<T>  class has two Sum  methods. Each takes a selector  argument, which extracts the value to sum

over from a list item. The extracted value can be either an int  or a double  and the resulting sum is likewise either

an int  or a double .

The Sum  methods could for example be used to compute sums from a list of detail lines in an order.



  

    

class Detail
{
    public int UnitCount;
    public double UnitPrice;
    ...
}

void ComputeSums() {
    ItemList<Detail> orderDetails = GetOrderDetails(...);
    int totalUnits = orderDetails.Sum(d => d.UnitCount);
    double orderTotal = orderDetails.Sum(d => d.UnitPrice * d.UnitCount);
    ...
}

Anonymous functions and dynamic bindingAnonymous functions and dynamic binding

Outer variablesOuter variables

Captured outer variablesCaptured outer variables

In the first invocation of orderDetails.Sum , both Sum  methods are applicable because the anonymous function 

d => d. UnitCount  is compatible with both Func<Detail,int>  and Func<Detail,double> . However, overload

resolution picks the first Sum  method because the conversion to Func<Detail,int>  is better than the conversion to

Func<Detail,double> .

In the second invocation of orderDetails.Sum , only the second Sum  method is applicable because the anonymous

function d => d.UnitPrice * d.UnitCount  produces a value of type double . Thus, overload resolution picks the

second Sum  method for that invocation.

An anonymous function cannot be a receiver, argument or operand of a dynamically bound operation.

Any local variable, value parameter, or parameter array whose scope includes the lambda_expression or

anonymous_method_expression is called an outer var iableouter var iable of the anonymous function. In an instance function

member of a class, the this  value is considered a value parameter and is an outer variable of any anonymous

function contained within the function member.

When an outer variable is referenced by an anonymous function, the outer variable is said to have been capturedcaptured

by the anonymous function. Ordinarily, the lifetime of a local variable is limited to execution of the block or

statement with which it is associated (Local variables). However, the lifetime of a captured outer variable is

extended at least until the delegate or expression tree created from the anonymous function becomes eligible for

garbage collection.

In the example



    

using System;

delegate int D();

class Test
{
    static D F() {
        int x = 0;
        D result = () => ++x;
        return result;
    }

    static void Main() {
        D d = F();
        Console.WriteLine(d());
        Console.WriteLine(d());
        Console.WriteLine(d());
    }
}

1
2
3

Instantiation of local variablesInstantiation of local variables

static void F() {
    for (int i = 0; i < 3; i++) {
        int x = i * 2 + 1;
        ...
    }
}

the local variable x  is captured by the anonymous function, and the lifetime of x  is extended at least until the

delegate returned from F  becomes eligible for garbage collection (which doesn't happen until the very end of the

program). Since each invocation of the anonymous function operates on the same instance of x , the output of the

example is:

When a local variable or a value parameter is captured by an anonymous function, the local variable or parameter

is no longer considered to be a fixed variable (Fixed and moveable variables), but is instead considered to be a

moveable variable. Thus any unsafe  code that takes the address of a captured outer variable must first use the 

fixed  statement to fix the variable.

Note that unlike an uncaptured variable, a captured local variable can be simultaneously exposed to multiple

threads of execution.

A local variable is considered to be instantiatedinstantiated when execution enters the scope of the variable. For example,

when the following method is invoked, the local variable x  is instantiated and initialized three times—once for

each iteration of the loop.

However, moving the declaration of x  outside the loop results in a single instantiation of x :



static void F() {
    int x;
    for (int i = 0; i < 3; i++) {
        x = i * 2 + 1;
        ...
    }
}

using System;

delegate void D();

class Test
{
    static D[] F() {
        D[] result = new D[3];
        for (int i = 0; i < 3; i++) {
            int x = i * 2 + 1;
            result[i] = () => { Console.WriteLine(x); };
        }
        return result;
    }

    static void Main() {
        foreach (D d in F()) d();
    }
}

1
3
5

static D[] F() {
    D[] result = new D[3];
    int x;
    for (int i = 0; i < 3; i++) {
        x = i * 2 + 1;
        result[i] = () => { Console.WriteLine(x); };
    }
    return result;
}

5
5
5

When not captured, there is no way to observe exactly how often a local variable is instantiated—because the

lifetimes of the instantiations are disjoint, it is possible for each instantiation to simply use the same storage

location. However, when an anonymous function captures a local variable, the effects of instantiation become

apparent.

The example

produces the output:

However, when the declaration of x  is moved outside the loop:

the output is:



static D[] F() {
    D[] result = new D[3];
    for (int i = 0; i < 3; i++) {
        result[i] = () => { Console.WriteLine(i); };
    }
    return result;
}

3
3
3

static D[] F() {
    D[] result = new D[3];
    int x = 0;
    for (int i = 0; i < 3; i++) {
        int y = 0;
        result[i] = () => { Console.WriteLine("{0} {1}", ++x, ++y); };
    }
    return result;
}

1 1
2 1
3 1

using System;

delegate void Setter(int value);

delegate int Getter();

class Test
{
    static void Main() {
        int x = 0;
        Setter s = (int value) => { x = value; };
        Getter g = () => { return x; };
        s(5);
        Console.WriteLine(g());
        s(10);
        Console.WriteLine(g());
    }
}

If a for-loop declares an iteration variable, that variable itself is considered to be declared outside of the loop. Thus,

if the example is changed to capture the iteration variable itself:

only one instance of the iteration variable is captured, which produces the output:

It is possible for anonymous function delegates to share some captured variables yet have separate instances of

others. For example, if F  is changed to

the three delegates capture the same instance of x  but separate instances of y , and the output is:

Separate anonymous functions can capture the same instance of an outer variable. In the example:

the two anonymous functions capture the same instance of the local variable x , and they can thus "communicate"



  

5
10

Evaluation of anonymous function expressionsEvaluation of anonymous function expressions

Query expressions

query_expression
    : from_clause query_body
    ;

from_clause
    : 'from' type? identifier 'in' expression
    ;

query_body
    : query_body_clauses? select_or_group_clause query_continuation?
    ;

query_body_clauses
    : query_body_clause
    | query_body_clauses query_body_clause
    ;

query_body_clause
    : from_clause
    | let_clause
    | where_clause
    | join_clause
    | join_into_clause
    | orderby_clause
    ;

let_clause
    : 'let' identifier '=' expression
    ;

where_clause
    : 'where' boolean_expression
    ;

join_clause
    : 'join' type? identifier 'in' expression 'on' expression 'equals' expression
    ;

join_into_clause
    : 'join' type? identifier 'in' expression 'on' expression 'equals' expression 'into' identifier
    ;

orderby_clause
    : 'orderby' orderings
    ;

orderings
    : ordering (',' ordering)*
    ;

through that variable. The output of the example is:

An anonymous function F  must always be converted to a delegate type D  or an expression tree type E , either

directly or through the execution of a delegate creation expression new D(F) . This conversion determines the

result of the anonymous function, as described in Anonymous function conversions.

Quer y expressionsQuer y expressions  provide a language integrated syntax for queries that is similar to relational and hierarchical

query languages such as SQL and XQuery.



    ;

ordering
    : expression ordering_direction?
    ;

ordering_direction
    : 'ascending'
    | 'descending'
    ;

select_or_group_clause
    : select_clause
    | group_clause
    ;

select_clause
    : 'select' expression
    ;

group_clause
    : 'group' expression 'by' expression
    ;

query_continuation
    : 'into' identifier query_body
    ;

Ambiguities in query expressionsAmbiguities in query expressions

Query expression translationQuery expression translation

A query expression begins with a from  clause and ends with either a select  or group  clause. The initial from

clause can be followed by zero or more from , let , where , join  or orderby  clauses. Each from  clause is a

generator introducing a range var iablerange var iable which ranges over the elements of a sequencesequence. Each let  clause

introduces a range variable representing a value computed by means of previous range variables. Each where

clause is a filter that excludes items from the result. Each join  clause compares specified keys of the source

sequence with keys of another sequence, yielding matching pairs. Each orderby  clause reorders items according

to specified criteria.The final select  or group  clause specifies the shape of the result in terms of the range

variables. Finally, an into  clause can be used to "splice" queries by treating the results of one query as a generator

in a subsequent query.

Query expressions contain a number of "contextual keywords", i.e., identifiers that have special meaning in a given

context. Specifically these are from , where , join , on , equals , into , let , orderby , ascending , descending , 

select , group  and by . In order to avoid ambiguities in query expressions caused by mixed use of these

identifiers as keywords or simple names, these identifiers are considered keywords when occurring anywhere

within a query expression.

For this purpose, a query expression is any expression that starts with " from identifier " followed by any token

except " ; ", " = " or " , ".

In order to use these words as identifiers within a query expression, they can be prefixed with " @ " (Identifiers).

The C# language does not specify the execution semantics of query expressions. Rather, query expressions are

translated into invocations of methods that adhere to the query expression pattern (The query expression pattern).

Specifically, query expressions are translated into invocations of methods named Where , Select , SelectMany , 

Join , GroupJoin , OrderBy , OrderByDescending , ThenBy , ThenByDescending , GroupBy , and Cast .These methods

are expected to have particular signatures and result types, as described in The query expression pattern. These

methods can be instance methods of the object being queried or extension methods that are external to the object,

and they implement the actual execution of the query.

The translation from query expressions to method invocations is a syntactic mapping that occurs before any type



Select and groupby clauses with continuationsSelect and groupby clauses with continuations

from ... into x ...

from x in ( from ... ) ...

from c in customers
group c by c.Country into g
select new { Country = g.Key, CustCount = g.Count() }

from g in
    from c in customers
    group c by c.Country
select new { Country = g.Key, CustCount = g.Count() }

customers.
GroupBy(c => c.Country).
Select(g => new { Country = g.Key, CustCount = g.Count() })

Explicit range variable typesExplicit range variable types

from T x in e

binding or overload resolution has been performed. The translation is guaranteed to be syntactically correct, but it

is not guaranteed to produce semantically correct C# code. Following translation of query expressions, the

resulting method invocations are processed as regular method invocations, and this may in turn uncover errors,

for example if the methods do not exist, if arguments have wrong types, or if the methods are generic and type

inference fails.

A query expression is processed by repeatedly applying the following translations until no further reductions are

possible. The translations are listed in order of application: each section assumes that the translations in the

preceding sections have been performed exhaustively, and once exhausted, a section will not later be revisited in

the processing of the same query expression.

Assignment to range variables is not allowed in query expressions. However a C# implementation is permitted to

not always enforce this restriction, since this may sometimes not be possible with the syntactic translation scheme

presented here.

Certain translations inject range variables with transparent identifiers denoted by * . The special properties of

transparent identifiers are discussed further in Transparent identifiers.

A query expression with a continuation

is translated into

The translations in the following sections assume that queries have no into  continuations.

The example

is translated into

the final translation of which is

A from  clause that explicitly specifies a range variable type



from x in ( e ) . Cast < T > ( )

join T x in e on k1 equals k2

join x in ( e ) . Cast < T > ( ) on k1 equals k2

from Customer c in customers
where c.City == "London"
select c

from c in customers.Cast<Customer>()
where c.City == "London"
select c

customers.
Cast<Customer>().
Where(c => c.City == "London")

Degenerate query expressionsDegenerate query expressions

from x in e select x

( e ) . Select ( x => x )

from c in customers
select c

is translated into

A join  clause that explicitly specifies a range variable type

is translated into

The translations in the following sections assume that queries have no explicit range variable types.

The example

is translated into

the final translation of which is

Explicit range variable types are useful for querying collections that implement the non-generic IEnumerable

interface, but not the generic IEnumerable<T>  interface. In the example above, this would be the case if customers

were of type ArrayList .

A query expression of the form

is translated into

The example

is translated into



customers.Select(c => c)

From, let, where, join and orderby clausesFrom, let, where, join and orderby clauses

from x1 in e1
from x2 in e2
select v

( e1 ) . SelectMany( x1 => e2 , ( x1 , x2 ) => v )

from x1 in e1
from x2 in e2
...

from * in ( e1 ) . SelectMany( x1 => e2 , ( x1 , x2 ) => new { x1 , x2 } )
...

from x in e
let y = f
...

from * in ( e ) . Select ( x => new { x , y = f } )
...

from x in e
where f
...

A degenerate query expression is one that trivially selects the elements of the source. A later phase of the

translation removes degenerate queries introduced by other translation steps by replacing them with their source.

It is important however to ensure that the result of a query expression is never the source object itself, as that

would reveal the type and identity of the source to the client of the query. Therefore this step protects degenerate

queries written directly in source code by explicitly calling Select  on the source. It is then up to the implementers

of Select  and other query operators to ensure that these methods never return the source object itself.

A query expression with a second from  clause followed by a select  clause

is translated into

A query expression with a second from  clause followed by something other than a select  clause:

is translated into

A query expression with a let  clause

is translated into

A query expression with a where  clause

is translated into



from x in ( e ) . Where ( x => f )
...

from x1 in e1
join x2 in e2 on k1 equals k2
select v

( e1 ) . Join( e2 , x1 => k1 , x2 => k2 , ( x1 , x2 ) => v )

from x1 in e1
join x2 in e2 on k1 equals k2
...

from * in ( e1 ) . Join( e2 , x1 => k1 , x2 => k2 , ( x1 , x2 ) => new { x1 , x2 })
...

from x1 in e1
join x2 in e2 on k1 equals k2 into g
select v

( e1 ) . GroupJoin( e2 , x1 => k1 , x2 => k2 , ( x1 , g ) => v )

from x1 in e1
join x2 in e2 on k1 equals k2 into g
...

from * in ( e1 ) . GroupJoin( e2 , x1 => k1 , x2 => k2 , ( x1 , g ) => new { x1 , g })
...

from x in e
orderby k1 , k2 , ..., kn
...

A query expression with a join  clause without an into  followed by a select  clause

is translated into

A query expression with a join  clause without an into  followed by something other than a select  clause

is translated into

A query expression with a join  clause with an into  followed by a select  clause

is translated into

A query expression with a join  clause with an into  followed by something other than a select  clause

is translated into

A query expression with an orderby  clause



from x in ( e ) . 
OrderBy ( x => k1 ) . 
ThenBy ( x => k2 ) .
... .
ThenBy ( x => kn )
...

from c in customers
from o in c.Orders
select new { c.Name, o.OrderID, o.Total }

customers.
SelectMany(c => c.Orders,
     (c,o) => new { c.Name, o.OrderID, o.Total }
)

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

from * in customers.
    SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.OrderID, x.o.Total })

is translated into

If an ordering clause specifies a descending  direction indicator, an invocation of OrderByDescending  or 

ThenByDescending  is produced instead.

The following translations assume that there are no let , where , join  or orderby  clauses, and no more than the

one initial from  clause in each query expression.

The example

is translated into

The example

is translated into

the final translation of which is

where x  is a compiler generated identifier that is otherwise invisible and inaccessible.

The example



from o in orders
let t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
where t >= 1000
select new { o.OrderID, Total = t }

from * in orders.
    Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) })
where t >= 1000 
select new { o.OrderID, Total = t }

orders.
Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) }).
Where(x => x.t >= 1000).
Select(x => new { x.o.OrderID, Total = x.t })

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total }

customers.Join(orders, c => c.CustomerID, o => o.CustomerID,
    (c, o) => new { c.Name, o.OrderDate, o.Total })

from c in customers
join o in orders on c.CustomerID equals o.CustomerID into co
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

from * in customers.
    GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
        (c, co) => new { c, co })
let n = co.Count()
where n >= 10 
select new { c.Name, OrderCount = n }

is translated into

the final translation of which is

where x  is a compiler generated identifier that is otherwise invisible and inaccessible.

The example

is translated into

The example

is translated into

the final translation of which is



customers.
GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
    (c, co) => new { c, co }).
Select(x => new { x, n = x.co.Count() }).
Where(y => y.n >= 10).
Select(y => new { y.x.c.Name, OrderCount = y.n)

from o in orders
orderby o.Customer.Name, o.Total descending
select o

orders.
OrderBy(o => o.Customer.Name).
ThenByDescending(o => o.Total)

Select clausesSelect clauses

from x in e select v

( e ) . Select ( x => v )

( e )

from c in customers.Where(c => c.City == "London")
select c

customers.Where(c => c.City == "London")

Groupby clausesGroupby clauses

from x in e group v by k

where x  and y  are compiler generated identifiers that are otherwise invisible and inaccessible.

The example

has the final translation

A query expression of the form

is translated into

except when v is the identifier x, the translation is simply

For example

is simply translated into

A query expression of the form

is translated into



  

( e ) . GroupBy ( x => k , x => v )

( e ) . GroupBy ( x => k )

from c in customers
group c.Name by c.Country

customers.
GroupBy(c => c.Country, c => c.Name)

Transparent identifiersTransparent identifiers

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.Total }

from * in customers.
    SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.Total }

except when v is the identifier x, the translation is

The example

is translated into

Certain translations inject range variables with transparent identifierstransparent identifiers  denoted by * . Transparent identifiers are

not a proper language feature; they exist only as an intermediate step in the query expression translation process.

When a query translation injects a transparent identifier, further translation steps propagate the transparent

identifier into anonymous functions and anonymous object initializers. In those contexts, transparent identifiers

have the following behavior :

When a transparent identifier occurs as a parameter in an anonymous function, the members of the associated

anonymous type are automatically in scope in the body of the anonymous function.

When a member with a transparent identifier is in scope, the members of that member are in scope as well.

When a transparent identifier occurs as a member declarator in an anonymous object initializer, it introduces a

member with a transparent identifier.

In the translation steps described above, transparent identifiers are always introduced together with

anonymous types, with the intent of capturing multiple range variables as members of a single object. An

implementation of C# is permitted to use a different mechanism than anonymous types to group together

multiple range variables. The following translation examples assume that anonymous types are used, and show

how transparent identifiers can be translated away.

The example

is translated into

which is further translated into



    

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(* => o.Total).
Select(* => new { c.Name, o.Total })

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.Total })

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

from * in customers.
    Join(orders, c => c.CustomerID, o => o.CustomerID, 
        (c, o) => new { c, o })
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o }).
Join(details, * => o.OrderID, d => d.OrderID, (*, d) => new { *, d }).
Join(products, * => d.ProductID, p => p.ProductID, (*, p) => new { *, p }).
Select(* => new { c.Name, o.OrderDate, p.ProductName })

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID,
    (c, o) => new { c, o }).
Join(details, x => x.o.OrderID, d => d.OrderID,
    (x, d) => new { x, d }).
Join(products, y => y.d.ProductID, p => p.ProductID,
    (y, p) => new { y, p }).
Select(z => new { z.y.x.c.Name, z.y.x.o.OrderDate, z.p.ProductName })

The query expression patternThe query expression pattern

which, when transparent identifiers are erased, is equivalent to

where x  is a compiler generated identifier that is otherwise invisible and inaccessible.

The example

is translated into

which is further reduced to

the final translation of which is

where x , y , and z  are compiler generated identifiers that are otherwise invisible and inaccessible.

The Quer y expression patternQuer y expression pattern establishes a pattern of methods that types can implement to support query

expressions. Because query expressions are translated to method invocations by means of a syntactic mapping,

types have considerable flexibility in how they implement the query expression pattern. For example, the methods



delegate R Func<T1,R>(T1 arg1);

delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C
{
    public C<T> Cast<T>();
}

class C<T> : C
{
    public C<T> Where(Func<T,bool> predicate);

    public C<U> Select<U>(Func<T,U> selector);

    public C<V> SelectMany<U,V>(Func<T,C<U>> selector,
        Func<T,U,V> resultSelector);

    public C<V> Join<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
        Func<U,K> innerKeySelector, Func<T,U,V> resultSelector);

    public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
        Func<U,K> innerKeySelector, Func<T,C<U>,V> resultSelector);

    public O<T> OrderBy<K>(Func<T,K> keySelector);

    public O<T> OrderByDescending<K>(Func<T,K> keySelector);

    public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);

    public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
        Func<T,E> elementSelector);
}

class O<T> : C<T>
{
    public O<T> ThenBy<K>(Func<T,K> keySelector);

    public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
    public K Key { get; }
}

of the pattern can be implemented as instance methods or as extension methods because the two have the same

invocation syntax, and the methods can request delegates or expression trees because anonymous functions are

convertible to both.

The recommended shape of a generic type C<T>  that supports the query expression pattern is shown below. A

generic type is used in order to illustrate the proper relationships between parameter and result types, but it is

possible to implement the pattern for non-generic types as well.

The methods above use the generic delegate types Func<T1,R>  and Func<T1,T2,R> , but they could equally well

have used other delegate or expression tree types with the same relationships in parameter and result types.

Notice the recommended relationship between C<T>  and O<T>  which ensures that the ThenBy  and 

ThenByDescending  methods are available only on the result of an OrderBy  or OrderByDescending . Also notice the

recommended shape of the result of GroupBy  -- a sequence of sequences, where each inner sequence has an

additional Key  property.

The System.Linq  namespace provides an implementation of the query operator pattern for any type that



      

                    

Assignment operators

assignment
    : unary_expression assignment_operator expression
    ;

assignment_operator
    : '='
    | '+='
    | '-='
    | '*='
    | '/='
    | '%='
    | '&='
    | '|='
    | '^='
    | '<<='
    | right_shift_assignment
    ;

Simple assignmentSimple assignment

implements the System.Collections.Generic.IEnumerable<T>  interface.

The assignment operators assign a new value to a variable, a property, an event, or an indexer element.

The left operand of an assignment must be an expression classified as a variable, a property access, an indexer

access, or an event access.

The =  operator is called the simple assignment operatorsimple assignment operator . It assigns the value of the right operand to the

variable, property, or indexer element given by the left operand. The left operand of the simple assignment

operator may not be an event access (except as described in Field-like events). The simple assignment operator is

described in Simple assignment.

The assignment operators other than the =  operator are called the compound assignment operatorscompound assignment operators . These

operators perform the indicated operation on the two operands, and then assign the resulting value to the variable,

property, or indexer element given by the left operand. The compound assignment operators are described in

Compound assignment.

The +=  and -=  operators with an event access expression as the left operand are called the event assignment

operators. No other assignment operator is valid with an event access as the left operand. The event assignment

operators are described in Event assignment.

The assignment operators are right-associative, meaning that operations are grouped from right to left. For

example, an expression of the form a = b = c  is evaluated as a = (b = c) .

The =  operator is called the simple assignment operator.

If the left operand of a simple assignment is of the form E.P  or E[Ei]  where E  has the compile-time type 

dynamic , then the assignment is dynamically bound (Dynamic binding). In this case the compile-time type of the

assignment expression is dynamic , and the resolution described below will take place at run-time based on the

run-time type of E .

In a simple assignment, the right operand must be an expression that is implicitly convertible to the type of the left

operand. The operation assigns the value of the right operand to the variable, property, or indexer element given

by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the same type

as the left operand and is always classified as a value.



string[] sa = new string[10];
object[] oa = sa;

oa[0] = null;               // Ok
oa[1] = "Hello";            // Ok
oa[2] = new ArrayList();    // ArrayTypeMismatchException

If the left operand is a property or indexer access, the property or indexer must have a set  accessor. If this is not

the case, a binding-time error occurs.

The run-time processing of a simple assignment of the form x = y  consists of the following steps:

If x  is classified as a variable:

If x  is classified as a property or indexer access:

x  is evaluated to produce the variable.

y  is evaluated and, if required, converted to the type of x  through an implicit conversion (Implicit

conversions).

If the variable given by x  is an array element of a reference_type, a run-time check is performed to

ensure that the value computed for y  is compatible with the array instance of which x  is an element.

The check succeeds if y  is null , or if an implicit reference conversion (Implicit reference conversions)

exists from the actual type of the instance referenced by y  to the actual element type of the array

instance containing x . Otherwise, a System.ArrayTypeMismatchException  is thrown.

The value resulting from the evaluation and conversion of y  is stored into the location given by the

evaluation of x .

The instance expression (if x  is not static ) and the argument list (if x  is an indexer access) associated

with x  are evaluated, and the results are used in the subsequent set  accessor invocation.

y  is evaluated and, if required, converted to the type of x  through an implicit conversion (Implicit

conversions).

The set  accessor of x  is invoked with the value computed for y  as its value  argument.

The array co-variance rules (Array covariance) permit a value of an array type A[]  to be a reference to an instance

of an array type B[] , provided an implicit reference conversion exists from B  to A . Because of these rules,

assignment to an array element of a reference_type requires a run-time check to ensure that the value being

assigned is compatible with the array instance. In the example

the last assignment causes a System.ArrayTypeMismatchException  to be thrown because an instance of ArrayList

cannot be stored in an element of a string[] .

When a property or indexer declared in a struct_type is the target of an assignment, the instance expression

associated with the property or indexer access must be classified as a variable. If the instance expression is

classified as a value, a binding-time error occurs. Because of Member access, the same rule also applies to fields.

Given the declarations:



              

struct Point
{
    int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public int X {
        get { return x; }
        set { x = value; }
    }

    public int Y {
        get { return y; }
        set { y = value; }
    }
}

struct Rectangle
{
    Point a, b;

    public Rectangle(Point a, Point b) {
        this.a = a;
        this.b = b;
    }

    public Point A {
        get { return a; }
        set { a = value; }
    }

    public Point B {
        get { return b; }
        set { b = value; }
    }
}

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

Compound assignmentCompound assignment

in the example

the assignments to p.X , p.Y , r.A , and r.B  are permitted because p  and r  are variables. However, in the

example

the assignments are all invalid, since r.A  and r.B  are not variables.

If the left operand of a compound assignment is of the form E.P  or E[Ei]  where E  has the compile-time type 



      

byte b = 0;
char ch = '\0';
int i = 0;

b += 1;             // Ok
b += 1000;          // Error, b = 1000 not permitted
b += i;             // Error, b = i not permitted
b += (byte)i;       // Ok

ch += 1;            // Error, ch = 1 not permitted
ch += (char)1;      // Ok

int? i = 0;
i += 1;             // Ok

Event assignmentEvent assignment

dynamic , then the assignment is dynamically bound (Dynamic binding). In this case the compile-time type of the

assignment expression is dynamic , and the resolution described below will take place at run-time based on the

run-time type of E .

An operation of the form x op= y  is processed by applying binary operator overload resolution (Binary operator

overload resolution) as if the operation was written x op y . Then,

If the return type of the selected operator is implicitly convertible to the type of x , the operation is evaluated

as x = x op y , except that x  is evaluated only once.

Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is

explicitly convertible to the type of x , and if y  is implicitly convertible to the type of x  or the operator is a

shift operator, then the operation is evaluated as x = (T)(x op y) , where T  is the type of x , except that x  is

evaluated only once.

Otherwise, the compound assignment is invalid, and a binding-time error occurs.

The term "evaluated only once" means that in the evaluation of x op y , the results of any constituent expressions

of x  are temporarily saved and then reused when performing the assignment to x . For example, in the

assignment A()[B()] += C() , where A  is a method returning int[] , and B  and C  are methods returning int ,

the methods are invoked only once, in the order A , B , C .

When the left operand of a compound assignment is a property access or indexer access, the property or indexer

must have both a get  accessor and a set  accessor. If this is not the case, a binding-time error occurs.

The second rule above permits x op= y  to be evaluated as x = (T)(x op y)  in certain contexts. The rule exists

such that the predefined operators can be used as compound operators when the left operand is of type sbyte , 

byte , short , ushort , or char . Even when both arguments are of one of those types, the predefined operators

produce a result of type int , as described in Binary numeric promotions. Thus, without a cast it would not be

possible to assign the result to the left operand.

The intuitive effect of the rule for predefined operators is simply that x op= y  is permitted if both of x op y  and 

x = y  are permitted. In the example

the intuitive reason for each error is that a corresponding simple assignment would also have been an error.

This also means that compound assignment operations support lifted operations. In the example

the lifted operator +(int?,int?)  is used.

If the left operand of a +=  or -=  operator is classified as an event access, then the expression is evaluated as

follows:



 

                   

Expression

expression
    : non_assignment_expression
    | assignment
    ;

non_assignment_expression
    : conditional_expression
    | lambda_expression
    | query_expression
    ;

Constant expressions

constant_expression
    : expression
    ;

The instance expression, if any, of the event access is evaluated.

The right operand of the +=  or -=  operator is evaluated, and, if required, converted to the type of the left

operand through an implicit conversion (Implicit conversions).

An event accessor of the event is invoked, with argument list consisting of the right operand, after evaluation

and, if necessary, conversion. If the operator was += , the add  accessor is invoked; if the operator was -= , the 

remove  accessor is invoked.

An event assignment expression does not yield a value. Thus, an event assignment expression is valid only in the

context of a statement_expression (Expression statements).

An expression is either a non_assignment_expression or an assignment.

A constant_expression is an expression that can be fully evaluated at compile-time.

A constant expression must be the null  literal or a value with one of the following types: sbyte , byte , short , 

ushort , int , uint , long , ulong , char , float , double , decimal , bool , object , string , or any enumeration

type. Only the following constructs are permitted in constant expressions:

Literals (including the null  literal).

References to const  members of class and struct types.

References to members of enumeration types.

References to const  parameters or local variables

Parenthesized sub-expressions, which are themselves constant expressions.

Cast expressions, provided the target type is one of the types listed above.

checked  and unchecked  expressions

Default value expressions

Nameof expressions

The predefined + , - , ! , and ~  unary operators.

The predefined + , - , * , / , % , << , >> , & , | , ^ , && , || , == , != , < , > , <= , and >=  binary

operators, provided each operand is of a type listed above.

The ?:  conditional operator.

The following conversions are permitted in constant expressions:



      

class C {
    const object i = 5;         // error: boxing conversion not permitted
    const object str = "hello"; // error: implicit reference conversion
}

Boolean expressions

boolean_expression
    : expression
    ;

Identity conversions

Numeric conversions

Enumeration conversions

Constant expression conversions

Implicit and explicit reference conversions, provided that the source of the conversions is a constant expression

that evaluates to the null value.

Other conversions including boxing, unboxing and implicit reference conversions of non-null values are not

permitted in constant expressions. For example:

the initialization of i is an error because a boxing conversion is required. The initialization of str is an error because

an implicit reference conversion from a non-null value is required.

Whenever an expression fulfills the requirements listed above, the expression is evaluated at compile-time. This is

true even if the expression is a sub-expression of a larger expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-constant

expressions, except that where run-time evaluation would have thrown an exception, compile-time evaluation

causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked  context, overflows that occur in integral-type

arithmetic operations and conversions during the compile-time evaluation of the expression always cause

compile-time errors (Constant expressions).

Constant expressions occur in the contexts listed below. In these contexts, a compile-time error occurs if an

expression cannot be fully evaluated at compile-time.

Constant declarations (Constants).

Enumeration member declarations (Enum members).

Default arguments of formal parameter lists (Method parameters)

case  labels of a switch  statement (The switch statement).

goto case  statements (The goto statement).

Dimension lengths in an array creation expression (Array creation expressions) that includes an initializer.

Attributes (Attributes).

An implicit constant expression conversion (Implicit constant expression conversions) permits a constant

expression of type int  to be converted to sbyte , byte , short , ushort , uint , or ulong , provided the value of

the constant expression is within the range of the destination type.

A boolean_expression is an expression that yields a result of type bool ; either directly or through application of 

operator true  in certain contexts as specified in the following.

The controlling conditional expression of an if_statement (The if statement), while_statement (The while statement),



do_statement (The do statement), or for_statement (The for statement) is a boolean_expression. The controlling

conditional expression of the ?:  operator (Conditional operator) follows the same rules as a boolean_expression,

but for reasons of operator precedence is classified as a conditional_or_expression.

A boolean_expression E  is required to be able to produce a value of type bool , as follows:

If E  is implicitly convertible to bool  then at runtime that implicit conversion is applied.

Otherwise, unary operator overload resolution (Unary operator overload resolution) is used to find a unique

best implementation of operator true  on E , and that implementation is applied at runtime.

If no such operator is found, a binding-time error occurs.

The DBBool  struct type in Database boolean type provides an example of a type that implements operator true

and operator false .
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statement
    : labeled_statement
    | declaration_statement
    | embedded_statement
    ;

embedded_statement
    : block
    | empty_statement
    | expression_statement
    | selection_statement
    | iteration_statement
    | jump_statement
    | try_statement
    | checked_statement
    | unchecked_statement
    | lock_statement
    | using_statement
    | yield_statement
    | embedded_statement_unsafe
    ;

void F(bool b) {
    if (b)
        int i = 44;
}

End points and reachability

C# provides a variety of statements. Most of these statements will be familiar to developers who have programmed

in C and C++.

The embedded_statement nonterminal is used for statements that appear within other statements. The use of

embedded_statement rather than statement excludes the use of declaration statements and labeled statements in

these contexts. The example

results in a compile-time error because an if  statement requires an embedded_statement rather than a statement

for its if branch. If this code were permitted, then the variable i  would be declared, but it could never be used.

Note, however, that by placing i 's declaration in a block, the example is valid.

Every statement has an end pointend point. In intuitive terms, the end point of a statement is the location that immediately

follows the statement. The execution rules for composite statements (statements that contain embedded

statements) specify the action that is taken when control reaches the end point of an embedded statement. For

example, when control reaches the end point of a statement in a block, control is transferred to the next statement

in the block.

If a statement can possibly be reached by execution, the statement is said to be reachablereachable. Conversely, if there is

no possibility that a statement will be executed, the statement is said to be unreachableunreachable.

In the example

https://github.com/dotnet/csharplang/blob/master/spec/statements.md


void F() {
    Console.WriteLine("reachable");
    goto Label;
    Console.WriteLine("unreachable");
    Label:
    Console.WriteLine("reachable");
}

void F() {
    const int i = 1;
    if (i == 2) Console.WriteLine("unreachable");
}

void F() {
    int i = 1;
    if (i == 2) Console.WriteLine("reachable");
}

void F(int x) {
    Console.WriteLine("start");
    if (x < 0) Console.WriteLine("negative");
}

the second invocation of Console.WriteLine  is unreachable because there is no possibility that the statement will

be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an error for a

statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis

according to the reachability rules defined for each statement. The flow analysis takes into account the values of

constant expressions (Constant expressions) that control the behavior of statements, but the possible values of

non-constant expressions are not considered. In other words, for purposes of control flow analysis, a non-constant

expression of a given type is considered to have any possible value of that type.

In the example

the boolean expression of the if  statement is a constant expression because both operands of the ==  operator

are constants. As the constant expression is evaluated at compile-time, producing the value false , the 

Console.WriteLine  invocation is considered unreachable. However, if i  is changed to be a local variable

the Console.WriteLine  invocation is considered reachable, even though, in reality, it will never be executed.

The block of a function member is always considered reachable. By successively evaluating the reachability rules of

each statement in a block, the reachability of any given statement can be determined.

In the example

the reachability of the second Console.WriteLine  is determined as follows:

The first Console.WriteLine  expression statement is reachable because the block of the F  method is reachable.

The end point of the first Console.WriteLine  expression statement is reachable because that statement is

reachable.

The if  statement is reachable because the end point of the first Console.WriteLine  expression statement is

reachable.



       

    

Blocks

block
    : '{' statement_list? '}'
    ;

Statement listsStatement lists

statement_list
    : statement+
    ;

The second Console.WriteLine  expression statement is reachable because the boolean expression of the if

statement does not have the constant value false .

There are two situations in which it is a compile-time error for the end point of a statement to be reachable:

Because the switch  statement does not permit a switch section to "fall through" to the next switch section, it is

a compile-time error for the end point of the statement list of a switch section to be reachable. If this error

occurs, it is typically an indication that a break  statement is missing.

It is a compile-time error for the end point of the block of a function member that computes a value to be

reachable. If this error occurs, it typically is an indication that a return  statement is missing.

A block permits multiple statements to be written in contexts where a single statement is allowed.

A block consists of an optional statement_list (Statement lists), enclosed in braces. If the statement list is omitted,

the block is said to be empty.

A block may contain declaration statements (Declaration statements). The scope of a local variable or constant

declared in a block is the block.

A block is executed as follows:

If the block is empty, control is transferred to the end point of the block.

If the block is not empty, control is transferred to the statement list. When and if control reaches the end point of

the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement list is reachable.

A block that contains one or more yield  statements (The yield statement) is called an iterator block. Iterator

blocks are used to implement function members as iterators (Iterators). Some additional restrictions apply to

iterator blocks:

It is a compile-time error for a return  statement to appear in an iterator block (but yield return  statements

are permitted).

It is a compile-time error for an iterator block to contain an unsafe context (Unsafe contexts). An iterator block

always defines a safe context, even when its declaration is nested in an unsafe context.

A statement liststatement list consists of one or more statements written in sequence. Statement lists occur in blocks (Blocks)

and in switch_blocks (The switch statement).

A statement list is executed by transferring control to the first statement. When and if control reaches the end point

of a statement, control is transferred to the next statement. When and if control reaches the end point of the last

statement, control is transferred to the end point of the statement list.



  

The empty statement

empty_statement
    : ';'
    ;

bool ProcessMessage() {...}

void ProcessMessages() {
    while (ProcessMessage())
        ;
}

void F() {
    ...
    if (done) goto exit;
    ...
    exit: ;
}

Labeled statements

labeled_statement
    : identifier ':' statement
    ;

A statement in a statement list is reachable if at least one of the following is true:

The statement is the first statement and the statement list itself is reachable.

The end point of the preceding statement is reachable.

The statement is a labeled statement and the label is referenced by a reachable goto  statement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

An empty_statement does nothing.

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end point of

an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing a while  statement with a null body:

Also, an empty statement can be used to declare a label just before the closing " } " of a block:

A labeled_statement permits a statement to be prefixed by a label. Labeled statements are permitted in blocks, but

are not permitted as embedded statements.

A labeled statement declares a label with the name given by the identifier. The scope of a label is the whole block in

which the label is declared, including any nested blocks. It is a compile-time error for two labels with the same

name to have overlapping scopes.

A label can be referenced from goto  statements (The goto statement) within the scope of the label. This means

that goto  statements can transfer control within blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example



  

                      

int F(int x) {
    if (x >= 0) goto x;
    x = -x;
    x: return x;
}

Declaration statements

declaration_statement
    : local_variable_declaration ';'
    | local_constant_declaration ';'
    ;

Local variable declarationsLocal variable declarations

local_variable_declaration
    : local_variable_type local_variable_declarators
    ;

local_variable_type
    : type
    | 'var'
    ;

local_variable_declarators
    : local_variable_declarator
    | local_variable_declarators ',' local_variable_declarator
    ;

local_variable_declarator
    : identifier
    | identifier '=' local_variable_initializer
    ;

local_variable_initializer
    : expression
    | array_initializer
    | local_variable_initializer_unsafe
    ;

is valid and uses the name x  as both a parameter and a label.

Execution of a labeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, a labeled statement is reachable if the label is

referenced by a reachable goto  statement. (Exception: If a goto  statement is inside a try  that includes a finally

block, and the labeled statement is outside the try , and the end point of the finally  block is unreachable, then

the labeled statement is not reachable from that goto  statement.)

A declaration_statement declares a local variable or constant. Declaration statements are permitted in blocks, but

are not permitted as embedded statements.

A local_variable_declaration declares one or more local variables.

The local_variable_type of a local_variable_declaration either directly specifies the type of the variables introduced

by the declaration, or indicates with the identifier var  that the type should be inferred based on an initializer. The

type is followed by a list of local_variable_declarators, each of which introduces a new variable. A

local_variable_declarator consists of an identifier that names the variable, optionally followed by an " = " token and

a local_variable_initializer that gives the initial value of the variable.



var x;               // Error, no initializer to infer type from
var y = {1, 2, 3};   // Error, array initializer not permitted
var z = null;        // Error, null does not have a type
var u = x => x + 1;  // Error, anonymous functions do not have a type
var v = v++;         // Error, initializer cannot refer to variable itself

void F() {
    int x = 1, y, z = x * 2;
}

void F() {
    int x; x = 1;
    int y;
    int z; z = x * 2;
}

var i = 5;
var s = "Hello";
var d = 1.0;
var numbers = new int[] {1, 2, 3};
var orders = new Dictionary<int,Order>();

In the context of a local variable declaration, the identifier var acts as a contextual keyword (Keywords).When the

local_variable_type is specified as var  and no type named var  is in scope, the declaration is an implicitly typedimplicitly typed

local var iable declarationlocal var iable declaration, whose type is inferred from the type of the associated initializer expression. Implicitly

typed local variable declarations are subject to the following restrictions:

The local_variable_declaration cannot include multiple local_variable_declarators.

The local_variable_declarator must include a local_variable_initializer.

The local_variable_initializer must be an expression.

The initializer expression must have a compile-time type.

The initializer expression cannot refer to the declared variable itself

The following are examples of incorrect implicitly typed local variable declarations:

The value of a local variable is obtained in an expression using a simple_name (Simple names), and the value of a

local variable is modified using an assignment (Assignment operators). A local variable must be definitely assigned

(Definite assignment) at each location where its value is obtained.

The scope of a local variable declared in a local_variable_declaration is the block in which the declaration occurs. It

is an error to refer to a local variable in a textual position that precedes the local_variable_declarator of the local

variable. Within the scope of a local variable, it is a compile-time error to declare another local variable or constant

with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single variables

with the same type. Furthermore, a variable initializer in a local variable declaration corresponds exactly to an

assignment statement that is inserted immediately after the declaration.

The example

corresponds exactly to

In an implicitly typed local variable declaration, the type of the local variable being declared is taken to be the same

as the type of the expression used to initialize the variable. For example:



    

              

int i = 5;
string s = "Hello";
double d = 1.0;
int[] numbers = new int[] {1, 2, 3};
Dictionary<int,Order> orders = new Dictionary<int,Order>();

Local constant declarationsLocal constant declarations

local_constant_declaration
    : 'const' type constant_declarators
    ;

constant_declarators
    : constant_declarator (',' constant_declarator)*
    ;

constant_declarator
    : identifier '=' constant_expression
    ;

Expression statements

The implicitly typed local variable declarations above are precisely equivalent to the following explicitly typed

declarations:

A local_constant_declaration declares one or more local constants.

The type of a local_constant_declaration specifies the type of the constants introduced by the declaration. The type

is followed by a list of constant_declarators, each of which introduces a new constant. A constant_declarator

consists of an identifier that names the constant, followed by an " = " token, followed by a constant_expression

(Constant expressions) that gives the value of the constant.

The type and constant_expression of a local constant declaration must follow the same rules as those of a constant

member declaration (Constants).

The value of a local constant is obtained in an expression using a simple_name (Simple names).

The scope of a local constant is the block in which the declaration occurs. It is an error to refer to a local constant in

a textual position that precedes its constant_declarator. Within the scope of a local constant, it is a compile-time

error to declare another local variable or constant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple declarations of single

constants with the same type.

An expression_statement evaluates a given expression. The value computed by the expression, if any, is discarded.



    

expression_statement
    : statement_expression ';'
    ;

statement_expression
    : invocation_expression
    | null_conditional_invocation_expression
    | object_creation_expression
    | assignment
    | post_increment_expression
    | post_decrement_expression
    | pre_increment_expression
    | pre_decrement_expression
    | await_expression
    ;

Selection statements

selection_statement
    : if_statement
    | switch_statement
    ;

The if statementThe if statement

if_statement
    : 'if' '(' boolean_expression ')' embedded_statement
    | 'if' '(' boolean_expression ')' embedded_statement 'else' embedded_statement
    ;

if (x) if (y) F(); else G();

if (x) {
    if (y) {
        F();
    }
    else {
        G();
    }
}

Not all expressions are permitted as statements. In particular, expressions such as x + y  and x == 1  that merely

compute a value (which will be discarded), are not permitted as statements.

Execution of an expression_statement evaluates the contained expression and then transfers control to the end

point of the expression_statement. The end point of an expression_statement is reachable if that

expression_statement is reachable.

Selection statements select one of a number of possible statements for execution based on the value of some

expression.

The if  statement selects a statement for execution based on the value of a boolean expression.

An else  part is associated with the lexically nearest preceding if  that is allowed by the syntax. Thus, an if

statement of the form

is equivalent to



              The switch statementThe switch statement

switch_statement
    : 'switch' '(' expression ')' switch_block
    ;

switch_block
    : '{' switch_section* '}'
    ;

switch_section
    : switch_label+ statement_list
    ;

switch_label
    : 'case' constant_expression ':'
    | 'default' ':'
    ;

An if  statement is executed as follows:

The boolean_expression (Boolean expressions) is evaluated.

If the boolean expression yields true , control is transferred to the first embedded statement. When and if

control reaches the end point of that statement, control is transferred to the end point of the if  statement.

If the boolean expression yields false  and if an else  part is present, control is transferred to the second

embedded statement. When and if control reaches the end point of that statement, control is transferred to the

end point of the if  statement.

If the boolean expression yields false  and if an else  part is not present, control is transferred to the end point

of the if  statement.

The first embedded statement of an if  statement is reachable if the if  statement is reachable and the boolean

expression does not have the constant value false .

The second embedded statement of an if  statement, if present, is reachable if the if  statement is reachable and

the boolean expression does not have the constant value true .

The end point of an if  statement is reachable if the end point of at least one of its embedded statements is

reachable. In addition, the end point of an if  statement with no else  part is reachable if the if  statement is

reachable and the boolean expression does not have the constant value true .

The switch statement selects for execution a statement list having an associated switch label that corresponds to

the value of the switch expression.

A switch_statement consists of the keyword switch , followed by a parenthesized expression (called the switch

expression), followed by a switch_block. The switch_block consists of zero or more switch_sections, enclosed in

braces. Each switch_section consists of one or more switch_labels followed by a statement_list (Statement lists).

The governing typegoverning type of a switch  statement is established by the switch expression.

If the type of the switch expression is sbyte , byte , short , ushort , int , uint , long , ulong , bool , char , 

string , or an enum_type, or if it is the nullable type corresponding to one of these types, then that is the

governing type of the switch  statement.

Otherwise, exactly one user-defined implicit conversion (User-defined conversions) must exist from the type of

the switch expression to one of the following possible governing types: sbyte , byte , short , ushort , int , 

uint , long , ulong , char , string , or, a nullable type corresponding to one of those types.

Otherwise, if no such implicit conversion exists, or if more than one such implicit conversion exists, a compile-

time error occurs.



switch (i) {
case 0:
    CaseZero();
    break;
case 1:
    CaseOne();
    break;
default:
    CaseOthers();
    break;
}

switch (i) {
case 0:
    CaseZero();
case 1:
    CaseZeroOrOne();
default:
    CaseAny();
}

The constant expression of each case  label must denote a value that is implicitly convertible (Implicit conversions)

to the governing type of the switch  statement. A compile-time error occurs if two or more case  labels in the

same switch  statement specify the same constant value.

There can be at most one default  label in a switch statement.

A switch  statement is executed as follows:

The switch expression is evaluated and converted to the governing type.

If one of the constants specified in a case  label in the same switch  statement is equal to the value of the

switch expression, control is transferred to the statement list following the matched case  label.

If none of the constants specified in case  labels in the same switch  statement is equal to the value of the

switch expression, and if a default  label is present, control is transferred to the statement list following the 

default  label.

If none of the constants specified in case  labels in the same switch  statement is equal to the value of the

switch expression, and if no default  label is present, control is transferred to the end point of the switch

statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is known as

the "no fall through" rule. The example

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch section is not

permitted to "fall through" to the next switch section, and the example

results in a compile-time error. When execution of a switch section is to be followed by execution of another switch

section, an explicit goto case  or goto default  statement must be used:



switch (i) {
case 0:
    CaseZero();
    goto case 1;
case 1:
    CaseZeroOrOne();
    goto default;
default:
    CaseAny();
    break;
}

switch (i) {
case 0:
    CaseZero();
    break;
case 1:
    CaseOne();
    break;
case 2:
default:
    CaseTwo();
    break;
}

switch (i) {
default:
    CaseAny();
    break;
case 1:
    CaseZeroOrOne();
    goto default;
case 0:
    CaseZero();
    goto case 1;
}

Multiple labels are permitted in a switch_section. The example

is valid. The example does not violate the "no fall through" rule because the labels case 2:  and default:  are part

of the same switch_section.

The "no fall through" rule prevents a common class of bugs that occur in C and C++ when break  statements are

accidentally omitted. In addition, because of this rule, the switch sections of a switch  statement can be arbitrarily

rearranged without affecting the behavior of the statement. For example, the sections of the switch  statement

above can be reversed without affecting the behavior of the statement:

The statement list of a switch section typically ends in a break , goto case , or goto default  statement, but any

construct that renders the end point of the statement list unreachable is permitted. For example, a while  statement

controlled by the boolean expression true  is known to never reach its end point. Likewise, a throw  or return

statement always transfers control elsewhere and never reaches its end point. Thus, the following example is valid:



switch (i) {
case 0:
    while (true) F();
case 1:
    throw new ArgumentException();
case 2:
    return;
}

void DoCommand(string command) {
    switch (command.ToLower()) {
    case "run":
        DoRun();
        break;
    case "save":
        DoSave();
        break;
    case "quit":
        DoQuit();
        break;
    default:
        InvalidCommand(command);
        break;
    }
}

Iteration statements

The governing type of a switch  statement may be the type string . For example:

Like the string equality operators (String equality operators), the switch  statement is case sensitive and will

execute a given switch section only if the switch expression string exactly matches a case  label constant.

When the governing type of a switch  statement is string , the value null  is permitted as a case label constant.

The statement_lists of a switch_block may contain declaration statements (Declaration statements). The scope of a

local variable or constant declared in a switch block is the switch block.

The statement list of a given switch section is reachable if the switch  statement is reachable and at least one of the

following is true:

The switch expression is a non-constant value.

The switch expression is a constant value that matches a case  label in the switch section.

The switch expression is a constant value that doesn't match any case  label, and the switch section contains the

default  label.

A switch label of the switch section is referenced by a reachable goto case  or goto default  statement.

The end point of a switch  statement is reachable if at least one of the following is true:

The switch  statement contains a reachable break  statement that exits the switch  statement.

The switch  statement is reachable, the switch expression is a non-constant value, and no default  label is

present.

The switch  statement is reachable, the switch expression is a constant value that doesn't match any case  label,

and no default  label is present.

Iteration statements repeatedly execute an embedded statement.



    

    

iteration_statement
    : while_statement
    | do_statement
    | for_statement
    | foreach_statement
    ;

The while statementThe while statement

while_statement
    : 'while' '(' boolean_expression ')' embedded_statement
    ;

The do statementThe do statement

do_statement
    : 'do' embedded_statement 'while' '(' boolean_expression ')' ';'
    ;

The while  statement conditionally executes an embedded statement zero or more times.

A while  statement is executed as follows:

The boolean_expression (Boolean expressions) is evaluated.

If the boolean expression yields true , control is transferred to the embedded statement. When and if control

reaches the end point of the embedded statement (possibly from execution of a continue  statement), control is

transferred to the beginning of the while  statement.

If the boolean expression yields false , control is transferred to the end point of the while  statement.

Within the embedded statement of a while  statement, a break  statement (The break statement) may be used to

transfer control to the end point of the while  statement (thus ending iteration of the embedded statement), and a 

continue  statement (The continue statement) may be used to transfer control to the end point of the embedded

statement (thus performing another iteration of the while  statement).

The embedded statement of a while  statement is reachable if the while  statement is reachable and the boolean

expression does not have the constant value false .

The end point of a while  statement is reachable if at least one of the following is true:

The while  statement contains a reachable break  statement that exits the while  statement.

The while  statement is reachable and the boolean expression does not have the constant value true .

The do  statement conditionally executes an embedded statement one or more times.

A do  statement is executed as follows:

Control is transferred to the embedded statement.

When and if control reaches the end point of the embedded statement (possibly from execution of a continue

statement), the boolean_expression (Boolean expressions) is evaluated. If the boolean expression yields true ,

control is transferred to the beginning of the do  statement. Otherwise, control is transferred to the end point of

the do  statement.

Within the embedded statement of a do  statement, a break  statement (The break statement) may be used to

transfer control to the end point of the do  statement (thus ending iteration of the embedded statement), and a 

continue  statement (The continue statement) may be used to transfer control to the end point of the embedded

statement.



        The for statementThe for statement

for_statement
    : 'for' '(' for_initializer? ';' for_condition? ';' for_iterator? ')' embedded_statement
    ;

for_initializer
    : local_variable_declaration
    | statement_expression_list
    ;

for_condition
    : boolean_expression
    ;

for_iterator
    : statement_expression_list
    ;

statement_expression_list
    : statement_expression (',' statement_expression)*
    ;

The embedded statement of a do  statement is reachable if the do  statement is reachable.

The end point of a do  statement is reachable if at least one of the following is true:

The do  statement contains a reachable break  statement that exits the do  statement.

The end point of the embedded statement is reachable and the boolean expression does not have the constant

value true .

The for  statement evaluates a sequence of initialization expressions and then, while a condition is true, repeatedly

executes an embedded statement and evaluates a sequence of iteration expressions.

The for_initializer, if present, consists of either a local_variable_declaration (Local variable declarations) or a list of

statement_expressions (Expression statements) separated by commas. The scope of a local variable declared by a

for_initializer starts at the local_variable_declarator for the variable and extends to the end of the embedded

statement. The scope includes the for_condition and the for_iterator.

The for_condition, if present, must be a boolean_expression (Boolean expressions).

The for_iterator, if present, consists of a list of statement_expressions (Expression statements) separated by

commas.

A for statement is executed as follows:

If a for_initializer is present, the variable initializers or statement expressions are executed in the order they are

written. This step is only performed once.

If a for_condition is present, it is evaluated.

If the for_condition is not present or if the evaluation yields true , control is transferred to the embedded

statement. When and if control reaches the end point of the embedded statement (possibly from execution of a 

continue  statement), the expressions of the for_iterator, if any, are evaluated in sequence, and then another

iteration is performed, starting with evaluation of the for_condition in the step above.

If the for_condition is present and the evaluation yields false , control is transferred to the end point of the 

for  statement.

Within the embedded statement of a for  statement, a break  statement (The break statement) may be used to

transfer control to the end point of the for  statement (thus ending iteration of the embedded statement), and a 

continue  statement (The continue statement) may be used to transfer control to the end point of the embedded



    The foreach statementThe foreach statement

foreach_statement
    : 'foreach' '(' local_variable_type identifier 'in' expression ')' embedded_statement
    ;

statement (thus executing the for_iterator and performing another iteration of the for  statement, starting with the

for_condition).

The embedded statement of a for  statement is reachable if one of the following is true:

The for  statement is reachable and no for_condition is present.

The for  statement is reachable and a for_condition is present and does not have the constant value false .

The end point of a for  statement is reachable if at least one of the following is true:

The for  statement contains a reachable break  statement that exits the for  statement.

The for  statement is reachable and a for_condition is present and does not have the constant value true .

The foreach  statement enumerates the elements of a collection, executing an embedded statement for each

element of the collection.

The type and identifier of a foreach  statement declare the iteration var iableiteration var iable of the statement. If the var

identifier is given as the local_variable_type, and no type named var  is in scope, the iteration variable is said to be

an implicitly typed iteration var iableimplicitly typed iteration var iable, and its type is taken to be the element type of the foreach  statement, as

specified below. The iteration variable corresponds to a read-only local variable with a scope that extends over the

embedded statement. During execution of a foreach  statement, the iteration variable represents the collection

element for which an iteration is currently being performed. A compile-time error occurs if the embedded

statement attempts to modify the iteration variable (via assignment or the ++  and --  operators) or pass the

iteration variable as a ref  or out  parameter.

In the following, for brevity, IEnumerable , IEnumerator , IEnumerable<T>  and IEnumerator<T>  refer to the

corresponding types in the namespaces System.Collections  and System.Collections.Generic .

The compile-time processing of a foreach statement first determines the collection typecollection type, enumerator typeenumerator type and

element typeelement type of the expression. This determination proceeds as follows:

If the type X  of expression is an array type then there is an implicit reference conversion from X  to the 

IEnumerable  interface (since System.Array  implements this interface). The collection typecollection type is the 

IEnumerable  interface, the enumerator typeenumerator type is the IEnumerator  interface and the element typeelement type is the

element type of the array type X .

If the type X  of expression is dynamic  then there is an implicit conversion from expression to the 

IEnumerable  interface (Implicit dynamic conversions). The collection typecollection type is the IEnumerable  interface and

the enumerator typeenumerator type is the IEnumerator  interface. If the var  identifier is given as the local_variable_type

then the element typeelement type is dynamic , otherwise it is object .

Otherwise, determine whether the type X  has an appropriate GetEnumerator  method:

Perform member lookup on the type X  with identifier GetEnumerator  and no type arguments. If the

member lookup does not produce a match, or it produces an ambiguity, or produces a match that is not a

method group, check for an enumerable interface as described below. It is recommended that a warning

be issued if member lookup produces anything except a method group or no match.

Perform overload resolution using the resulting method group and an empty argument list. If overload

resolution results in no applicable methods, results in an ambiguity, or results in a single best method but

that method is either static or not public, check for an enumerable interface as described below. It is



foreach (V v in x) embedded_statement

{
    E e = ((C)(x)).GetEnumerator();
    try {
        while (e.MoveNext()) {
            V v = (V)(T)e.Current;
            embedded_statement
        }
    }
    finally {
        ... // Dispose e
    }
}

recommended that a warning be issued if overload resolution produces anything except an

unambiguous public instance method or no applicable methods.

If the return type E  of the GetEnumerator  method is not a class, struct or interface type, an error is

produced and no further steps are taken.

Member lookup is performed on E  with the identifier Current  and no type arguments. If the member

lookup produces no match, the result is an error, or the result is anything except a public instance

property that permits reading, an error is produced and no further steps are taken.

Member lookup is performed on E  with the identifier MoveNext  and no type arguments. If the member

lookup produces no match, the result is an error, or the result is anything except a method group, an

error is produced and no further steps are taken.

Overload resolution is performed on the method group with an empty argument list. If overload

resolution results in no applicable methods, results in an ambiguity, or results in a single best method but

that method is either static or not public, or its return type is not bool , an error is produced and no

further steps are taken.

The collection typecollection type is X , the enumerator typeenumerator type is E , and the element typeelement type is the type of the 

Current  property.

Otherwise, check for an enumerable interface:

If among all the types Ti  for which there is an implicit conversion from X  to IEnumerable<Ti> , there is

a unique type T  such that T  is not dynamic  and for all the other Ti  there is an implicit conversion

from IEnumerable<T>  to IEnumerable<Ti> , then the collection typecollection type is the interface IEnumerable<T> , the

enumerator typeenumerator type is the interface IEnumerator<T> , and the element typeelement type is T .

Otherwise, if there is more than one such type T , then an error is produced and no further steps are

taken.

Otherwise, if there is an implicit conversion from X  to the System.Collections.IEnumerable  interface,

then the collection typecollection type is this interface, the enumerator typeenumerator type is the interface 

System.Collections.IEnumerator , and the element typeelement type is object .

Otherwise, an error is produced and no further steps are taken.

The above steps, if successful, unambiguously produce a collection type C , enumerator type E  and element type 

T . A foreach statement of the form

is then expanded to:

The variable e  is not visible to or accessible to the expression x  or the embedded statement or any other source

code of the program. The variable v  is read-only in the embedded statement. If there is not an explicit conversion

(Explicit conversions) from T  (the element type) to V  (the local_variable_type in the foreach statement), an error

is produced and no further steps are taken. If x  has the value null , a System.NullReferenceException  is thrown at



int[] values = { 7, 9, 13 };
Action f = null;

foreach (var value in values)
{
    if (f == null) f = () => Console.WriteLine("First value: " + value);
}

f();

run-time.

An implementation is permitted to implement a given foreach-statement differently, e.g. for performance reasons,

as long as the behavior is consistent with the above expansion.

The placement of v  inside the while loop is important for how it is captured by any anonymous function occurring

in the embedded_statement.

For example:

If v  was declared outside of the while loop, it would be shared among all iterations, and its value after the for loop

would be the final value, 13 , which is what the invocation of f  would print. Instead, because each iteration has its

own variable v , the one captured by f  in the first iteration will continue to hold the value 7 , which is what will

be printed. (Note: earlier versions of C# declared v  outside of the while loop.)

The body of the finally block is constructed according to the following steps:

finally {
}

finally {
    System.IDisposable d = e as System.IDisposable;
    if (d != null) d.Dispose();
}

If there is an implicit conversion from E  to the System.IDisposable  interface, then

finally {
    ((System.IDisposable)e).Dispose();
}

finally {
    if (e != null) ((System.IDisposable)e).Dispose();
}

If E  is a non-nullable value type then the finally clause is expanded to the semantic equivalent of:

Otherwise the finally clause is expanded to the semantic equivalent of:

except that if E  is a value type, or a type parameter instantiated to a value type, then the cast of e  to 

System.IDisposable  will not cause boxing to occur.

Otherwise, if E  is a sealed type, the finally clause is expanded to an empty block:

Otherwise, the finally clause is expanded to:



using System;

class Test
{
    static void Main() {
        double[,] values = {
            {1.2, 2.3, 3.4, 4.5},
            {5.6, 6.7, 7.8, 8.9}
        };

        foreach (double elementValue in values)
            Console.Write("{0} ", elementValue);

        Console.WriteLine();
    }
}

1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9

int[] numbers = { 1, 3, 5, 7, 9 };
foreach (var n in numbers) Console.WriteLine(n);

Jump statements

jump_statement
    : break_statement
    | continue_statement
    | goto_statement
    | return_statement
    | throw_statement
    ;

The local variable d  is not visible to or accessible to any user code. In particular, it does not conflict with any

other variable whose scope includes the finally block.

The order in which foreach  traverses the elements of an array, is as follows: For single-dimensional arrays

elements are traversed in increasing index order, starting with index 0  and ending with index Length - 1 . For

multi-dimensional arrays, elements are traversed such that the indices of the rightmost dimension are increased

first, then the next left dimension, and so on to the left.

The following example prints out each value in a two-dimensional array, in element order :

The output produced is as follows:

In the example

the type of n  is inferred to be int , the element type of numbers .

Jump statements unconditionally transfer control.

The location to which a jump statement transfers control is called the targettarget of the jump statement.

When a jump statement occurs within a block, and the target of that jump statement is outside that block, the jump

statement is said to exitexit the block. While a jump statement may transfer control out of a block, it can never transfer

control into a block.

Execution of jump statements is complicated by the presence of intervening try  statements. In the absence of



      

using System;

class Test
{
    static void Main() {
        while (true) {
            try {
                try {
                    Console.WriteLine("Before break");
                    break;
                }
                finally {
                    Console.WriteLine("Innermost finally block");
                }
            }
            finally {
                Console.WriteLine("Outermost finally block");
            }
        }
        Console.WriteLine("After break");
    }
}

Before break
Innermost finally block
Outermost finally block
After break

The break statementThe break statement

break_statement
    : 'break' ';'
    ;

such try  statements, a jump statement unconditionally transfers control from the jump statement to its target. In

the presence of such intervening try  statements, execution is more complex. If the jump statement exits one or

more try  blocks with associated finally  blocks, control is initially transferred to the finally  block of the

innermost try  statement. When and if control reaches the end point of a finally  block, control is transferred to

the finally  block of the next enclosing try  statement. This process is repeated until the finally  blocks of all

intervening try  statements have been executed.

In the example

the finally  blocks associated with two try  statements are executed before control is transferred to the target of

the jump statement.

The output produced is as follows:

The break  statement exits the nearest enclosing switch , while , do , for , or foreach  statement.

The target of a break  statement is the end point of the nearest enclosing switch , while , do , for , or foreach

statement. If a break  statement is not enclosed by a switch , while , do , for , or foreach  statement, a compile-

time error occurs.

When multiple switch , while , do , for , or foreach  statements are nested within each other, a break  statement

applies only to the innermost statement. To transfer control across multiple nesting levels, a goto  statement (The

goto statement) must be used.

A break  statement cannot exit a finally  block (The try statement). When a break  statement occurs within a 



      

          

The continue statementThe continue statement

continue_statement
    : 'continue' ';'
    ;

The goto statementThe goto statement

goto_statement
    : 'goto' identifier ';'
    | 'goto' 'case' constant_expression ';'
    | 'goto' 'default' ';'
    ;

finally  block, the target of the break  statement must be within the same finally  block; otherwise, a compile-

time error occurs.

A break  statement is executed as follows:

If the break  statement exits one or more try  blocks with associated finally  blocks, control is initially

transferred to the finally  block of the innermost try  statement. When and if control reaches the end point of

a finally  block, control is transferred to the finally  block of the next enclosing try  statement. This process

is repeated until the finally  blocks of all intervening try  statements have been executed.

Control is transferred to the target of the break  statement.

Because a break  statement unconditionally transfers control elsewhere, the end point of a break  statement is

never reachable.

The continue  statement starts a new iteration of the nearest enclosing while , do , for , or foreach  statement.

The target of a continue  statement is the end point of the embedded statement of the nearest enclosing while , 

do , for , or foreach  statement. If a continue  statement is not enclosed by a while , do , for , or foreach

statement, a compile-time error occurs.

When multiple while , do , for , or foreach  statements are nested within each other, a continue  statement

applies only to the innermost statement. To transfer control across multiple nesting levels, a goto  statement (The

goto statement) must be used.

A continue  statement cannot exit a finally  block (The try statement). When a continue  statement occurs within

a finally  block, the target of the continue  statement must be within the same finally  block; otherwise a

compile-time error occurs.

A continue  statement is executed as follows:

If the continue  statement exits one or more try  blocks with associated finally  blocks, control is initially

transferred to the finally  block of the innermost try  statement. When and if control reaches the end point of

a finally  block, control is transferred to the finally  block of the next enclosing try  statement. This process

is repeated until the finally  blocks of all intervening try  statements have been executed.

Control is transferred to the target of the continue  statement.

Because a continue  statement unconditionally transfers control elsewhere, the end point of a continue  statement

is never reachable.

The goto  statement transfers control to a statement that is marked by a label.

The target of a goto  identifier statement is the labeled statement with the given label. If a label with the given

name does not exist in the current function member, or if the goto  statement is not within the scope of the label, a



  

using System;

class Test
{
    static void Main(string[] args) {
        string[,] table = {
            {"Red", "Blue", "Green"},
            {"Monday", "Wednesday", "Friday"}
        };

        foreach (string str in args) {
            int row, colm;
            for (row = 0; row <= 1; ++row)
                for (colm = 0; colm <= 2; ++colm)
                    if (str == table[row,colm])
                         goto done;

            Console.WriteLine("{0} not found", str);
            continue;
    done:
            Console.WriteLine("Found {0} at [{1}][{2}]", str, row, colm);
        }
    }
}

The return statementThe return statement

compile-time error occurs. This rule permits the use of a goto  statement to transfer control out of a nested scope,

but not into a nested scope. In the example

a goto  statement is used to transfer control out of a nested scope.

The target of a goto case  statement is the statement list in the immediately enclosing switch  statement (The

switch statement), which contains a case  label with the given constant value. If the goto case  statement is not

enclosed by a switch  statement, if the constant_expression is not implicitly convertible (Implicit conversions) to

the governing type of the nearest enclosing switch  statement, or if the nearest enclosing switch  statement does

not contain a case  label with the given constant value, a compile-time error occurs.

The target of a goto default  statement is the statement list in the immediately enclosing switch  statement (The

switch statement), which contains a default  label. If the goto default  statement is not enclosed by a switch

statement, or if the nearest enclosing switch  statement does not contain a default  label, a compile-time error

occurs.

A goto  statement cannot exit a finally  block (The try statement). When a goto  statement occurs within a 

finally  block, the target of the goto  statement must be within the same finally  block, or otherwise a compile-

time error occurs.

A goto  statement is executed as follows:

If the goto  statement exits one or more try  blocks with associated finally  blocks, control is initially

transferred to the finally  block of the innermost try  statement. When and if control reaches the end point of

a finally  block, control is transferred to the finally  block of the next enclosing try  statement. This process

is repeated until the finally  blocks of all intervening try  statements have been executed.

Control is transferred to the target of the goto  statement.

Because a goto  statement unconditionally transfers control elsewhere, the end point of a goto  statement is never

reachable.

The return  statement returns control to the current caller of the function in which the return  statement appears.



        

return_statement
    : 'return' expression? ';'
    ;

The throw statementThe throw statement

throw_statement
    : 'throw' expression? ';'
    ;

A return  statement with no expression can be used only in a function member that does not compute a value, that

is, a method with the result type (Method body) void , the set  accessor of a property or indexer, the add  and 

remove  accessors of an event, an instance constructor, a static constructor, or a destructor.

A return  statement with an expression can only be used in a function member that computes a value, that is, a

method with a non-void result type, the get  accessor of a property or indexer, or a user-defined operator. An

implicit conversion (Implicit conversions) must exist from the type of the expression to the return type of the

containing function member.

Return statements can also be used in the body of anonymous function expressions (Anonymous function

expressions), and participate in determining which conversions exist for those functions.

It is a compile-time error for a return  statement to appear in a finally  block (The try statement).

A return  statement is executed as follows:

If the return  statement specifies an expression, the expression is evaluated and the resulting value is converted

to the return type of the containing function by an implicit conversion. The result of the conversion becomes the

result value produced by the function.

If the return  statement is enclosed by one or more try  or catch  blocks with associated finally  blocks,

control is initially transferred to the finally  block of the innermost try  statement. When and if control

reaches the end point of a finally  block, control is transferred to the finally  block of the next enclosing try

statement. This process is repeated until the finally  blocks of all enclosing try  statements have been

executed.

If the containing function is not an async function, control is returned to the caller of the containing function

along with the result value, if any.

If the containing function is an async function, control is returned to the current caller, and the result value, if

any, is recorded in the return task as described in (Enumerator interfaces).

Because a return  statement unconditionally transfers control elsewhere, the end point of a return  statement is

never reachable.

The throw  statement throws an exception.

A throw  statement with an expression throws the value produced by evaluating the expression. The expression

must denote a value of the class type System.Exception , of a class type that derives from System.Exception  or of a

type parameter type that has System.Exception  (or a subclass thereof) as its effective base class. If evaluation of the

expression produces null , a System.NullReferenceException  is thrown instead.

A throw  statement with no expression can be used only in a catch  block, in which case that statement re-throws

the exception that is currently being handled by that catch  block.

Because a throw  statement unconditionally transfers control elsewhere, the end point of a throw  statement is

never reachable.



          The try statement

When an exception is thrown, control is transferred to the first catch  clause in an enclosing try  statement that

can handle the exception. The process that takes place from the point of the exception being thrown to the point of

transferring control to a suitable exception handler is known as exception propagationexception propagation. Propagation of an

exception consists of repeatedly evaluating the following steps until a catch  clause that matches the exception is

found. In this description, the throw pointthrow point is initially the location at which the exception is thrown.

In the current function member, each try  statement that encloses the throw point is examined. For each

statement S , starting with the innermost try  statement and ending with the outermost try  statement,

the following steps are evaluated:

If the try  block of S  encloses the throw point and if S has one or more catch  clauses, the catch

clauses are examined in order of appearance to locate a suitable handler for the exception, according

to the rules specified in Section The try statement. If a matching catch  clause is located, the

exception propagation is completed by transferring control to the block of that catch  clause.

Otherwise, if the try  block or a catch  block of S  encloses the throw point and if S  has a finally

block, control is transferred to the finally  block. If the finally  block throws another exception,

processing of the current exception is terminated. Otherwise, when control reaches the end point of

the finally  block, processing of the current exception is continued.

If an exception handler was not located in the current function invocation, the function invocation is

terminated, and one of the following occurs:

If the current function is non-async, the steps above are repeated for the caller of the function with a

throw point corresponding to the statement from which the function member was invoked.

If the current function is async and task-returning, the exception is recorded in the return task, which

is put into a faulted or cancelled state as described in Enumerator interfaces.

If the current function is async and void-returning, the synchronization context of the current thread is

notified as described in Enumerable interfaces.

If the exception processing terminates all function member invocations in the current thread, indicating that

the thread has no handler for the exception, then the thread is itself terminated. The impact of such

termination is implementation-defined.

The try  statement provides a mechanism for catching exceptions that occur during execution of a block.

Furthermore, the try  statement provides the ability to specify a block of code that is always executed when

control leaves the try  statement.



try_statement
    : 'try' block catch_clause+
    | 'try' block finally_clause
    | 'try' block catch_clause+ finally_clause
    ;

catch_clause
    : 'catch' exception_specifier? exception_filter?  block
    ;

exception_specifier
    : '(' type identifier? ')'
    ;

exception_filter
    : 'when' '(' expression ')'
    ;

finally_clause
    : 'finally' block
    ;

There are three possible forms of try  statements:

A try  block followed by one or more catch  blocks.

A try  block followed by a finally  block.

A try  block followed by one or more catch  blocks followed by a finally  block.

When a catch  clause specifies an exception_specifier, the type must be System.Exception , a type that derives from

System.Exception  or a type parameter type that has System.Exception  (or a subclass thereof) as its effective base

class.

When a catch  clause specifies both an exception_specifier with an identifier, an exception var iableexception var iable of the given

name and type is declared. The exception variable corresponds to a local variable with a scope that extends over the

catch  clause. During execution of the exception_filter and block, the exception variable represents the exception

currently being handled. For purposes of definite assignment checking, the exception variable is considered

definitely assigned in its entire scope.

Unless a catch  clause includes an exception variable name, it is impossible to access the exception object in the

filter and catch  block.

A catch  clause that does not specify an exception_specifier is called a general catch  clause.

Some programming languages may support exceptions that are not representable as an object derived from 

System.Exception , although such exceptions could never be generated by C# code. A general catch  clause may be

used to catch such exceptions. Thus, a general catch  clause is semantically different from one that specifies the

type System.Exception , in that the former may also catch exceptions from other languages.

In order to locate a handler for an exception, catch  clauses are examined in lexical order. If a catch  clause

specifies a type but no exception filter, it is a compile-time error for a later catch  clause in the same try

statement to specify a type that is the same as, or is derived from, that type. If a catch  clause specifies no type and

no filter, it must be the last catch  clause for that try  statement.

Within a catch  block, a throw  statement (The throw statement) with no expression can be used to re-throw the

exception that was caught by the catch  block. Assignments to an exception variable do not alter the exception that

is re-thrown.

In the example



using System;

class Test
{
    static void F() {
        try {
            G();
        }
        catch (Exception e) {
            Console.WriteLine("Exception in F: " + e.Message);
            e = new Exception("F");
            throw;                // re-throw
        }
    }

    static void G() {
        throw new Exception("G");
    }

    static void Main() {
        try {
            F();
        }
        catch (Exception e) {
            Console.WriteLine("Exception in Main: " + e.Message);
        }
    }
}

Exception in F: G
Exception in Main: G

Exception in F: G
Exception in Main: F

the method F  catches an exception, writes some diagnostic information to the console, alters the exception

variable, and re-throws the exception. The exception that is re-thrown is the original exception, so the output

produced is:

If the first catch block had thrown e  instead of rethrowing the current exception, the output produced would be as

follows:

It is a compile-time error for a break , continue , or goto  statement to transfer control out of a finally  block.

When a break , continue , or goto  statement occurs in a finally  block, the target of the statement must be

within the same finally  block, or otherwise a compile-time error occurs.

It is a compile-time error for a return  statement to occur in a finally  block.

A try  statement is executed as follows:

Control is transferred to the try  block.

When and if control reaches the end point of the try  block:

If the try  statement has a finally  block, the finally  block is executed.

Control is transferred to the end point of the try  statement.

If an exception is propagated to the try  statement during execution of the try  block:

The catch  clauses, if any, are examined in order of appearance to locate a suitable handler for the



  The checked and unchecked statements

checked_statement
    : 'checked' block
    ;

unchecked_statement
    : 'unchecked' block
    ;

exception. If a catch  clause does not specify a type, or specifies the exception type or a base type of the

exception type:

If the try  statement has no catch  clauses or if no catch  clause matches the exception:

If the catch  clause declares an exception variable, the exception object is assigned to the

exception variable.

If the catch  clause declares an exception filter, the filter is evaluated. If it evaluates to false , the

catch clause is not a match, and the search continues through any subsequent catch  clauses for a

suitable handler.

Otherwise, the catch  clause is considered a match, and control is transferred to the matching 

catch  block.

When and if control reaches the end point of the catch  block:

If an exception is propagated to the try  statement during execution of the catch  block:

If the try  statement has a finally  block, the finally  block is executed.

Control is transferred to the end point of the try  statement.

If the try  statement has a finally  block, the finally  block is executed.

The exception is propagated to the next enclosing try  statement.

If the try  statement has a finally  block, the finally  block is executed.

The exception is propagated to the next enclosing try  statement.

The statements of a finally  block are always executed when control leaves a try  statement. This is true whether

the control transfer occurs as a result of normal execution, as a result of executing a break , continue , goto , or 

return  statement, or as a result of propagating an exception out of the try  statement.

If an exception is thrown during execution of a finally  block, and is not caught within the same finally block, the

exception is propagated to the next enclosing try  statement. If another exception was in the process of being

propagated, that exception is lost. The process of propagating an exception is discussed further in the description of

the throw  statement (The throw statement).

The try  block of a try  statement is reachable if the try  statement is reachable.

A catch  block of a try  statement is reachable if the try  statement is reachable.

The finally  block of a try  statement is reachable if the try  statement is reachable.

The end point of a try  statement is reachable if both of the following are true:

The end point of the try  block is reachable or the end point of at least one catch  block is reachable.

If a finally  block is present, the end point of the finally  block is reachable.

The checked  and unchecked  statements are used to control the overflow checking contextoverflow checking context for integral-type

arithmetic operations and conversions.

The checked  statement causes all expressions in the block to be evaluated in a checked context, and the unchecked

statement causes all expressions in the block to be evaluated in an unchecked context.



    The lock statement

lock_statement
    : 'lock' '(' expression ')' embedded_statement
    ;

lock (x) ...

bool __lockWasTaken = false;
try {
    System.Threading.Monitor.Enter(x, ref __lockWasTaken);
    ...
}
finally {
    if (__lockWasTaken) System.Threading.Monitor.Exit(x);
}

class Cache
{
    private static readonly object synchronizationObject = new object();

    public static void Add(object x) {
        lock (Cache.synchronizationObject) {
            ...
        }
    }

    public static void Remove(object x) {
        lock (Cache.synchronizationObject) {
            ...
        }
    }
}

The checked  and unchecked  statements are precisely equivalent to the checked  and unchecked  operators (The

checked and unchecked operators), except that they operate on blocks instead of expressions.

The lock  statement obtains the mutual-exclusion lock for a given object, executes a statement, and then releases

the lock.

The expression of a lock  statement must denote a value of a type known to be a reference_type. No implicit

boxing conversion (Boxing conversions) is ever performed for the expression of a lock  statement, and thus it is a

compile-time error for the expression to denote a value of a value_type.

A lock  statement of the form

where x  is an expression of a reference_type, is precisely equivalent to

except that x  is only evaluated once.

While a mutual-exclusion lock is held, code executing in the same execution thread can also obtain and release the

lock. However, code executing in other threads is blocked from obtaining the lock until the lock is released.

Locking System.Type  objects in order to synchronize access to static data is not recommended. Other code might

lock on the same type, which can result in deadlock. A better approach is to synchronize access to static data by

locking a private static object. For example:



  The using statement

using_statement
    : 'using' '(' resource_acquisition ')' embedded_statement
    ;

resource_acquisition
    : local_variable_declaration
    | expression
    ;

using (ResourceType resource = expression) statement

{
    ResourceType resource = expression;
    try {
        statement;
    }
    finally {
        ((IDisposable)resource).Dispose();
    }
}

The using  statement obtains one or more resources, executes a statement, and then disposes of the resource.

A resourceresource is a class or struct that implements System.IDisposable , which includes a single parameterless method

named Dispose . Code that is using a resource can call Dispose  to indicate that the resource is no longer needed. If

Dispose  is not called, then automatic disposal eventually occurs as a consequence of garbage collection.

If the form of resource_acquisition is local_variable_declaration then the type of the local_variable_declaration must

be either dynamic  or a type that can be implicitly converted to System.IDisposable . If the form of

resource_acquisition is expression then this expression must be implicitly convertible to System.IDisposable .

Local variables declared in a resource_acquisition are read-only, and must include an initializer. A compile-time

error occurs if the embedded statement attempts to modify these local variables (via assignment or the ++  and 

--  operators) , take the address of them, or pass them as ref  or out  parameters.

A using  statement is translated into three parts: acquisition, usage, and disposal. Usage of the resource is

implicitly enclosed in a try  statement that includes a finally  clause. This finally  clause disposes of the

resource. If a null  resource is acquired, then no call to Dispose  is made, and no exception is thrown. If the

resource is of type dynamic  it is dynamically converted through an implicit dynamic conversion (Implicit dynamic

conversions) to IDisposable  during acquisition in order to ensure that the conversion is successful before the

usage and disposal.

A using  statement of the form

corresponds to one of three possible expansions. When ResourceType  is a non-nullable value type, the expansion is

Otherwise, when ResourceType  is a nullable value type or a reference type other than dynamic , the expansion is



{
    ResourceType resource = expression;
    try {
        statement;
    }
    finally {
        if (resource != null) ((IDisposable)resource).Dispose();
    }
}

{
    ResourceType resource = expression;
    IDisposable d = (IDisposable)resource;
    try {
        statement;
    }
    finally {
        if (d != null) d.Dispose();
    }
}

using (expression) statement

using (ResourceType r1 = e1, r2 = e2, ..., rN = eN) statement

using (ResourceType r1 = e1)
    using (ResourceType r2 = e2)
        ...
            using (ResourceType rN = eN)
                statement

Otherwise, when ResourceType  is dynamic , the expansion is

In either expansion, the resource  variable is read-only in the embedded statement, and the d  variable is

inaccessible in, and invisible to, the embedded statement.

An implementation is permitted to implement a given using-statement differently, e.g. for performance reasons, as

long as the behavior is consistent with the above expansion.

A using  statement of the form

has the same three possible expansions. In this case ResourceType  is implicitly the compile-time type of the 

expression , if it has one. Otherwise the interface IDisposable  itself is used as the ResourceType . The resource

variable is inaccessible in, and invisible to, the embedded statement.

When a resource_acquisition takes the form of a local_variable_declaration, it is possible to acquire multiple

resources of a given type. A using  statement of the form

is precisely equivalent to a sequence of nested using  statements:

The example below creates a file named log.txt  and writes two lines of text to the file. The example then opens

that same file for reading and copies the contained lines of text to the console.



   

using System;
using System.IO;

class Test
{
    static void Main() {
        using (TextWriter w = File.CreateText("log.txt")) {
            w.WriteLine("This is line one");
            w.WriteLine("This is line two");
        }

        using (TextReader r = File.OpenText("log.txt")) {
            string s;
            while ((s = r.ReadLine()) != null) {
                Console.WriteLine(s);
            }

        }
    }
}

The yield statement

yield_statement
    : 'yield' 'return' expression ';'
    | 'yield' 'break' ';'
    ;

Since the TextWriter  and TextReader  classes implement the IDisposable  interface, the example can use using

statements to ensure that the underlying file is properly closed following the write or read operations.

The yield  statement is used in an iterator block (Blocks) to yield a value to the enumerator object (Enumerator

objects) or enumerable object (Enumerable objects) of an iterator or to signal the end of the iteration.

yield  is not a reserved word; it has special meaning only when used immediately before a return  or break

keyword. In other contexts, yield  can be used as an identifier.

There are several restrictions on where a yield  statement can appear, as described in the following.

It is a compile-time error for a yield  statement (of either form) to appear outside a method_body,

operator_body or accessor_body

It is a compile-time error for a yield  statement (of either form) to appear inside an anonymous function.

It is a compile-time error for a yield  statement (of either form) to appear in the finally  clause of a try

statement.

It is a compile-time error for a yield return  statement to appear anywhere in a try  statement that contains

any catch  clauses.

The following example shows some valid and invalid uses of yield  statements.



delegate IEnumerable<int> D();

IEnumerator<int> GetEnumerator() {
    try {
        yield return 1;        // Ok
        yield break;           // Ok
    }
    finally {
        yield return 2;        // Error, yield in finally
        yield break;           // Error, yield in finally
    }

    try {
        yield return 3;        // Error, yield return in try...catch
        yield break;           // Ok
    }
    catch {
        yield return 4;        // Error, yield return in try...catch
        yield break;           // Ok
    }

    D d = delegate { 
        yield return 5;        // Error, yield in an anonymous function
    }; 
}

int MyMethod() {
    yield return 1;            // Error, wrong return type for an iterator block
}

An implicit conversion (Implicit conversions) must exist from the type of the expression in the yield return

statement to the yield type (Yield type) of the iterator.

A yield return  statement is executed as follows:

The expression given in the statement is evaluated, implicitly converted to the yield type, and assigned to the 

Current  property of the enumerator object.

Execution of the iterator block is suspended. If the yield return  statement is within one or more try  blocks,

the associated finally  blocks are not executed at this time.

The MoveNext  method of the enumerator object returns true  to its caller, indicating that the enumerator object

successfully advanced to the next item.

The next call to the enumerator object's MoveNext  method resumes execution of the iterator block from where it

was last suspended.

A yield break  statement is executed as follows:

If the yield break  statement is enclosed by one or more try  blocks with associated finally  blocks, control is

initially transferred to the finally  block of the innermost try  statement. When and if control reaches the end

point of a finally  block, control is transferred to the finally  block of the next enclosing try  statement. This

process is repeated until the finally  blocks of all enclosing try  statements have been executed.

Control is returned to the caller of the iterator block. This is either the MoveNext  method or Dispose  method of

the enumerator object.

Because a yield break  statement unconditionally transfers control elsewhere, the end point of a yield break

statement is never reachable.



    

  

Namespaces
5/29/2020 • 18 minutes to read • Edit Online

Compilation units

compilation_unit
    : extern_alias_directive* using_directive* global_attributes? namespace_member_declaration*
    ;

class A {}

class B {}

Namespace declarations

C# programs are organized using namespaces. Namespaces are used both as an "internal" organization system for

a program, and as an "external" organization system—a way of presenting program elements that are exposed to

other programs.

Using directives (Using directives) are provided to facilitate the use of namespaces.

A compilation_unit defines the overall structure of a source file. A compilation unit consists of zero or more

using_directives followed by zero or more global_attributes followed by zero or more

namespace_member_declarations.

A C# program consists of one or more compilation units, each contained in a separate source file. When a C#

program is compiled, all of the compilation units are processed together. Thus, compilation units can depend on

each other, possibly in a circular fashion.

The using_directives of a compilation unit affect the global_attributes and namespace_member_declarations of that

compilation unit, but have no effect on other compilation units.

The global_attributes (Attributes) of a compilation unit permit the specification of attributes for the target assembly

and module. Assemblies and modules act as physical containers for types. An assembly may consist of several

physically separate modules.

The namespace_member_declarations of each compilation unit of a program contribute members to a single

declaration space called the global namespace. For example:

File A.cs :

File B.cs :

The two compilation units contribute to the single global namespace, in this case declaring two classes with the

fully qualified names A  and B . Because the two compilation units contribute to the same declaration space, it

would have been an error if each contained a declaration of a member with the same name.

A namespace_declaration consists of the keyword namespace , followed by a namespace name and body, optionally

followed by a semicolon.

https://github.com/dotnet/csharplang/blob/master/spec/namespaces.md


namespace_declaration
    : 'namespace' qualified_identifier namespace_body ';'?
    ;

qualified_identifier
    : identifier ('.' identifier)*
    ;

namespace_body
    : '{' extern_alias_directive* using_directive* namespace_member_declaration* '}'
    ;

namespace N1.N2
{
    class A {}

    class B {}
}

namespace N1
{
    namespace N2
    {
        class A {}

        class B {}
    }
}

A namespace_declaration may occur as a top-level declaration in a compilation_unit or as a member declaration

within another namespace_declaration. When a namespace_declaration occurs as a top-level declaration in a

compilation_unit, the namespace becomes a member of the global namespace. When a namespace_declaration

occurs within another namespace_declaration, the inner namespace becomes a member of the outer namespace. In

either case, the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly public  and the declaration of a namespace cannot include any access modifiers.

Within a namespace_body, the optional using_directives import the names of other namespaces, types and

members, allowing them to be referenced directly instead of through qualified names. The optional

namespace_member_declarations contribute members to the declaration space of the namespace. Note that all

using_directives must appear before any member declarations.

The qualified_identifier of a namespace_declaration may be a single identifier or a sequence of identifiers separated

by " . " tokens. The latter form permits a program to define a nested namespace without lexically nesting several

namespace declarations. For example,

is semantically equivalent to

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to

the same declaration space (Declarations). In the example



    

namespace N1.N2
{
    class A {}
}

namespace N1.N2
{
    class B {}
}

Extern aliases

extern_alias_directive
    : 'extern' 'alias' identifier ';'
    ;

extern alias X;
extern alias Y;

class Test
{
    X::N.A a;
    X::N.B b1;
    Y::N.B b2;
    Y::N.C c;
}

Using directives

the two namespace declarations above contribute to the same declaration space, in this case declaring two classes

with the fully qualified names N1.N2.A  and N1.N2.B . Because the two declarations contribute to the same

declaration space, it would have been an error if each contained a declaration of a member with the same name.

An extern_alias_directive introduces an identifier that serves as an alias for a namespace. The specification of the

aliased namespace is external to the source code of the program and applies also to nested namespaces of the

aliased namespace.

The scope of an extern_alias_directive extends over the using_directives, global_attributes and

namespace_member_declarations of its immediately containing compilation unit or namespace body.

Within a compilation unit or namespace body that contains an extern_alias_directive, the identifier introduced by

the extern_alias_directive can be used to reference the aliased namespace. It is a compile-time error for the

identifier to be the word global .

An extern_alias_directive makes an alias available within a particular compilation unit or namespace body, but it

does not contribute any new members to the underlying declaration space. In other words, an

extern_alias_directive is not transitive, but, rather, affects only the compilation unit or namespace body in which it

occurs.

The following program declares and uses two extern aliases, X  and Y , each of which represent the root of a

distinct namespace hierarchy:

The program declares the existence of the extern aliases X  and Y , but the actual definitions of the aliases are

external to the program. The identically named N.B  classes can now be referenced as X.N.B  and Y.N.B , or, using

the namespace alias qualifier, X::N.B  and Y::N.B . An error occurs if a program declares an extern alias for which

no external definition is provided.



  

using_directive
    : using_alias_directive
    | using_namespace_directive
    | using_static_directive
    ;

Using alias directivesUsing alias directives

using_alias_directive
    : 'using' identifier '=' namespace_or_type_name ';'
    ;

namespace N1.N2
{
    class A {}
}

namespace N3
{
    using A = N1.N2.A;

    class B: A {}
}

namespace N3
{
    using R = N1.N2;

    class B: R.A {}
}

Using directivesUsing directives  facilitate the use of namespaces and types defined in other namespaces. Using directives impact

the name resolution process of namespace_or_type_names (Namespace and type names) and simple_names

(Simple names), but unlike declarations, using directives do not contribute new members to the underlying

declaration spaces of the compilation units or namespaces within which they are used.

A using_alias_directive (Using alias directives) introduces an alias for a namespace or type.

A using_namespace_directive (Using namespace directives) imports the type members of a namespace.

A using_static_directive (Using static directives) imports the nested types and static members of a type.

The scope of a using_directive extends over the namespace_member_declarations of its immediately containing

compilation unit or namespace body. The scope of a using_directive specifically does not include its peer

using_directives. Thus, peer using_directives do not affect each other, and the order in which they are written is

insignificant.

A using_alias_directive introduces an identifier that serves as an alias for a namespace or type within the

immediately enclosing compilation unit or namespace body.

Within member declarations in a compilation unit or namespace body that contains a using_alias_directive, the

identifier introduced by the using_alias_directive can be used to reference the given namespace or type. For

example:

Above, within member declarations in the N3  namespace, A  is an alias for N1.N2.A , and thus class N3.B  derives

from class N1.N2.A . The same effect can be obtained by creating an alias R  for N1.N2  and then referencing R.A :

The identifier of a using_alias_directive must be unique within the declaration space of the compilation unit or



namespace N3
{
    class A {}
}

namespace N3
{
    using A = N1.N2.A;        // Error, A already exists
}

namespace N3
{
    using R = N1.N2;
}

namespace N3
{
    class B: R.A {}            // Error, R unknown
}

using R = N1.N2;

namespace N3
{
    class B: R.A {}
}

namespace N3
{
    class C: R.A {}
}

using R = N1.N2;

namespace N3
{
    class R {}

    class B: R.A {}        // Error, R has no member A
}

namespace that immediately contains the using_alias_directive. For example:

Above, N3  already contains a member A , so it is a compile-time error for a using_alias_directive to use that

identifier. Likewise, it is a compile-time error for two or more using_alias_directives in the same compilation unit or

namespace body to declare aliases by the same name.

A using_alias_directive makes an alias available within a particular compilation unit or namespace body, but it does

not contribute any new members to the underlying declaration space. In other words, a using_alias_directive is not

transitive but rather affects only the compilation unit or namespace body in which it occurs. In the example

the scope of the using_alias_directive that introduces R  only extends to member declarations in the namespace

body in which it is contained, so R  is unknown in the second namespace declaration. However, placing the

using_alias_directive in the containing compilation unit causes the alias to become available within both

namespace declarations:

Just like regular members, names introduced by using_alias_directives are hidden by similarly named members in

nested scopes. In the example



namespace N1.N2 {}

namespace N3
{
    extern alias E;

    using R1 = E.N;        // OK

    using R2 = N1;         // OK

    using R3 = N1.N2;      // OK

    using R4 = R2.N2;      // Error, R2 unknown
}

namespace N1.N2
{
    class A {}
}

namespace N3
{
    using R1 = N1;
    using R2 = N1.N2;

    class B
    {
        N1.N2.A a;            // refers to N1.N2.A
        R1.N2.A b;            // refers to N1.N2.A
        R2.A c;               // refers to N1.N2.A
    }
}

the reference to R.A  in the declaration of B  causes a compile-time error because R  refers to N3.R , not N1.N2 .

The order in which using_alias_directives are written has no significance, and resolution of the

namespace_or_type_name referenced by a using_alias_directive is not affected by the using_alias_directive itself or

by other using_directives in the immediately containing compilation unit or namespace body. In other words, the

namespace_or_type_name of a using_alias_directive is resolved as if the immediately containing compilation unit

or namespace body had no using_directives. A using_alias_directive may however be affected by

extern_alias_directives in the immediately containing compilation unit or namespace body. In the example

the last using_alias_directive results in a compile-time error because it is not affected by the first

using_alias_directive. The first using_alias_directive does not result in an error since the scope of the extern alias E

includes the using_alias_directive.

A using_alias_directive can create an alias for any namespace or type, including the namespace within which it

appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing that namespace or type

through its declared name. For example, given

the names N1.N2.A , R1.N2.A , and R2.A  are equivalent and all refer to the class whose fully qualified name is 

N1.N2.A .

Using aliases can name a closed constructed type, but cannot name an unbound generic type declaration without

supplying type arguments. For example:



    

namespace N1
{
    class A<T>
    {
        class B {}
    }
}

namespace N2
{
    using W = N1.A;          // Error, cannot name unbound generic type

    using X = N1.A.B;        // Error, cannot name unbound generic type

    using Y = N1.A<int>;     // Ok, can name closed constructed type

    using Z<T> = N1.A<T>;    // Error, using alias cannot have type parameters
}

Using namespace directivesUsing namespace directives

using_namespace_directive
    : 'using' namespace_name ';'
    ;

namespace N1.N2
{
    class A {}
}

namespace N3
{
    using N1.N2;

    class B: A {}
}

namespace N1.N2
{
    class A {}
}

namespace N3
{
    using N1;

    class B: N2.A {}        // Error, N2 unknown
}

A using_namespace_directive imports the types contained in a namespace into the immediately enclosing

compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

Within member declarations in a compilation unit or namespace body that contains a using_namespace_directive,

the types contained in the given namespace can be referenced directly. For example:

Above, within member declarations in the N3  namespace, the type members of N1.N2  are directly available, and

thus class N3.B  derives from class N1.N2.A .

A using_namespace_directive imports the types contained in the given namespace, but specifically does not import

nested namespaces. In the example



namespace N1.N2
{
    class A {}

    class B {}
}

namespace N3
{
    using N1.N2;

    class A {}
}

namespace N1
{
    class A {}
}

namespace N2
{
    class A {}
}

namespace N3
{
    using N1;

    using N2;

    class B: A {}                // Error, A is ambiguous
}

the using_namespace_directive imports the types contained in N1 , but not the namespaces nested in N1 . Thus,

the reference to N2.A  in the declaration of B  results in a compile-time error because no members named N2  are

in scope.

Unlike a using_alias_directive, a using_namespace_directive may import types whose identifiers are already

defined within the enclosing compilation unit or namespace body. In effect, names imported by a

using_namespace_directive are hidden by similarly named members in the enclosing compilation unit or

namespace body. For example:

Here, within member declarations in the N3  namespace, A  refers to N3.A  rather than N1.N2.A .

When more than one namespace or type imported by using_namespace_directives or using_static_directives in the

same compilation unit or namespace body contain types by the same name, references to that name as a

type_name are considered ambiguous. In the example

both N1  and N2  contain a member A , and because N3  imports both, referencing A  in N3  is a compile-time

error. In this situation, the conflict can be resolved either through qualification of references to A , or by

introducing a using_alias_directive that picks a particular A . For example:



  

namespace N3
{
    using N1;

    using N2;

    using A = N1.A;

    class B: A {}                // A means N1.A
}

namespace N1
{
 class A {}
}

class C
{
 public static int A;
}

namespace N2
{
 using N1;
 using static C;

 class B
 {
  void M() 
  { 
   A a = new A();   // Ok, A is unambiguous as a type-name
   A.Equals(2);     // Error, A is ambiguous as a simple-name
  }
 }
}

Using static directivesUsing static directives

using_static_directive
    : 'using' 'static' type_name ';'
    ;

Furthermore, when more than one namespace or type imported by using_namespace_directives or

using_static_directives in the same compilation unit or namespace body contain types or members by the same

name, references to that name as a simple_name are considered ambiguous. In the example

N1  contains a type member A , and C  contains a static field A , and because N2  imports both, referencing A  as

a simple_name is ambiguous and a compile-time error.

Like a using_alias_directive, a using_namespace_directive does not contribute any new members to the underlying

declaration space of the compilation unit or namespace, but rather affects only the compilation unit or namespace

body in which it appears.

The namespace_name referenced by a using_namespace_directive is resolved in the same way as the

namespace_or_type_name referenced by a using_alias_directive. Thus, using_namespace_directives in the same

compilation unit or namespace body do not affect each other and can be written in any order.

A using_static_directive imports the nested types and static members contained directly in a type declaration into

the immediately enclosing compilation unit or namespace body, enabling the identifier of each member and type

to be used without qualification.



namespace N1
{
 class A 
 {
  public class B{}
  public static B M(){ return new B(); }
 }
}

namespace N2
{
 using static N1.A;
 class C
 {
  void N() { B b = M(); }
 }
}

namespace N1 
{
 static class A 
 {
  public static void M(this string s){}
 }
}

namespace N2
{
 using static N1.A;

 class B
 {
  void N() 
  {
   M("A");      // Error, M unknown
   "B".M();     // Ok, M known as extension method
   N1.A.M("C"); // Ok, fully qualified
  }
 }
}

Within member declarations in a compilation unit or namespace body that contains a using_static_directive, the

accessible nested types and static members (except extension methods) contained directly in the declaration of the

given type can be referenced directly. For example:

Above, within member declarations in the N2  namespace, the static members and nested types of N1.A  are

directly available, and thus the method N  is able to reference both the B  and M  members of N1.A .

A using_static_directive specifically does not import extension methods directly as static methods, but makes them

available for extension method invocation (Extension method invocations). In the example

the using_static_directive imports the extension method M  contained in N1.A , but only as an extension method.

Thus, the first reference to M  in the body of B.N  results in a compile-time error because no members named M

are in scope.

A using_static_directive only imports members and types declared directly in the given type, not members and

types declared in base classes.

TODO: Example

Ambiguities between multiple using_namespace_directives and using_static_directives are discussed in Using

namespace directives.



  

        

    

Namespace members

namespace_member_declaration
    : namespace_declaration
    | type_declaration
    ;

Type declarations

type_declaration
    : class_declaration
    | struct_declaration
    | interface_declaration
    | enum_declaration
    | delegate_declaration
    ;

Namespace alias qualifiers

A namespace_member_declaration is either a namespace_declaration (Namespace declarations) or a

type_declaration (Type declarations).

A compilation unit or a namespace body can contain namespace_member_declarations, and such declarations

contribute new members to the underlying declaration space of the containing compilation unit or namespace

body.

A type_declaration is a class_declaration (Class declarations), a struct_declaration (Struct declarations), an

interface_declaration (Interface declarations), an enum_declaration (Enum declarations), or a delegate_declaration

(Delegate declarations).

A type_declaration can occur as a top-level declaration in a compilation unit or as a member declaration within a

namespace, class, or struct.

When a type declaration for a type T  occurs as a top-level declaration in a compilation unit, the fully qualified

name of the newly declared type is simply T . When a type declaration for a type T  occurs within a namespace,

class, or struct, the fully qualified name of the newly declared type is N.T , where N  is the fully qualified name of

the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (Nested types).

The permitted access modifiers and the default access for a type declaration depend on the context in which the

declaration takes place (Declared accessibility):

Types declared in compilation units or namespaces can have public  or internal  access. The default is 

internal  access.

Types declared in classes can have public , protected internal , protected , internal , or private  access. The

default is private  access.

Types declared in structs can have public , internal , or private  access. The default is private  access.

The namespace alias qualifiernamespace alias qualifier  ::  makes it possible to guarantee that type name lookups are unaffected by the

introduction of new types and members. The namespace alias qualifier always appears between two identifiers

referred to as the left-hand and right-hand identifiers. Unlike the regular .  qualifier, the left-hand identifier of the 

::  qualifier is looked up only as an extern or using alias.

A qualified_alias_member is defined as follows:



qualified_alias_member
    : identifier '::' identifier type_argument_list?
    ;

Uniqueness of aliasesUniqueness of aliases

A qualified_alias_member can be used as a namespace_or_type_name (Namespace and type names) or as the left

operand in a member_access (Member access).

A qualified_alias_member has one of two forms:

N::I<A1, ..., Ak> , where N  and I  represent identifiers, and <A1, ..., Ak>  is a type argument list. ( K  is

always at least one.)

N::I , where N  and I  represent identifiers. (In this case, K  is considered to be zero.)

Using this notation, the meaning of a qualified_alias_member is determined as follows:

If N  is the identifier global , then the global namespace is searched for I :

If the global namespace contains a namespace named I  and K  is zero, then the

qualified_alias_member refers to that namespace.

Otherwise, if the global namespace contains a non-generic type named I  and K  is zero, then the

qualified_alias_member refers to that type.

Otherwise, if the global namespace contains a type named I  that has K  type parameters, then the

qualified_alias_member refers to that type constructed with the given type arguments.

Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.

Otherwise, starting with the namespace declaration (Namespace declarations) immediately containing the

qualified_alias_member (if any), continuing with each enclosing namespace declaration (if any), and ending

with the compilation unit containing the qualified_alias_member, the following steps are evaluated until an

entity is located:

If the namespace declaration or compilation unit contains a using_alias_directive that associates N  with

a type, then the qualified_alias_member is undefined and a compile-time error occurs.

Otherwise, if the namespace declaration or compilation unit contains an extern_alias_directive or

using_alias_directive that associates N  with a namespace, then:

If the namespace associated with N  contains a namespace named I  and K  is zero, then the

qualified_alias_member refers to that namespace.

Otherwise, if the namespace associated with N  contains a non-generic type named I  and K  is

zero, then the qualified_alias_member refers to that type.

Otherwise, if the namespace associated with N  contains a type named I  that has K  type

parameters, then the qualified_alias_member refers to that type constructed with the given type

arguments.

Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.

Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.

Note that using the namespace alias qualifier with an alias that references a type causes a compile-time error. Also

note that if the identifier N  is global , then lookup is performed in the global namespace, even if there is a using

alias associating global  with a type or namespace.

Each compilation unit and namespace body has a separate declaration space for extern aliases and using aliases.

Thus, while the name of an extern alias or using alias must be unique within the set of extern aliases and using

aliases declared in the immediately containing compilation unit or namespace body, an alias is permitted to have

the same name as a type or namespace as long as it is used only with the ::  qualifier.



namespace N
{
    public class A {}

    public class B {}
}

namespace N
{
    using A = System.IO;

    class X
    {
        A.Stream s1;            // Error, A is ambiguous

        A::Stream s2;           // Ok
    }
}

In the example

the name A  has two possible meanings in the second namespace body because both the class A  and the using

alias A  are in scope. For this reason, use of A  in the qualified name A.Stream  is ambiguous and causes a

compile-time error to occur. However, use of A  with the ::  qualifier is not an error because A  is looked up only

as a namespace alias.
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Class declarations

class_declaration
    : attributes? class_modifier* 'partial'? 'class' identifier type_parameter_list?
      class_base? type_parameter_constraints_clause* class_body ';'?
    ;

Class modifiersClass modifiers

class_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'abstract'
    | 'sealed'
    | 'static'
    | class_modifier_unsafe
    ;

A class is a data structure that may contain data members (constants and fields), function members (methods,

properties, events, indexers, operators, instance constructors, destructors and static constructors), and nested

types. Class types support inheritance, a mechanism whereby a derived class can extend and specialize a base

class.

A class_declaration is a type_declaration (Type declarations) that declares a new class.

A class_declaration consists of an optional set of attributes (Attributes), followed by an optional set of

class_modifiers (Class modifiers), followed by an optional partial  modifier, followed by the keyword class  and

an identifier that names the class, followed by an optional type_parameter_list (Type parameters), followed by an

optional class_base specification (Class base specification) , followed by an optional set of

type_parameter_constraints_clauses (Type parameter constraints), followed by a class_body (Class body),

optionally followed by a semicolon.

A class declaration cannot supply type_parameter_constraints_clauses unless it also supplies a type_parameter_list.

A class declaration that supplies a type_parameter_list is a generic class declarationgeneric class declaration. Additionally, any class

nested inside a generic class declaration or a generic struct declaration is itself a generic class declaration, since

type parameters for the containing type must be supplied to create a constructed type.

A class_declaration may optionally include a sequence of class modifiers:

It is a compile-time error for the same modifier to appear multiple times in a class declaration.

The new  modifier is permitted on nested classes. It specifies that the class hides an inherited member by the same

name, as described in The new modifier. It is a compile-time error for the new  modifier to appear on a class

declaration that is not a nested class declaration.

The public , protected , internal , and private  modifiers control the accessibility of the class. Depending on the

context in which the class declaration occurs, some of these modifiers may not be permitted (Declared

https://github.com/dotnet/csharplang/blob/master/spec/classes.md


        

      

    

Abstract classesAbstract classes

abstract class A
{
    public abstract void F();
}

abstract class B: A
{
    public void G() {}
}

class C: B
{
    public override void F() {
        // actual implementation of F
    }
}

Sealed classesSealed classes

Static classesStatic classes

accessibility).

The abstract , sealed  and static  modifiers are discussed in the following sections.

The abstract  modifier is used to indicate that a class is incomplete and that it is intended to be used only as a

base class. An abstract class differs from a non-abstract class in the following ways:

An abstract class cannot be instantiated directly, and it is a compile-time error to use the new  operator on an

abstract class. While it is possible to have variables and values whose compile-time types are abstract, such

variables and values will necessarily either be null  or contain references to instances of non-abstract classes

derived from the abstract types.

An abstract class is permitted (but not required) to contain abstract members.

An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class must include actual

implementations of all inherited abstract members, thereby overriding those abstract members. In the example

the abstract class A  introduces an abstract method F . Class B  introduces an additional method G , but since it

doesn't provide an implementation of F , B  must also be declared abstract. Class C  overrides F  and provides

an actual implementation. Since there are no abstract members in C , C  is permitted (but not required) to be non-

abstract.

The sealed  modifier is used to prevent derivation from a class. A compile-time error occurs if a sealed class is

specified as the base class of another class.

A sealed class cannot also be an abstract class.

The sealed  modifier is primarily used to prevent unintended derivation, but it also enables certain run-time

optimizations. In particular, because a sealed class is known to never have any derived classes, it is possible to

transform virtual function member invocations on sealed class instances into non-virtual invocations.

The static  modifier is used to mark the class being declared as a static classstatic class . A static class cannot be

instantiated, cannot be used as a type and can contain only static members. Only a static class can contain

declarations of extension methods (Extension methods).

A static class declaration is subject to the following restrictions:

A static class may not include a sealed  or abstract  modifier. Note, however, that since a static class cannot be

instantiated or derived from, it behaves as if it was both sealed and abstract.



              

Partial modifierPartial modifier

Type parametersType parameters

A static class may not include a class_base specification (Class base specification) and cannot explicitly specify a

base class or a list of implemented interfaces. A static class implicitly inherits from type object .

A static class can only contain static members (Static and instance members). Note that constants and nested

types are classified as static members.

A static class cannot have members with protected  or protected internal  declared accessibility.

It is a compile-time error to violate any of these restrictions.

A static class has no instance constructors. It is not possible to declare an instance constructor in a static class, and

no default instance constructor (Default constructors) is provided for a static class.

The members of a static class are not automatically static, and the member declarations must explicitly include a 

static  modifier (except for constants and nested types). When a class is nested within a static outer class, the

nested class is not a static class unless it explicitly includes a static  modifier.

Referencing static class typesReferencing static class types

A namespace_or_type_name (Namespace and type names) is permitted to reference a static class if

The namespace_or_type_name is the T  in a namespace_or_type_name of the form T.I , or

The namespace_or_type_name is the T  in a typeof_expression (Argument lists1) of the form typeof(T) .

A primary_expression (Function members) is permitted to reference a static class if

The primary_expression is the E  in a member_access (Compile-time checking of dynamic overload resolution)

of the form E.I .

In any other context it is a compile-time error to reference a static class. For example, it is an error for a static class

to be used as a base class, a constituent type (Nested types) of a member, a generic type argument, or a type

parameter constraint. Likewise, a static class cannot be used in an array type, a pointer type, a new  expression, a

cast expression, an is  expression, an as  expression, a sizeof  expression, or a default value expression.

The partial  modifier is used to indicate that this class_declaration is a partial type declaration. Multiple partial

type declarations with the same name within an enclosing namespace or type declaration combine to form one

type declaration, following the rules specified in Partial types.

Having the declaration of a class distributed over separate segments of program text can be useful if these

segments are produced or maintained in different contexts. For instance, one part of a class declaration may be

machine generated, whereas the other is manually authored. Textual separation of the two prevents updates by

one from conflicting with updates by the other.

A type parameter is a simple identifier that denotes a placeholder for a type argument supplied to create a

constructed type. A type parameter is a formal placeholder for a type that will be supplied later. By contrast, a type

argument (Type arguments) is the actual type that is substituted for the type parameter when a constructed type is

created.



    

        

type_parameter_list
    : '<' type_parameters '>'
    ;

type_parameters
    : attributes? type_parameter
    | type_parameters ',' attributes? type_parameter
    ;

type_parameter
    : identifier
    ;

Class base specificationClass base specification

class_base
    : ':' class_type
    | ':' interface_type_list
    | ':' class_type ',' interface_type_list
    ;

interface_type_list
    : interface_type (',' interface_type)*
    ;

class Extend<V>: V {}            // Error, type parameter used as base class

Base classesBase classes

class A {}

class B: A {}

Each type parameter in a class declaration defines a name in the declaration space (Declarations) of that class.

Thus, it cannot have the same name as another type parameter or a member declared in that class. A type

parameter cannot have the same name as the type itself.

A class declaration may include a class_base specification, which defines the direct base class of the class and the

interfaces (Interfaces) directly implemented by the class.

The base class specified in a class declaration can be a constructed class type (Constructed types). A base class

cannot be a type parameter on its own, though it can involve the type parameters that are in scope.

When a class_type is included in the class_base, it specifies the direct base class of the class being declared. If a

class declaration has no class_base, or if the class_base lists only interface types, the direct base class is assumed to

be object . A class inherits members from its direct base class, as described in Inheritance.

In the example

class A  is said to be the direct base class of B , and B  is said to be derived from A . Since A  does not explicitly

specify a direct base class, its direct base class is implicitly object .

For a constructed class type, if a base class is specified in the generic class declaration, the base class of the

constructed type is obtained by substituting, for each type_parameter in the base class declaration, the

corresponding type_argument of the constructed type. Given the generic class declarations



class B<U,V> {...}

class G<T>: B<string,T[]> {...}

class A<T> {
   public class B {}
}

class C : A<C.B> {}

class A {...}

class B<T>: A {...}

class C<T>: B<IComparable<T>> {...}

class D<T>: C<T[]> {...}

class A: A {}

the base class of the constructed type G<int>  would be B<string,int[]> .

The direct base class of a class type must be at least as accessible as the class type itself (Accessibility domains). For

example, it is a compile-time error for a public  class to derive from a private  or internal  class.

The direct base class of a class type must not be any of the following types: System.Array , System.Delegate , 

System.MulticastDelegate , System.Enum , or System.ValueType . Furthermore, a generic class declaration cannot use 

System.Attribute  as a direct or indirect base class.

While determining the meaning of the direct base class specification A  of a class B , the direct base class of B  is

temporarily assumed to be object . Intuitively this ensures that the meaning of a base class specification cannot

recursively depend on itself. The example:

is in error since in the base class specification A<C.B>  the direct base class of C  is considered to be object , and

hence (by the rules of Namespace and type names) C  is not considered to have a member B .

The base classes of a class type are the direct base class and its base classes. In other words, the set of base classes

is the transitive closure of the direct base class relationship. Referring to the example above, the base classes of B

are A  and object . In the example

the base classes of D<int>  are C<int[]> , B<IComparable<int[]>> , A , and object .

Except for class object , every class type has exactly one direct base class. The object  class has no direct base

class and is the ultimate base class of all other classes.

When a class B  derives from a class A , it is a compile-time error for A  to depend on B . A class directlydirectly

depends ondepends on its direct base class (if any) and directly depends ondirectly depends on the class within which it is immediately nested

(if any). Given this definition, the complete set of classes upon which a class depends is the reflexive and transitive

closure of the directly depends ondirectly depends on relationship.

The example

is erroneous because the class depends on itself. Likewise, the example



                                                                          

class A: B {}
class B: C {}
class C: A {}

class A: B.C {}

class B: A
{
    public class C {}
}

class A
{
    class B: A {}
}

sealed class A {}

class B: A {}            // Error, cannot derive from a sealed class

Interface implementationsInterface implementations

Type parameter constraintsType parameter constraints

is in error because the classes circularly depend on themselves. Finally, the example

results in a compile-time error because A  depends on B.C  (its direct base class), which depends on B  (its

immediately enclosing class), which circularly depends on A .

Note that a class does not depend on the classes that are nested within it. In the example

B  depends on A  (because A  is both its direct base class and its immediately enclosing class), but A  does not

depend on B  (since B  is neither a base class nor an enclosing class of A ). Thus, the example is valid.

It is not possible to derive from a sealed  class. In the example

class B  is in error because it attempts to derive from the sealed  class A .

A class_base specification may include a list of interface types, in which case the class is said to directly implement

the given interface types. Interface implementations are discussed further in Interface implementations.

Generic type and method declarations can optionally specify type parameter constraints by including

type_parameter_constraints_clauses.



type_parameter_constraints_clause
    : 'where' type_parameter ':' type_parameter_constraints
    ;

type_parameter_constraints
    : primary_constraint
    | secondary_constraints
    | constructor_constraint
    | primary_constraint ',' secondary_constraints
    | primary_constraint ',' constructor_constraint
    | secondary_constraints ',' constructor_constraint
    | primary_constraint ',' secondary_constraints ',' constructor_constraint
    ;

primary_constraint
    : class_type
    | 'class'
    | 'struct'
    ;

secondary_constraints
    : interface_type
    | type_parameter
    | secondary_constraints ',' interface_type
    | secondary_constraints ',' type_parameter
    ;

constructor_constraint
    : 'new' '(' ')'
    ;

Each type_parameter_constraints_clause consists of the token where , followed by the name of a type parameter,

followed by a colon and the list of constraints for that type parameter. There can be at most one where  clause for

each type parameter, and the where  clauses can be listed in any order. Like the get  and set  tokens in a property

accessor, the where  token is not a keyword.

The list of constraints given in a where  clause can include any of the following components, in this order : a single

primary constraint, one or more secondary constraints, and the constructor constraint, new() .

A primary constraint can be a class type or the reference type constraintreference type constraint class  or the value type constraintvalue type constraint 

struct . A secondary constraint can be a type_parameter or interface_type.

The reference type constraint specifies that a type argument used for the type parameter must be a reference type.

All class types, interface types, delegate types, array types, and type parameters known to be a reference type (as

defined below) satisfy this constraint.

The value type constraint specifies that a type argument used for the type parameter must be a non-nullable value

type. All non-nullable struct types, enum types, and type parameters having the value type constraint satisfy this

constraint. Note that although classified as a value type, a nullable type (Nullable types) does not satisfy the value

type constraint. A type parameter having the value type constraint cannot also have the constructor_constraint.

Pointer types are never allowed to be type arguments and are not considered to satisfy either the reference type or

value type constraints.

If a constraint is a class type, an interface type, or a type parameter, that type specifies a minimal "base type" that

every type argument used for that type parameter must support. Whenever a constructed type or generic method

is used, the type argument is checked against the constraints on the type parameter at compile-time. The type

argument supplied must satisfy the conditions described in Satisfying constraints.

A class_type constraint must satisfy the following rules:



The type must be a class type.

The type must not be sealed .

The type must not be one of the following types: System.Array , System.Delegate , System.Enum , or 

System.ValueType .

The type must not be object . Because all types derive from object , such a constraint would have no effect if it

were permitted.

At most one constraint for a given type parameter can be a class type.

A type specified as an interface_type constraint must satisfy the following rules:

The type must be an interface type.

A type must not be specified more than once in a given where  clause.

In either case, the constraint can involve any of the type parameters of the associated type or method declaration

as part of a constructed type, and can involve the type being declared.

Any class or interface type specified as a type parameter constraint must be at least as accessible (Accessibility

constraints) as the generic type or method being declared.

A type specified as a type_parameter constraint must satisfy the following rules:

The type must be a type parameter.

A type must not be specified more than once in a given where  clause.

In addition there must be no cycles in the dependency graph of type parameters, where dependency is a transitive

relation defined by:

If a type parameter T  is used as a constraint for type parameter S  then S  depends ondepends on T .

If a type parameter S  depends on a type parameter T  and T  depends on a type parameter U  then S

depends ondepends on U .

Given this relation, it is a compile-time error for a type parameter to depend on itself (directly or indirectly).

Any constraints must be consistent among dependent type parameters. If type parameter S  depends on type

parameter T  then:

T  must not have the value type constraint. Otherwise, T  is effectively sealed so S  would be forced to be the

same type as T , eliminating the need for two type parameters.

If S  has the value type constraint then T  must not have a class_type constraint.

If S  has a class_type constraint A  and T  has a class_type constraint B  then there must be an identity

conversion or implicit reference conversion from A  to B  or an implicit reference conversion from B  to A .

If S  also depends on type parameter U  and U  has a class_type constraint A  and T  has a class_type

constraint B  then there must be an identity conversion or implicit reference conversion from A  to B  or an

implicit reference conversion from B  to A .

It is valid for S  to have the value type constraint and T  to have the reference type constraint. Effectively this

limits T  to the types System.Object , System.ValueType , System.Enum , and any interface type.

If the where  clause for a type parameter includes a constructor constraint (which has the form new() ), it is

possible to use the new  operator to create instances of the type (Object creation expressions). Any type argument

used for a type parameter with a constructor constraint must have a public parameterless constructor (this

constructor implicitly exists for any value type) or be a type parameter having the value type constraint or

constructor constraint (see Type parameter constraints for details).

The following are examples of constraints:



interface IPrintable
{
    void Print();
}

interface IComparable<T>
{
    int CompareTo(T value);
}

interface IKeyProvider<T>
{
    T GetKey();
}

class Printer<T> where T: IPrintable {...}

class SortedList<T> where T: IComparable<T> {...}

class Dictionary<K,V>
    where K: IComparable<K>
    where V: IPrintable, IKeyProvider<K>, new()
{
    ...
}

class Circular<S,T>
    where S: T
    where T: S                // Error, circularity in dependency graph
{
    ...
}

class Sealed<S,T>
    where S: T
    where T: struct        // Error, T is sealed
{
    ...
}

class A {...}

class B {...}

class Incompat<S,T>
    where S: A, T
    where T: B                // Error, incompatible class-type constraints
{
    ...
}

class StructWithClass<S,T,U>
    where S: struct, T
    where T: U
    where U: A                // Error, A incompatible with struct
{
    ...
}

The following example is in error because it causes a circularity in the dependency graph of the type parameters:

The following examples illustrate additional invalid situations:



      

interface IPrintable
{
    void Print();
}

class Printer<T> where T: IPrintable
{
    void PrintOne(T x) {
        x.Print();
    }
}

Class bodyClass body

The effective base classeffective base class  of a type parameter T  is defined as follows:

If T  has no primary constraints or type parameter constraints, its effective base class is object .

If T  has the value type constraint, its effective base class is System.ValueType .

If T  has a class_type constraint C  but no type_parameter constraints, its effective base class is C .

If T  has no class_type constraint but has one or more type_parameter constraints, its effective base class is the

most encompassed type (Lifted conversion operators) in the set of effective base classes of its type_parameter

constraints. The consistency rules ensure that such a most encompassed type exists.

If T  has both a class_type constraint and one or more type_parameter constraints, its effective base class is the

most encompassed type (Lifted conversion operators) in the set consisting of the class_type constraint of T

and the effective base classes of its type_parameter constraints. The consistency rules ensure that such a most

encompassed type exists.

If T  has the reference type constraint but no class_type constraints, its effective base class is object .

For the purpose of these rules, if T has a constraint V  that is a value_type, use instead the most specific base type

of V  that is a class_type. This can never happen in an explicitly given constraint, but may occur when the

constraints of a generic method are implicitly inherited by an overriding method declaration or an explicit

implementation of an interface method.

These rules ensure that the effective base class is always a class_type.

The effective interface seteffective interface set of a type parameter T  is defined as follows:

If T  has no secondary_constraints, its effective interface set is empty.

If T  has interface_type constraints but no type_parameter constraints, its effective interface set is its set of

interface_type constraints.

If T  has no interface_type constraints but has type_parameter constraints, its effective interface set is the union

of the effective interface sets of its type_parameter constraints.

If T  has both interface_type constraints and type_parameter constraints, its effective interface set is the union

of its set of interface_type constraints and the effective interface sets of its type_parameter constraints.

A type parameter is known to be a reference typeknown to be a reference type if it has the reference type constraint or its effective base

class is not object  or System.ValueType .

Values of a constrained type parameter type can be used to access the instance members implied by the

constraints. In the example

the methods of IPrintable  can be invoked directly on x  because T  is constrained to always implement 

IPrintable .

The class_body of a class defines the members of that class.



    

  

class_body
    : '{' class_member_declaration* '}'
    ;

Partial types

AttributesAttributes

[Attr1, Attr2("hello")]
partial class A {}

[Attr3, Attr2("goodbye")]
partial class A {}

[Attr1, Attr2("hello"), Attr3, Attr2("goodbye")]
class A {}

ModifiersModifiers

A type declaration can be split across multiple par tial type declarationspar tial type declarations . The type declaration is constructed

from its parts by following the rules in this section, whereupon it is treated as a single declaration during the

remainder of the compile-time and run-time processing of the program.

A class_declaration, struct_declaration or interface_declaration represents a partial type declaration if it includes a 

partial  modifier. partial  is not a keyword, and only acts as a modifier if it appears immediately before one of

the keywords class , struct  or interface  in a type declaration, or before the type void  in a method declaration.

In other contexts it can be used as a normal identifier.

Each part of a partial type declaration must include a partial  modifier. It must have the same name and be

declared in the same namespace or type declaration as the other parts. The partial  modifier indicates that

additional parts of the type declaration may exist elsewhere, but the existence of such additional parts is not a

requirement; it is valid for a type with a single declaration to include the partial  modifier.

All parts of a partial type must be compiled together such that the parts can be merged at compile-time into a

single type declaration. Partial types specifically do not allow already compiled types to be extended.

Nested types may be declared in multiple parts by using the partial  modifier. Typically, the containing type is

declared using partial  as well, and each part of the nested type is declared in a different part of the containing

type.

The partial  modifier is not permitted on delegate or enum declarations.

The attributes of a partial type are determined by combining, in an unspecified order, the attributes of each of the

parts. If an attribute is placed on multiple parts, it is equivalent to specifying the attribute multiple times on the

type. For example, the two parts:

are equivalent to a declaration such as:

Attributes on type parameters combine in a similar fashion.

When a partial type declaration includes an accessibility specification (the public , protected , internal , and 

private  modifiers) it must agree with all other parts that include an accessibility specification. If no part of a

partial type includes an accessibility specification, the type is given the appropriate default accessibility (Declared

accessibility).

If one or more partial declarations of a nested type include a new  modifier, no warning is reported if the nested



  

    

Type parameters and constraintsType parameters and constraints

partial class Dictionary<K,V>
    where K: IComparable<K>
    where V: IKeyProvider<K>, IPersistable
{
    ...
}

partial class Dictionary<K,V>
    where V: IPersistable, IKeyProvider<K>
    where K: IComparable<K>
{
    ...
}

partial class Dictionary<K,V>
{
    ...
}

Base classBase class

Base interfacesBase interfaces

type hides an inherited member (Hiding through inheritance).

If one or more partial declarations of a class include an abstract  modifier, the class is considered abstract

(Abstract classes). Otherwise, the class is considered non-abstract.

If one or more partial declarations of a class include a sealed  modifier, the class is considered sealed (Sealed

classes). Otherwise, the class is considered unsealed.

Note that a class cannot be both abstract and sealed.

When the unsafe  modifier is used on a partial type declaration, only that particular part is considered an unsafe

context (Unsafe contexts).

If a generic type is declared in multiple parts, each part must state the type parameters. Each part must have the

same number of type parameters, and the same name for each type parameter, in order.

When a partial generic type declaration includes constraints ( where  clauses), the constraints must agree with all

other parts that include constraints. Specifically, each part that includes constraints must have constraints for the

same set of type parameters, and for each type parameter the sets of primary, secondary, and constructor

constraints must be equivalent. Two sets of constraints are equivalent if they contain the same members. If no part

of a partial generic type specifies type parameter constraints, the type parameters are considered unconstrained.

The example

is correct because those parts that include constraints (the first two) effectively specify the same set of primary,

secondary, and constructor constraints for the same set of type parameters, respectively.

When a partial class declaration includes a base class specification it must agree with all other parts that include a

base class specification. If no part of a partial class includes a base class specification, the base class becomes 

System.Object  (Base classes).

The set of base interfaces for a type declared in multiple parts is the union of the base interfaces specified on each

part. A particular base interface may only be named once on each part, but it is permitted for multiple parts to

name the same base interface(s). There must only be one implementation of the members of any given base

interface.

In the example



        

partial class C: IA, IB {...}

partial class C: IC {...}

partial class C: IA, IB {...}

partial class X
{
    int IComparable.CompareTo(object o) {...}
}

partial class X: IComparable
{
    ...
}

MembersMembers

partial class A
{
    int x;                     // Error, cannot declare x more than once

    partial class Inner        // Ok, Inner is a partial type
    {
        int y;
    }
}

partial class A
{
    int x;                     // Error, cannot declare x more than once

    partial class Inner        // Ok, Inner is a partial type
    {
        int z;
    }
}

Partial methodsPartial methods

the set of base interfaces for class C  is IA , IB , and IC .

Typically, each part provides an implementation of the interface(s) declared on that part; however, this is not a

requirement. A part may provide the implementation for an interface declared on a different part:

With the exception of partial methods (Partial methods), the set of members of a type declared in multiple parts is

simply the union of the set of members declared in each part. The bodies of all parts of the type declaration share

the same declaration space (Declarations), and the scope of each member (Scopes) extends to the bodies of all the

parts. The accessibility domain of any member always includes all the parts of the enclosing type; a private

member declared in one part is freely accessible from another part. It is a compile-time error to declare the same

member in more than one part of the type, unless that member is a type with the partial  modifier.

The ordering of members within a type is rarely significant to C# code, but may be significant when interfacing

with other languages and environments. In these cases, the ordering of members within a type declared in multiple

parts is undefined.

Partial methods can be defined in one part of a type declaration and implemented in another. The implementation

is optional; if no part implements the partial method, the partial method declaration and all calls to it are removed

from the type declaration resulting from the combination of the parts.



Partial methods cannot define access modifiers, but are implicitly private . Their return type must be void , and

their parameters cannot have the out  modifier. The identifier partial  is recognized as a special keyword in a

method declaration only if it appears right before the void  type; otherwise it can be used as a normal identifier. A

partial method cannot explicitly implement interface methods.

There are two kinds of partial method declarations: If the body of the method declaration is a semicolon, the

declaration is said to be a defining par tial method declarationdefining par tial method declaration. If the body is given as a block, the declaration

is said to be an implementing par tial method declarationimplementing par tial method declaration. Across the parts of a type declaration there can be

only one defining partial method declaration with a given signature, and there can be only one implementing

partial method declaration with a given signature. If an implementing partial method declaration is given, a

corresponding defining partial method declaration must exist, and the declarations must match as specified in the

following:

The declarations must have the same modifiers (although not necessarily in the same order), method name,

number of type parameters and number of parameters.

Corresponding parameters in the declarations must have the same modifiers (although not necessarily in the

same order) and the same types (modulo differences in type parameter names).

Corresponding type parameters in the declarations must have the same constraints (modulo differences in type

parameter names).

An implementing partial method declaration can appear in the same part as the corresponding defining partial

method declaration.

Only a defining partial method participates in overload resolution. Thus, whether or not an implementing

declaration is given, invocation expressions may resolve to invocations of the partial method. Because a partial

method always returns void , such invocation expressions will always be expression statements. Furthermore,

because a partial method is implicitly private , such statements will always occur within one of the parts of the

type declaration within which the partial method is declared.

If no part of a partial type declaration contains an implementing declaration for a given partial method, any

expression statement invoking it is simply removed from the combined type declaration. Thus the invocation

expression, including any constituent expressions, has no effect at run-time. The partial method itself is also

removed and will not be a member of the combined type declaration.

If an implementing declaration exist for a given partial method, the invocations of the partial methods are retained.

The partial method gives rise to a method declaration similar to the implementing partial method declaration

except for the following:

The partial  modifier is not included

The attributes in the resulting method declaration are the combined attributes of the defining and the

implementing partial method declaration in unspecified order. Duplicates are not removed.

The attributes on the parameters of the resulting method declaration are the combined attributes of the

corresponding parameters of the defining and the implementing partial method declaration in unspecified

order. Duplicates are not removed.

If a defining declaration but not an implementing declaration is given for a partial method M, the following

restrictions apply:

It is a compile-time error to create a delegate to method (Delegate creation expressions).

It is a compile-time error to refer to M  inside an anonymous function that is converted to an expression tree

type (Evaluation of anonymous function conversions to expression tree types).

Expressions occurring as part of an invocation of M  do not affect the definite assignment state (Definite

assignment), which can potentially lead to compile-time errors.

M  cannot be the entry point for an application (Application Startup).



partial class Customer
{
    string name;

    public string Name {
        get { return name; }
        set {
            OnNameChanging(value);
            name = value;
            OnNameChanged();
        }

    }

    partial void OnNameChanging(string newName);

    partial void OnNameChanged();
}

class Customer
{
    string name;

    public string Name {
        get { return name; }
        set { name = value; }
    }
}

partial class Customer
{
    partial void OnNameChanging(string newName)
    {
        Console.WriteLine("Changing " + name + " to " + newName);
    }

    partial void OnNameChanged()
    {
        Console.WriteLine("Changed to " + name);
    }
}

Partial methods are useful for allowing one part of a type declaration to customize the behavior of another part,

e.g., one that is generated by a tool. Consider the following partial class declaration:

If this class is compiled without any other parts, the defining partial method declarations and their invocations will

be removed, and the resulting combined class declaration will be equivalent to the following:

Assume that another part is given, however, which provides implementing declarations of the partial methods:

Then the resulting combined class declaration will be equivalent to the following:



 

class Customer
{
    string name;

    public string Name {
        get { return name; }
        set {
            OnNameChanging(value);
            name = value;
            OnNameChanged();
        }

    }

    void OnNameChanging(string newName)
    {
        Console.WriteLine("Changing " + name + " to " + newName);
    }

    void OnNameChanged()
    {
        Console.WriteLine("Changed to " + name);
    }
}

Name bindingName binding

namespace N
{
    using List = System.Collections.ArrayList;

    partial class A
    {
        List x;                // x has type System.Collections.ArrayList
    }
}

namespace N
{
    using List = Widgets.LinkedList;

    partial class A
    {
        List y;                // y has type Widgets.LinkedList
    }
}

Class members

Although each part of an extensible type must be declared within the same namespace, the parts are typically

written within different namespace declarations. Thus, different using  directives (Using directives) may be present

for each part. When interpreting simple names (Type inference) within one part, only the using  directives of the

namespace declaration(s) enclosing that part are considered. This may result in the same identifier having different

meanings in different parts:

The members of a class consist of the members introduced by its class_member_declarations and the members

inherited from the direct base class.



class_member_declaration
    : constant_declaration
    | field_declaration
    | method_declaration
    | property_declaration
    | event_declaration
    | indexer_declaration
    | operator_declaration
    | constructor_declaration
    | destructor_declaration
    | static_constructor_declaration
    | type_declaration
    ;

The members of a class type are divided into the following categories:

Constants, which represent constant values associated with the class (Constants).

Fields, which are the variables of the class (Fields).

Methods, which implement the computations and actions that can be performed by the class (Methods).

Properties, which define named characteristics and the actions associated with reading and writing those

characteristics (Properties).

Events, which define notifications that can be generated by the class (Events).

Indexers, which permit instances of the class to be indexed in the same way (syntactically) as arrays (Indexers).

Operators, which define the expression operators that can be applied to instances of the class (Operators).

Instance constructors, which implement the actions required to initialize instances of the class (Instance

constructors)

Destructors, which implement the actions to be performed before instances of the class are permanently

discarded (Destructors).

Static constructors, which implement the actions required to initialize the class itself (Static constructors).

Types, which represent the types that are local to the class (Nested types).

Members that can contain executable code are collectively known as the function members of the class type. The

function members of a class type are the methods, properties, events, indexers, operators, instance constructors,

destructors, and static constructors of that class type.

A class_declaration creates a new declaration space (Declarations), and the class_member_declarations

immediately contained by the class_declaration introduce new members into this declaration space. The following

rules apply to class_member_declarations:

Instance constructors, destructors and static constructors must have the same name as the immediately

enclosing class. All other members must have names that differ from the name of the immediately enclosing

class.

The name of a constant, field, property, event, or type must differ from the names of all other members

declared in the same class.

The name of a method must differ from the names of all other non-methods declared in the same class. In

addition, the signature (Signatures and overloading) of a method must differ from the signatures of all other

methods declared in the same class, and two methods declared in the same class may not have signatures that

differ solely by ref  and out .

The signature of an instance constructor must differ from the signatures of all other instance constructors

declared in the same class, and two constructors declared in the same class may not have signatures that differ

solely by ref  and out .

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

The signature of an operator must differ from the signatures of all other operators declared in the same class.



                          

    

The instance typeThe instance type

class A<T>                           // instance type: A<T>
{
    class B {}                       // instance type: A<T>.B
    class C<U> {}                    // instance type: A<T>.C<U>
}

class D {}                           // instance type: D

Members of constructed typesMembers of constructed types

class Gen<T,U>
{
    public T[,] a;
    public void G(int i, T t, Gen<U,T> gt) {...}
    public U Prop { get {...} set {...} }
    public int H(double d) {...}
}

public int[,][] a;
public void G(int i, int[] t, Gen<IComparable<string>,int[]> gt) {...}
public IComparable<string> Prop { get {...} set {...} }
public int H(double d) {...}

The inherited members of a class type (Inheritance) are not part of the declaration space of a class. Thus, a derived

class is allowed to declare a member with the same name or signature as an inherited member (which in effect

hides the inherited member).

Each class declaration has an associated bound type (Bound and unbound types), the instance typeinstance type. For a generic

class declaration, the instance type is formed by creating a constructed type (Constructed types) from the type

declaration, with each of the supplied type arguments being the corresponding type parameter. Since the instance

type uses the type parameters, it can only be used where the type parameters are in scope; that is, inside the class

declaration. The instance type is the type of this  for code written inside the class declaration. For non-generic

classes, the instance type is simply the declared class. The following shows several class declarations along with

their instance types:

The non-inherited members of a constructed type are obtained by substituting, for each type_parameter in the

member declaration, the corresponding type_argument of the constructed type. The substitution process is based

on the semantic meaning of type declarations, and is not simply textual substitution.

For example, given the generic class declaration

the constructed type Gen<int[],IComparable<string>>  has the following members:

The type of the member a  in the generic class declaration Gen  is "two-dimensional array of T ", so the type of

the member a  in the constructed type above is "two-dimensional array of one-dimensional array of int ", or 

int[,][] .

Within instance function members, the type of this  is the instance type (The instance type) of the containing

declaration.

All members of a generic class can use type parameters from any enclosing class, either directly or as part of a

constructed type. When a particular closed constructed type (Open and closed types) is used at run-time, each use

of a type parameter is replaced with the actual type argument supplied to the constructed type. For example:



      

class C<V>
{
    public V f1;
    public C<V> f2 = null;

    public C(V x) {
        this.f1 = x;
        this.f2 = this;
    }
}

class Application
{
    static void Main() {
        C<int> x1 = new C<int>(1);
        Console.WriteLine(x1.f1);        // Prints 1

        C<double> x2 = new C<double>(3.1415);
        Console.WriteLine(x2.f1);        // Prints 3.1415
    }
}

InheritanceInheritance
A class inheritsinherits  the members of its direct base class type. Inheritance means that a class implicitly contains all

members of its direct base class type, except for the instance constructors, destructors and static constructors of

the base class. Some important aspects of inheritance are:

Inheritance is transitive. If C  is derived from B , and B  is derived from A , then C  inherits the members

declared in B  as well as the members declared in A .

A derived class extends its direct base class. A derived class can add new members to those it inherits, but it

cannot remove the definition of an inherited member.

Instance constructors, destructors, and static constructors are not inherited, but all other members are,

regardless of their declared accessibility (Member access). However, depending on their declared accessibility,

inherited members might not be accessible in a derived class.

A derived class can hidehide (Hiding through inheritance) inherited members by declaring new members with the

same name or signature. Note however that hiding an inherited member does not remove that member—it

merely makes that member inaccessible directly through the derived class.

An instance of a class contains a set of all instance fields declared in the class and its base classes, and an

implicit conversion (Implicit reference conversions) exists from a derived class type to any of its base class

types. Thus, a reference to an instance of some derived class can be treated as a reference to an instance of any

of its base classes.

A class can declare virtual methods, properties, and indexers, and derived classes can override the

implementation of these function members. This enables classes to exhibit polymorphic behavior wherein the

actions performed by a function member invocation varies depending on the run-time type of the instance

through which that function member is invoked.

The inherited member of a constructed class type are the members of the immediate base class type (Base classes),

which is found by substituting the type arguments of the constructed type for each occurrence of the

corresponding type parameters in the class_base specification. These members, in turn, are transformed by

substituting, for each type_parameter in the member declaration, the corresponding type_argument of the

class_base specification.



                    

                    

          

class B<U>
{
    public U F(long index) {...}
}

class D<T>: B<T[]>
{
    public T G(string s) {...}
}

The new modifierThe new modifier

Access modifiersAccess modifiers

Constituent typesConstituent types

Static and instance membersStatic and instance members

In the above example, the constructed type D<int>  has a non-inherited member public int G(string s)  obtained

by substituting the type argument int  for the type parameter T . D<int>  also has an inherited member from the

class declaration B . This inherited member is determined by first determining the base class type B<int[]>  of 

D<int>  by substituting int  for T  in the base class specification B<T[]> . Then, as a type argument to B , int[]

is substituted for U  in public U F(long index) , yielding the inherited member public int[] F(long index) .

A class_member_declaration is permitted to declare a member with the same name or signature as an inherited

member. When this occurs, the derived class member is said to hidehide the base class member. Hiding an inherited

member is not considered an error, but it does cause the compiler to issue a warning. To suppress the warning, the

declaration of the derived class member can include a new  modifier to indicate that the derived member is

intended to hide the base member. This topic is discussed further in Hiding through inheritance.

If a new  modifier is included in a declaration that doesn't hide an inherited member, a warning to that effect is

issued. This warning is suppressed by removing the new  modifier.

A class_member_declaration can have any one of the five possible kinds of declared accessibility (Declared

accessibility): public , protected internal , protected , internal , or private . Except for the protected internal

combination, it is a compile-time error to specify more than one access modifier. When a

class_member_declaration does not include any access modifiers, private  is assumed.

Types that are used in the declaration of a member are called the constituent types of that member. Possible

constituent types are the type of a constant, field, property, event, or indexer, the return type of a method or

operator, and the parameter types of a method, indexer, operator, or instance constructor. The constituent types of a

member must be at least as accessible as that member itself (Accessibility constraints).

Members of a class are either static membersstatic members  or instance membersinstance members . Generally speaking, it is useful to think of

static members as belonging to class types and instance members as belonging to objects (instances of class

types).

When a field, method, property, event, operator, or constructor declaration includes a static  modifier, it declares a

static member. In addition, a constant or type declaration implicitly declares a static member. Static members have

the following characteristics:

When a static member M  is referenced in a member_access (Member access) of the form E.M , E  must

denote a type containing M . It is a compile-time error for E  to denote an instance.

A static field identifies exactly one storage location to be shared by all instances of a given closed class type. No

matter how many instances of a given closed class type are created, there is only ever one copy of a static field.

A static function member (method, property, event, operator, or constructor) does not operate on a specific

instance, and it is a compile-time error to refer to this  in such a function member.

When a field, method, property, event, indexer, constructor, or destructor declaration does not include a static



            

class Test
{
    int x;
    static int y;

    void F() {
        x = 1;            // Ok, same as this.x = 1
        y = 1;            // Ok, same as Test.y = 1
    }

    static void G() {
        x = 1;            // Error, cannot access this.x
        y = 1;            // Ok, same as Test.y = 1
    }

    static void Main() {
        Test t = new Test();
        t.x = 1;          // Ok
        t.y = 1;          // Error, cannot access static member through instance
        Test.x = 1;       // Error, cannot access instance member through type
        Test.y = 1;       // Ok
    }
}

Nested typesNested types

using System;

class A
{
    class B
    {
        static void F() {
            Console.WriteLine("A.B.F");
        }
    }
}

modifier, it declares an instance member. (An instance member is sometimes called a non-static member.) Instance

members have the following characteristics:

When an instance member M  is referenced in a member_access (Member access) of the form E.M , E  must

denote an instance of a type containing M . It is a binding-time error for E  to denote a type.

Every instance of a class contains a separate set of all instance fields of the class.

An instance function member (method, property, indexer, instance constructor, or destructor) operates on a

given instance of the class, and this instance can be accessed as this  (This access).

The following example illustrates the rules for accessing static and instance members:

The F  method shows that in an instance function member, a simple_name (Simple names) can be used to access

both instance members and static members. The G  method shows that in a static function member, it is a

compile-time error to access an instance member through a simple_name. The Main  method shows that in a

member_access (Member access), instance members must be accessed through instances, and static members

must be accessed through types.

A type declared within a class or struct declaration is called a nested typenested type. A type that is declared within a

compilation unit or namespace is called a non-nested typenon-nested type.

In the example

class B  is a nested type because it is declared within class A , and class A  is a non-nested type because it is



Fully qualified nameFully qualified name

Declared accessibilityDeclared accessibility

public class List
{
    // Private data structure
    private class Node
    { 
        public object Data;
        public Node Next;

        public Node(object data, Node next) {
            this.Data = data;
            this.Next = next;
        }
    }

    private Node first = null;
    private Node last = null;

    // Public interface
    public void AddToFront(object o) {...}
    public void AddToBack(object o) {...}
    public object RemoveFromFront() {...}
    public object RemoveFromBack() {...}
    public int Count { get {...} }
}

HidingHiding

declared within a compilation unit.

The fully qualified name (Fully qualified names) for a nested type is S.N  where S  is the fully qualified name of

the type in which type N  is declared.

Non-nested types can have public  or internal  declared accessibility and have internal  declared accessibility

by default. Nested types can have these forms of declared accessibility too, plus one or more additional forms of

declared accessibility, depending on whether the containing type is a class or struct:

A nested type that is declared in a class can have any of five forms of declared accessibility ( public , 

protected internal , protected , internal , or private ) and, like other class members, defaults to private

declared accessibility.

A nested type that is declared in a struct can have any of three forms of declared accessibility ( public , 

internal , or private ) and, like other struct members, defaults to private  declared accessibility.

The example

declares a private nested class Node .

A nested type may hide (Name hiding) a base member. The new  modifier is permitted on nested type declarations

so that hiding can be expressed explicitly. The example



using System;

class Base
{
    public static void M() {
        Console.WriteLine("Base.M");
    }
}

class Derived: Base 
{
    new public class M 
    {
        public static void F() {
            Console.WriteLine("Derived.M.F");
        }
    }
}

class Test 
{
    static void Main() {
        Derived.M.F();
    }
}

this accessthis access

shows a nested class M  that hides the method M  defined in Base .

A nested type and its containing type do not have a special relationship with regard to this_access (This access).

Specifically, this  within a nested type cannot be used to refer to instance members of the containing type. In

cases where a nested type needs access to the instance members of its containing type, access can be provided by

providing the this  for the instance of the containing type as a constructor argument for the nested type. The

following example



using System;

class C
{
    int i = 123;

    public void F() {
        Nested n = new Nested(this);
        n.G();
    }

    public class Nested
    {
        C this_c;

        public Nested(C c) {
            this_c = c;
        }

        public void G() {
            Console.WriteLine(this_c.i);
        }
    }
}

class Test
{
    static void Main() {
        C c = new C();
        c.F();
    }
}

Access to private and protected members of the containing typeAccess to private and protected members of the containing type

using System;

class C 
{
    private static void F() {
        Console.WriteLine("C.F");
    }

    public class Nested 
    {
        public static void G() {
            F();
        }
    }
}

class Test 
{
    static void Main() {
        C.Nested.G();
    }
}

shows this technique. An instance of C  creates an instance of Nested  and passes its own this  to Nested 's

constructor in order to provide subsequent access to C 's instance members.

A nested type has access to all of the members that are accessible to its containing type, including members of the

containing type that have private  and protected  declared accessibility. The example



    

using System;

class Base 
{
    protected void F() {
        Console.WriteLine("Base.F");
    }
}

class Derived: Base 
{
    public class Nested 
    {
        public void G() {
            Derived d = new Derived();
            d.F();        // ok
        }
    }
}

class Test 
{
    static void Main() {
        Derived.Nested n = new Derived.Nested();
        n.G();
    }
}

Nested types in generic classesNested types in generic classes

shows a class C  that contains a nested class Nested . Within Nested , the method G  calls the static method F

defined in C , and F  has private declared accessibility.

A nested type also may access protected members defined in a base type of its containing type. In the example

the nested class Derived.Nested  accesses the protected method F  defined in Derived 's base class, Base , by

calling through an instance of Derived .

A generic class declaration can contain nested type declarations. The type parameters of the enclosing class can be

used within the nested types. A nested type declaration can contain additional type parameters that apply only to

the nested type.

Every type declaration contained within a generic class declaration is implicitly a generic type declaration. When

writing a reference to a type nested within a generic type, the containing constructed type, including its type

arguments, must be named. However, from within the outer class, the nested type can be used without

qualification; the instance type of the outer class can be implicitly used when constructing the nested type. The

following example shows three different correct ways to refer to a constructed type created from Inner ; the first

two are equivalent:



class Outer<T>
{
    class Inner<U>
    {
        public static void F(T t, U u) {...}
    }

    static void F(T t) {
        Outer<T>.Inner<string>.F(t, "abc");      // These two statements have
        Inner<string>.F(t, "abc");               // the same effect

        Outer<int>.Inner<string>.F(3, "abc");    // This type is different

        Outer.Inner<string>.F(t, "abc");         // Error, Outer needs type arg
    }
}

class Outer<T>
{
    class Inner<T>        // Valid, hides Outer's T
    {
        public T t;       // Refers to Inner's T
    }
}

Reserved member namesReserved member names

Member names reserved for propertiesMember names reserved for properties

T get_P();
void set_P(T value);

Although it is bad programming style, a type parameter in a nested type can hide a member or type parameter

declared in the outer type:

To facilitate the underlying C# run-time implementation, for each source member declaration that is a property,

event, or indexer, the implementation must reserve two method signatures based on the kind of the member

declaration, its name, and its type. It is a compile-time error for a program to declare a member whose signature

matches one of these reserved signatures, even if the underlying run-time implementation does not make use of

these reservations.

The reserved names do not introduce declarations, thus they do not participate in member lookup. However, a

declaration's associated reserved method signatures do participate in inheritance (Inheritance), and can be hidden

with the new  modifier (The new modifier).

The reservation of these names serves three purposes:

To allow the underlying implementation to use an ordinary identifier as a method name for get or set access to

the C# language feature.

To allow other languages to interoperate using an ordinary identifier as a method name for get or set access to

the C# language feature.

To help ensure that the source accepted by one conforming compiler is accepted by another, by making the

specifics of reserved member names consistent across all C# implementations.

The declaration of a destructor (Destructors) also causes a signature to be reserved (Member names reserved for

destructors).

For a property P  (Properties) of type T , the following signatures are reserved:



  

using System;

class A
{
    public int P {
        get { return 123; }
    }
}

class B: A
{
    new public int get_P() {
        return 456;
    }

    new public void set_P(int value) {
    }
}

class Test
{
    static void Main() {
        B b = new B();
        A a = b;
        Console.WriteLine(a.P);
        Console.WriteLine(b.P);
        Console.WriteLine(b.get_P());
    }
}

123
123
456

Member names reserved for eventsMember names reserved for events

void add_E(T handler);
void remove_E(T handler);

Member names reserved for indexersMember names reserved for indexers

T get_Item(L);
void set_Item(L, T value);

Member names reserved for destructorsMember names reserved for destructors

Both signatures are reserved, even if the property is read-only or write-only.

In the example

a class A  defines a read-only property P , thus reserving signatures for get_P  and set_P  methods. A class B

derives from A  and hides both of these reserved signatures. The example produces the output:

For an event E  (Events) of delegate type T , the following signatures are reserved:

For an indexer (Indexers) of type T  with parameter-list L , the following signatures are reserved:

Both signatures are reserved, even if the indexer is read-only or write-only.

Furthermore the member name Item  is reserved.

For a class containing a destructor (Destructors), the following signature is reserved:



         

void Finalize();

Constants

constant_declaration
    : attributes? constant_modifier* 'const' type constant_declarators ';'
    ;

constant_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    ;

constant_declarators
    : constant_declarator (',' constant_declarator)*
    ;

constant_declarator
    : identifier '=' constant_expression
    ;

A constantconstant is a class member that represents a constant value: a value that can be computed at compile-time. A

constant_declaration introduces one or more constants of a given type.

A constant_declaration may include a set of attributes (Attributes), a new  modifier (The new modifier), and a valid

combination of the four access modifiers (Access modifiers). The attributes and modifiers apply to all of the

members declared by the constant_declaration. Even though constants are considered static members, a

constant_declaration neither requires nor allows a static  modifier. It is an error for the same modifier to appear

multiple times in a constant declaration.

The type of a constant_declaration specifies the type of the members introduced by the declaration. The type is

followed by a list of constant_declarators, each of which introduces a new member. A constant_declarator consists

of an identifier that names the member, followed by an " = " token, followed by a constant_expression (Constant

expressions) that gives the value of the member.

The type specified in a constant declaration must be sbyte , byte , short , ushort , int , uint , long , ulong , 

char , float , double , decimal , bool , string , an enum_type, or a reference_type. Each constant_expression

must yield a value of the target type or of a type that can be converted to the target type by an implicit conversion

(Implicit conversions).

The type of a constant must be at least as accessible as the constant itself (Accessibility constraints).

The value of a constant is obtained in an expression using a simple_name (Simple names) or a member_access

(Member access).

A constant can itself participate in a constant_expression. Thus, a constant may be used in any construct that

requires a constant_expression. Examples of such constructs include case  labels, goto case  statements, enum

member declarations, attributes, and other constant declarations.

As described in Constant expressions, a constant_expression is an expression that can be fully evaluated at

compile-time. Since the only way to create a non-null value of a reference_type other than string  is to apply the 

new  operator, and since the new  operator is not permitted in a constant_expression, the only possible value for

constants of reference_types other than string  is null .



    

class A
{
    public const double X = 1.0, Y = 2.0, Z = 3.0;
}

class A
{
    public const double X = 1.0;
    public const double Y = 2.0;
    public const double Z = 3.0;
}

class A
{
    public const int X = B.Z + 1;
    public const int Y = 10;
}

class B
{
    public const int Z = A.Y + 1;
}

Fields

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a

constant declaration, or when the value cannot be computed at compile-time by a constant_expression, a 

readonly  field (Readonly fields) may be used instead.

A constant declaration that declares multiple constants is equivalent to multiple declarations of single constants

with the same attributes, modifiers, and type. For example

is equivalent to

Constants are permitted to depend on other constants within the same program as long as the dependencies are

not of a circular nature. The compiler automatically arranges to evaluate the constant declarations in the

appropriate order. In the example

the compiler first evaluates A.Y , then evaluates B.Z , and finally evaluates A.X , producing the values 10 , 11 ,

and 12 . Constant declarations may depend on constants from other programs, but such dependencies are only

possible in one direction. Referring to the example above, if A  and B  were declared in separate programs, it

would be possible for A.X  to depend on B.Z , but B.Z  could then not simultaneously depend on A.Y .

A fieldfield is a member that represents a variable associated with an object or class. A field_declaration introduces one

or more fields of a given type.



field_declaration
    : attributes? field_modifier* type variable_declarators ';'
    ;

field_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'static'
    | 'readonly'
    | 'volatile'
    | field_modifier_unsafe
    ;

variable_declarators
    : variable_declarator (',' variable_declarator)*
    ;

variable_declarator
    : identifier ('=' variable_initializer)?
    ;

variable_initializer
    : expression
    | array_initializer
    ;

class A
{
    public static int X = 1, Y, Z = 100;
}

A field_declaration may include a set of attributes (Attributes), a new  modifier (The new modifier), a valid

combination of the four access modifiers (Access modifiers), and a static  modifier (Static and instance fields). In

addition, a field_declaration may include a readonly  modifier (Readonly fields) or a volatile  modifier (Volatile

fields) but not both. The attributes and modifiers apply to all of the members declared by the field_declaration. It is

an error for the same modifier to appear multiple times in a field declaration.

The type of a field_declaration specifies the type of the members introduced by the declaration. The type is

followed by a list of variable_declarators, each of which introduces a new member. A variable_declarator consists of

an identifier that names that member, optionally followed by an " = " token and a variable_initializer (Variable

initializers) that gives the initial value of that member.

The type of a field must be at least as accessible as the field itself (Accessibility constraints).

The value of a field is obtained in an expression using a simple_name (Simple names) or a member_access

(Member access). The value of a non-readonly field is modified using an assignment (Assignment operators). The

value of a non-readonly field can be both obtained and modified using postfix increment and decrement operators

(Postfix increment and decrement operators) and prefix increment and decrement operators (Prefix increment and

decrement operators).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the same

attributes, modifiers, and type. For example

is equivalent to



    

      

class A
{
    public static int X = 1;
    public static int Y;
    public static int Z = 100;
}

Static and instance fieldsStatic and instance fields

class C<V>
{
    static int count = 0;

    public C() {
        count++;
    }

    public static int Count {
        get { return count; }
    }
}

class Application
{
    static void Main() {
        C<int> x1 = new C<int>();
        Console.WriteLine(C<int>.Count);        // Prints 1

        C<double> x2 = new C<double>();
        Console.WriteLine(C<int>.Count);        // Prints 1

        C<int> x3 = new C<int>();
        Console.WriteLine(C<int>.Count);        // Prints 2
    }
}

Readonly fieldsReadonly fields

When a field declaration includes a static  modifier, the fields introduced by the declaration are static fieldsstatic fields .

When no static  modifier is present, the fields introduced by the declaration are instance fieldsinstance fields . Static fields and

instance fields are two of the several kinds of variables (Variables) supported by C#, and at times they are referred

to as static var iablesstatic var iables  and instance var iablesinstance var iables , respectively.

A static field is not part of a specific instance; instead, it is shared amongst all instances of a closed type (Open and

closed types). No matter how many instances of a closed class type are created, there is only ever one copy of a

static field for the associated application domain.

For example:

An instance field belongs to an instance. Specifically, every instance of a class contains a separate set of all the

instance fields of that class.

When a field is referenced in a member_access (Member access) of the form E.M , if M  is a static field, E  must

denote a type containing M , and if M  is an instance field, E must denote an instance of a type containing M .

The differences between static and instance members are discussed further in Static and instance members.

When a field_declaration includes a readonly  modifier, the fields introduced by the declaration are readonlyreadonly

fieldsfields . Direct assignments to readonly fields can only occur as part of that declaration or in an instance constructor

or static constructor in the same class. (A readonly field can be assigned to multiple times in these contexts.)

Specifically, direct assignments to a readonly  field are permitted only in the following contexts:



Using static readonly fields for constantsUsing static readonly fields for constants

public class Color
{
    public static readonly Color Black = new Color(0, 0, 0);
    public static readonly Color White = new Color(255, 255, 255);
    public static readonly Color Red = new Color(255, 0, 0);
    public static readonly Color Green = new Color(0, 255, 0);
    public static readonly Color Blue = new Color(0, 0, 255);

    private byte red, green, blue;

    public Color(byte r, byte g, byte b) {
        red = r;
        green = g;
        blue = b;
    }
}

Versioning of constants and static readonly fieldsVersioning of constants and static readonly fields

using System;

namespace Program1
{
    public class Utils
    {
        public static readonly int X = 1;
    }
}

namespace Program2
{
    class Test
    {
        static void Main() {
            Console.WriteLine(Program1.Utils.X);
        }
    }
}

In the variable_declarator that introduces the field (by including a variable_initializer in the declaration).

For an instance field, in the instance constructors of the class that contains the field declaration; for a static field,

in the static constructor of the class that contains the field declaration. These are also the only contexts in which

it is valid to pass a readonly  field as an out  or ref  parameter.

Attempting to assign to a readonly  field or pass it as an out  or ref  parameter in any other context is a compile-

time error.

A static readonly  field is useful when a symbolic name for a constant value is desired, but when the type of the

value is not permitted in a const  declaration, or when the value cannot be computed at compile-time. In the

example

the Black , White , Red , Green , and Blue  members cannot be declared as const  members because their values

cannot be computed at compile-time. However, declaring them static readonly  instead has much the same effect.

Constants and readonly fields have different binary versioning semantics. When an expression references a

constant, the value of the constant is obtained at compile-time, but when an expression references a readonly field,

the value of the field is not obtained until run-time. Consider an application that consists of two separate

programs:

The Program1  and Program2  namespaces denote two programs that are compiled separately. Because 



            Volatile fieldsVolatile fields

using System;
using System.Threading;

class Test
{
    public static int result;   
    public static volatile bool finished;

    static void Thread2() {
        result = 143;    
        finished = true; 
    }

    static void Main() {
        finished = false;

        // Run Thread2() in a new thread
        new Thread(new ThreadStart(Thread2)).Start();

        // Wait for Thread2 to signal that it has a result by setting
        // finished to true.
        for (;;) {
            if (finished) {
                Console.WriteLine("result = {0}", result);
                return;
            }
        }
    }
}

Program1.Utils.X  is declared as a static readonly field, the value output by the Console.WriteLine  statement is not

known at compile-time, but rather is obtained at run-time. Thus, if the value of X  is changed and Program1  is

recompiled, the Console.WriteLine  statement will output the new value even if Program2  isn't recompiled.

However, had X  been a constant, the value of X  would have been obtained at the time Program2  was compiled,

and would remain unaffected by changes in Program1  until Program2  is recompiled.

When a field_declaration includes a volatile  modifier, the fields introduced by that declaration are volatilevolatile

fieldsfields .

For non-volatile fields, optimization techniques that reorder instructions can lead to unexpected and unpredictable

results in multi-threaded programs that access fields without synchronization such as that provided by the

lock_statement (The lock statement). These optimizations can be performed by the compiler, by the run-time

system, or by hardware. For volatile fields, such reordering optimizations are restricted:

A read of a volatile field is called a volatile readvolatile read. A volatile read has "acquire semantics"; that is, it is

guaranteed to occur prior to any references to memory that occur after it in the instruction sequence.

A write of a volatile field is called a volatile writevolatile write. A volatile write has "release semantics"; that is, it is

guaranteed to happen after any memory references prior to the write instruction in the instruction sequence.

These restrictions ensure that all threads will observe volatile writes performed by any other thread in the order in

which they were performed. A conforming implementation is not required to provide a single total ordering of

volatile writes as seen from all threads of execution. The type of a volatile field must be one of the following:

A reference_type.

The type byte , sbyte , short , ushort , int , uint , char , float , bool , System.IntPtr , or System.UIntPtr .

An enum_type having an enum base type of byte , sbyte , short , ushort , int , or uint .

The example



      

        

result = 143

Field initializationField initialization

using System;

class Test
{
    static bool b;
    int i;

    static void Main() {
        Test t = new Test();
        Console.WriteLine("b = {0}, i = {1}", b, t.i);
    }
}

b = False, i = 0

Variable initializersVariable initializers

using System;

class Test
{
    static double x = Math.Sqrt(2.0);
    int i = 100;
    string s = "Hello";

    static void Main() {
        Test a = new Test();
        Console.WriteLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s);
    }
}

produces the output:

In this example, the method Main  starts a new thread that runs the method Thread2 . This method stores a value

into a non-volatile field called result , then stores true  in the volatile field finished . The main thread waits for

the field finished  to be set to true , then reads the field result . Since finished  has been declared volatile ,

the main thread must read the value 143  from the field result . If the field finished  had not been declared 

volatile , then it would be permissible for the store to result  to be visible to the main thread after the store to 

finished , and hence for the main thread to read the value 0  from the field result . Declaring finished  as a 

volatile  field prevents any such inconsistency.

The initial value of a field, whether it be a static field or an instance field, is the default value (Default values) of the

field's type. It is not possible to observe the value of a field before this default initialization has occurred, and a field

is thus never "uninitialized". The example

produces the output

because b  and i  are both automatically initialized to default values.

Field declarations may include variable_initializers. For static fields, variable initializers correspond to assignment

statements that are executed during class initialization. For instance fields, variable initializers correspond to

assignment statements that are executed when an instance of the class is created.

The example



  

x = 1.4142135623731, i = 100, s = Hello

using System;

class Test
{
    static int a = b + 1;
    static int b = a + 1;

    static void Main() {
        Console.WriteLine("a = {0}, b = {1}", a, b);
    }
}

a = 1, b = 2

Static field initializationStatic field initialization

produces the output

because an assignment to x  occurs when static field initializers execute and assignments to i  and s  occur

when the instance field initializers execute.

The default value initialization described in Field initialization occurs for all fields, including fields that have variable

initializers. Thus, when a class is initialized, all static fields in that class are first initialized to their default values, and

then the static field initializers are executed in textual order. Likewise, when an instance of a class is created, all

instance fields in that instance are first initialized to their default values, and then the instance field initializers are

executed in textual order.

It is possible for static fields with variable initializers to be observed in their default value state. However, this is

strongly discouraged as a matter of style. The example

exhibits this behavior. Despite the circular definitions of a and b, the program is valid. It results in the output

because the static fields a  and b  are initialized to 0  (the default value for int ) before their initializers are

executed. When the initializer for a  runs, the value of b  is zero, and so a  is initialized to 1 . When the initializer

for b  runs, the value of a  is already 1 , and so b  is initialized to 2 .

The static field variable initializers of a class correspond to a sequence of assignments that are executed in the

textual order in which they appear in the class declaration. If a static constructor (Static constructors) exists in the

class, execution of the static field initializers occurs immediately prior to executing that static constructor.

Otherwise, the static field initializers are executed at an implementation-dependent time prior to the first use of a

static field of that class. The example



using System;

class Test 
{ 
    static void Main() {
        Console.WriteLine("{0} {1}", B.Y, A.X);
    }

    public static int F(string s) {
        Console.WriteLine(s);
        return 1;
    }
}

class A
{
    public static int X = Test.F("Init A");
}

class B
{
    public static int Y = Test.F("Init B");
}

Init A
Init B
1 1

Init B
Init A
1 1

might produce either the output:

or the output:

because the execution of X 's initializer and Y 's initializer could occur in either order ; they are only constrained to

occur before the references to those fields. However, in the example:



             

using System;

class Test
{
    static void Main() {
        Console.WriteLine("{0} {1}", B.Y, A.X);
    }

    public static int F(string s) {
        Console.WriteLine(s);
        return 1;
    }
}

class A
{
    static A() {}

    public static int X = Test.F("Init A");
}

class B
{
    static B() {}

    public static int Y = Test.F("Init B");
}

Init B
Init A
1 1

Instance field initializationInstance field initialization

class A
{
    int x = 1;
    int y = x + 1;        // Error, reference to instance member of this
}

Methods

the output must be:

because the rules for when static constructors execute (as defined in Static constructors) provide that B 's static

constructor (and hence B 's static field initializers) must run before A 's static constructor and field initializers.

The instance field variable initializers of a class correspond to a sequence of assignments that are executed

immediately upon entry to any one of the instance constructors (Constructor initializers) of that class. The variable

initializers are executed in the textual order in which they appear in the class declaration. The class instance

creation and initialization process is described further in Instance constructors.

A variable initializer for an instance field cannot reference the instance being created. Thus, it is a compile-time

error to reference this  in a variable initializer, as it is a compile-time error for a variable initializer to reference

any instance member through a simple_name. In the example

the variable initializer for y  results in a compile-time error because it references a member of the instance being

created.

A methodmethod is a member that implements a computation or action that can be performed by an object or class.



method_declaration
    : method_header method_body
    ;

method_header
    : attributes? method_modifier* 'partial'? return_type member_name type_parameter_list?
      '(' formal_parameter_list? ')' type_parameter_constraints_clause*
    ;

method_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'static'
    | 'virtual'
    | 'sealed'
    | 'override'
    | 'abstract'
    | 'extern'
    | 'async'
    | method_modifier_unsafe
    ;

return_type
    : type
    | 'void'
    ;

member_name
    : identifier
    | interface_type '.' identifier
    ;

method_body
    : block
    | '=>' expression ';'
    | ';'
    ;

Methods are declared using method_declarations:

A method_declaration may include a set of attributes (Attributes) and a valid combination of the four access

modifiers (Access modifiers), the new  (The new modifier), static  (Static and instance methods), virtual  (Virtual

methods), override  (Override methods), sealed  (Sealed methods), abstract  (Abstract methods), and extern

(External methods) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

The declaration includes a valid combination of access modifiers (Access modifiers).

The declaration does not include the same modifier multiple times.

The declaration includes at most one of the following modifiers: static , virtual , and override .

The declaration includes at most one of the following modifiers: new  and override .

If the declaration includes the abstract  modifier, then the declaration does not include any of the following

modifiers: static , virtual , sealed  or extern .

If the declaration includes the private  modifier, then the declaration does not include any of the following

modifiers: virtual , override , or abstract .

If the declaration includes the sealed  modifier, then the declaration also includes the override  modifier.

If the declaration includes the partial  modifier, then it does not include any of the following modifiers: new , 



              Method parametersMethod parameters

public , protected , internal , private , virtual , sealed , override , abstract , or extern .

A method that has the async  modifier is an async function and follows the rules described in Async functions.

The return_type of a method declaration specifies the type of the value computed and returned by the method. The

return_type is void  if the method does not return a value. If the declaration includes the partial  modifier, then

the return type must be void .

The member_name specifies the name of the method. Unless the method is an explicit interface member

implementation (Explicit interface member implementations), the member_name is simply an identifier. For an

explicit interface member implementation, the member_name consists of an interface_type followed by a " . " and

an identifier.

The optional type_parameter_list specifies the type parameters of the method (Type parameters). If a

type_parameter_list is specified the method is a generic methodgeneric method. If the method has an extern  modifier, a

type_parameter_list cannot be specified.

The optional formal_parameter_list specifies the parameters of the method (Method parameters).

The optional type_parameter_constraints_clauses specify constraints on individual type parameters (Type

parameter constraints) and may only be specified if a type_parameter_list is also supplied, and the method does

not have an override  modifier.

The return_type and each of the types referenced in the formal_parameter_list of a method must be at least as

accessible as the method itself (Accessibility constraints).

The method_body is either a semicolon, a statement bodystatement body  or an expression bodyexpression body . A statement body consists of

a block, which specifies the statements to execute when the method is invoked. An expression body consists of =>

followed by an expression and a semicolon, and denotes a single expression to perform when the method is

invoked.

For abstract  and extern  methods, the method_body consists simply of a semicolon. For partial  methods the

method_body may consist of either a semicolon, a block body or an expression body. For all other methods, the

method_body is either a block body or an expression body.

If the method_body consists of a semicolon, then the declaration may not include the async  modifier.

The name, the type parameter list and the formal parameter list of a method define the signature (Signatures and

overloading) of the method. Specifically, the signature of a method consists of its name, the number of type

parameters and the number, modifiers, and types of its formal parameters. For these purposes, any type parameter

of the method that occurs in the type of a formal parameter is identified not by its name, but by its ordinal position

in the type argument list of the method.The return type is not part of a method's signature, nor are the names of

the type parameters or the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In

addition, the signature of a method must differ from the signatures of all other methods declared in the same

class, and two methods declared in the same class may not have signatures that differ solely by ref  and out .

The method's type_parameters are in scope throughout the method_declaration, and can be used to form types

throughout that scope in return_type, method_body, and type_parameter_constraints_clauses but not in attributes.

All formal parameters and type parameters must have different names.

The parameters of a method, if any, are declared by the method's formal_parameter_list.



formal_parameter_list
    : fixed_parameters
    | fixed_parameters ',' parameter_array
    | parameter_array
    ;

fixed_parameters
    : fixed_parameter (',' fixed_parameter)*
    ;

fixed_parameter
    : attributes? parameter_modifier? type identifier default_argument?
    ;

default_argument
    : '=' expression
    ;

parameter_modifier
    : 'ref'
    | 'out'
    | 'this'
    ;

parameter_array
    : attributes? 'params' array_type identifier
    ;

The formal parameter list consists of one or more comma-separated parameters of which only the last may be a

parameter_array.

A fixed_parameter consists of an optional set of attributes (Attributes), an optional ref , out  or this  modifier, a

type, an identifier and an optional default_argument. Each fixed_parameter declares a parameter of the given type

with the given name. The this  modifier designates the method as an extension method and is only allowed on

the first parameter of a static method. Extension methods are further described in Extension methods.

A fixed_parameter with a default_argument is known as an optional parameteroptional parameter , whereas a fixed_parameter

without a default_argument is a required parameterrequired parameter . A required parameter may not appear after an optional

parameter in a formal_parameter_list.

A ref  or out  parameter cannot have a default_argument. The expression in a default_argument must be one of

the following:

a constant_expression

an expression of the form new S()  where S  is a value type

an expression of the form default(S)  where S  is a value type

The expression must be implicitly convertible by an identity or nullable conversion to the type of the parameter.

If optional parameters occur in an implementing partial method declaration (Partial methods) , an explicit interface

member implementation (Explicit interface member implementations) or in a single-parameter indexer declaration

(Indexers) the compiler should give a warning, since these members can never be invoked in a way that permits

arguments to be omitted.

A parameter_array consists of an optional set of attributes (Attributes), a params  modifier, an array_type, and an

identifier. A parameter array declares a single parameter of the given array type with the given name. The

array_type of a parameter array must be a single-dimensional array type (Array types). In a method invocation, a

parameter array permits either a single argument of the given array type to be specified, or it permits zero or more

arguments of the array element type to be specified. Parameter arrays are described further in Parameter arrays.



              

      

public void M(
    ref int      i,
    decimal      d,
    bool         b = false,
    bool?        n = false,
    string       s = "Hello",
    object       o = null,
    T            t = default(T),
    params int[] a
) { }

Value parametersValue parameters

Reference parametersReference parameters

A parameter_array may occur after an optional parameter, but cannot have a default value -- the omission of

arguments for a parameter_array would instead result in the creation of an empty array.

The following example illustrates different kinds of parameters:

In the formal_parameter_list for M , i  is a required ref parameter, d  is a required value parameter, b , s , o

and t  are optional value parameters and a  is a parameter array.

A method declaration creates a separate declaration space for parameters, type parameters and local variables.

Names are introduced into this declaration space by the type parameter list and the formal parameter list of the

method and by local variable declarations in the block of the method. It is an error for two members of a method

declaration space to have the same name. It is an error for the method declaration space and the local variable

declaration space of a nested declaration space to contain elements with the same name.

A method invocation (Method invocations) creates a copy, specific to that invocation, of the formal parameters and

local variables of the method, and the argument list of the invocation assigns values or variable references to the

newly created formal parameters. Within the block of a method, formal parameters can be referenced by their

identifiers in simple_name expressions (Simple names).

There are four kinds of formal parameters:

Value parameters, which are declared without any modifiers.

Reference parameters, which are declared with the ref  modifier.

Output parameters, which are declared with the out  modifier.

Parameter arrays, which are declared with the params  modifier.

As described in Signatures and overloading, the ref  and out  modifiers are part of a method's signature, but the 

params  modifier is not.

A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local variable

that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation must be an

expression that is implicitly convertible (Implicit conversions) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local storage

location represented by the value parameter—they have no effect on the actual argument given in the method

invocation.

A parameter declared with a ref  modifier is a reference parameter. Unlike a value parameter, a reference

parameter does not create a new storage location. Instead, a reference parameter represents the same storage

location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a method invocation must

consist of the keyword ref  followed by a variable_reference (Precise rules for determining definite assignment) of



    

using System;

class Test
{
    static void Swap(ref int x, ref int y) {
        int temp = x;
        x = y;
        y = temp;
    }

    static void Main() {
        int i = 1, j = 2;
        Swap(ref i, ref j);
        Console.WriteLine("i = {0}, j = {1}", i, j);
    }
}

i = 2, j = 1

class A
{
    string s;

    void F(ref string a, ref string b) {
        s = "One";
        a = "Two";
        b = "Three";
    }

    void G() {
        F(ref s, ref s);
    }
}

Output parametersOutput parameters

the same type as the formal parameter. A variable must be definitely assigned before it can be passed as a

reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

A method declared as an iterator (Iterators) cannot have reference parameters.

The example

produces the output

For the invocation of Swap  in Main , x  represents i  and y  represents j . Thus, the invocation has the effect of

swapping the values of i  and j .

In a method that takes reference parameters it is possible for multiple names to represent the same storage

location. In the example

the invocation of F  in G  passes a reference to s  for both a  and b . Thus, for that invocation, the names s , a ,

and b  all refer to the same storage location, and the three assignments all modify the instance field s .

A parameter declared with an out  modifier is an output parameter. Similar to a reference parameter, an output

parameter does not create a new storage location. Instead, an output parameter represents the same storage

location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation must



          

using System;

class Test
{
    static void SplitPath(string path, out string dir, out string name) {
        int i = path.Length;
        while (i > 0) {
            char ch = path[i - 1];
            if (ch == '\\' || ch == '/' || ch == ':') break;
            i--;
        }
        dir = path.Substring(0, i);
        name = path.Substring(i);
    }

    static void Main() {
        string dir, name;
        SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
        Console.WriteLine(dir);
        Console.WriteLine(name);
    }
}

c:\Windows\System\
hello.txt

Parameter arraysParameter arrays

consist of the keyword out  followed by a variable_reference (Precise rules for determining definite assignment) of

the same type as the formal parameter. A variable need not be definitely assigned before it can be passed as an

output parameter, but following an invocation where a variable was passed as an output parameter, the variable is

considered definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and must be

definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method returns.

A method declared as a partial method (Partial methods) or an iterator (Iterators) cannot have output parameters.

Output parameters are typically used in methods that produce multiple return values. For example:

The example produces the output:

Note that the dir  and name  variables can be unassigned before they are passed to SplitPath , and that they are

considered definitely assigned following the call.

A parameter declared with a params  modifier is a parameter array. If a formal parameter list includes a parameter

array, it must be the last parameter in the list and it must be of a single-dimensional array type. For example, the

types string[]  and string[][]  can be used as the type of a parameter array, but the type string[,]  can not. It is

not possible to combine the params  modifier with the modifiers ref  and out .

A parameter array permits arguments to be specified in one of two ways in a method invocation:

The argument given for a parameter array can be a single expression that is implicitly convertible (Implicit

conversions) to the parameter array type. In this case, the parameter array acts precisely like a value parameter.

Alternatively, the invocation can specify zero or more arguments for the parameter array, where each argument

is an expression that is implicitly convertible (Implicit conversions) to the element type of the parameter array.

In this case, the invocation creates an instance of the parameter array type with a length corresponding to the

number of arguments, initializes the elements of the array instance with the given argument values, and uses



using System;

class Test
{
    static void F(params int[] args) {
        Console.Write("Array contains {0} elements:", args.Length);
        foreach (int i in args) 
            Console.Write(" {0}", i);
        Console.WriteLine();
    }

    static void Main() {
        int[] arr = {1, 2, 3};
        F(arr);
        F(10, 20, 30, 40);
        F();
    }
}

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

F(new int[] {10, 20, 30, 40});
F(new int[] {});

the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely equivalent to a

value parameter (Value parameters) of the same type.

The example

produces the output

The first invocation of F  simply passes the array a  as a value parameter. The second invocation of F

automatically creates a four-element int[]  with the given element values and passes that array instance as a

value parameter. Likewise, the third invocation of F  creates a zero-element int[]  and passes that instance as a

value parameter. The second and third invocations are precisely equivalent to writing:

When performing overload resolution, a method with a parameter array may be applicable either in its normal

form or in its expanded form (Applicable function member). The expanded form of a method is available only if the

normal form of the method is not applicable and only if an applicable method with the same signature as the

expanded form is not already declared in the same type.

The example



using System;

class Test
{
    static void F(params object[] a) {
        Console.WriteLine("F(object[])");
    }

    static void F() {
        Console.WriteLine("F()");
    }

    static void F(object a0, object a1) {
        Console.WriteLine("F(object,object)");
    }

    static void Main() {
        F();
        F(1);
        F(1, 2);
        F(1, 2, 3);
        F(1, 2, 3, 4);
    }
}

F();
F(object[]);
F(object,object);
F(object[]);
F(object[]);

produces the output

In the example, two of the possible expanded forms of the method with a parameter array are already included in

the class as regular methods. These expanded forms are therefore not considered when performing overload

resolution, and the first and third method invocations thus select the regular methods. When a class declares a

method with a parameter array, it is not uncommon to also include some of the expanded forms as regular

methods. By doing so it is possible to avoid the allocation of an array instance that occurs when an expanded form

of a method with a parameter array is invoked.

When the type of a parameter array is object[] , a potential ambiguity arises between the normal form of the

method and the expended form for a single object  parameter. The reason for the ambiguity is that an object[]  is

itself implicitly convertible to type object . The ambiguity presents no problem, however, since it can be resolved

by inserting a cast if needed.

The example



      

                    

using System;

class Test
{
    static void F(params object[] args) {
        foreach (object o in args) {
            Console.Write(o.GetType().FullName);
            Console.Write(" ");
        }
        Console.WriteLine();
    }

    static void Main() {
        object[] a = {1, "Hello", 123.456};
        object o = a;
        F(a);
        F((object)a);
        F(o);
        F((object[])o);
    }
}

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

Static and instance methodsStatic and instance methods

Virtual methodsVirtual methods

produces the output

In the first and last invocations of F , the normal form of F  is applicable because an implicit conversion exists

from the argument type to the parameter type (both are of type object[] ). Thus, overload resolution selects the

normal form of F , and the argument is passed as a regular value parameter. In the second and third invocations,

the normal form of F  is not applicable because no implicit conversion exists from the argument type to the

parameter type (type object  cannot be implicitly converted to type object[] ). However, the expanded form of F

is applicable, so it is selected by overload resolution. As a result, a one-element object[]  is created by the

invocation, and the single element of the array is initialized with the given argument value (which itself is a

reference to an object[] ).

When a method declaration includes a static  modifier, that method is said to be a static method. When no 

static  modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to refer to this  in a static

method.

An instance method operates on a given instance of a class, and that instance can be accessed as this  (This

access).

When a method is referenced in a member_access (Member access) of the form E.M , if M  is a static method, E

must denote a type containing M , and if M  is an instance method, E  must denote an instance of a type

containing M .

The differences between static and instance members are discussed further in Static and instance members.

When an instance method declaration includes a virtual  modifier, that method is said to be a virtual method.

When no virtual  modifier is present, the method is said to be a non-virtual method.



using System;

class A
{
    public void F() { Console.WriteLine("A.F"); }

    public virtual void G() { Console.WriteLine("A.G"); }
}

class B: A
{
    new public void F() { Console.WriteLine("B.F"); }

    public override void G() { Console.WriteLine("B.G"); }
}

class Test
{
    static void Main() {
        B b = new B();
        A a = b;
        a.F();
        b.F();
        a.G();
        b.G();
    }
}

The implementation of a non-virtual method is invariant: The implementation is the same whether the method is

invoked on an instance of the class in which it is declared or an instance of a derived class. In contrast, the

implementation of a virtual method can be superseded by derived classes. The process of superseding the

implementation of an inherited virtual method is known as overr idingoverr iding that method (Override methods).

In a virtual method invocation, the run-time typerun-time type of the instance for which that invocation takes place determines

the actual method implementation to invoke. In a non-virtual method invocation, the compile-time typecompile-time type of the

instance is the determining factor. In precise terms, when a method named N  is invoked with an argument list A

on an instance with a compile-time type C  and a run-time type R  (where R  is either C  or a class derived from 

C ), the invocation is processed as follows:

First, overload resolution is applied to C , N , and A , to select a specific method M  from the set of methods

declared in and inherited by C . This is described in Method invocations.

Then, if M  is a non-virtual method, M  is invoked.

Otherwise, M  is a virtual method, and the most derived implementation of M  with respect to R  is invoked.

For every virtual method declared in or inherited by a class, there exists a most der ived implementationmost derived implementation of the

method with respect to that class. The most derived implementation of a virtual method M  with respect to a class 

R  is determined as follows:

If R  contains the introducing virtual  declaration of M , then this is the most derived implementation of M .

Otherwise, if R  contains an override  of M , then this is the most derived implementation of M .

Otherwise, the most derived implementation of M  with respect to R  is the same as the most derived

implementation of M  with respect to the direct base class of R .

The following example illustrates the differences between virtual and non-virtual methods:

In the example, A  introduces a non-virtual method F  and a virtual method G . The class B  introduces a new

non-virtual method F , thus hiding the inherited F , and also overrides the inherited method G . The example

produces the output:



A.F
B.F
B.G
B.G

using System;

class A
{
    public virtual void F() { Console.WriteLine("A.F"); }
}

class B: A
{
    public override void F() { Console.WriteLine("B.F"); }
}

class C: B
{
    new public virtual void F() { Console.WriteLine("C.F"); }
}

class D: C
{
    public override void F() { Console.WriteLine("D.F"); }
}

class Test
{
    static void Main() {
        D d = new D();
        A a = d;
        B b = d;
        C c = d;
        a.F();
        b.F();
        c.F();
        d.F();
    }
}

B.F
B.F
D.F
D.F

Notice that the statement a.G()  invokes B.G , not A.G . This is because the run-time type of the instance (which is

B ), not the compile-time type of the instance (which is A ), determines the actual method implementation to

invoke.

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual methods

with the same signature. This does not present an ambiguity problem, since all but the most derived method are

hidden. In the example

the C  and D  classes contain two virtual methods with the same signature: The one introduced by A  and the one

introduced by C . The method introduced by C  hides the method inherited from A . Thus, the override

declaration in D  overrides the method introduced by C , and it is not possible for D  to override the method

introduced by A . The example produces the output:

Note that it is possible to invoke the hidden virtual method by accessing an instance of D  through a less derived



              Override methodsOverride methods

abstract class C<T>
{
    public virtual T F() {...}
    public virtual C<T> G() {...}
    public virtual void H(C<T> x) {...}
}

class D: C<string>
{
    public override string F() {...}            // Ok
    public override C<string> G() {...}         // Ok
    public override void H(C<T> x) {...}        // Error, should be C<string>
}

class E<T,U>: C<U>
{
    public override U F() {...}                 // Ok
    public override C<U> G() {...}              // Ok
    public override void H(C<T> x) {...}        // Error, should be C<U>
}

type in which the method is not hidden.

When an instance method declaration includes an override  modifier, the method is said to be an overr ideoverr ide

methodmethod. An override method overrides an inherited virtual method with the same signature. Whereas a virtual

method declaration introduces a new method, an override method declaration specializes an existing inherited

virtual method by providing a new implementation of that method.

The method overridden by an override  declaration is known as the overr idden base methodoverr idden base method. For an override

method M  declared in a class C , the overridden base method is determined by examining each base class type of 

C , starting with the direct base class type of C  and continuing with each successive direct base class type, until in

a given base class type at least one accessible method is located which has the same signature as M  after

substitution of type arguments. For the purposes of locating the overridden base method, a method is considered

accessible if it is public , if it is protected , if it is protected internal , or if it is internal  and declared in the same

program as C .

A compile-time error occurs unless all of the following are true for an override declaration:

An overridden base method can be located as described above.

There is exactly one such overridden base method. This restriction has effect only if the base class type is a

constructed type where the substitution of type arguments makes the signature of two methods the same.

The overridden base method is a virtual, abstract, or override method. In other words, the overridden base

method cannot be static or non-virtual.

The overridden base method is not a sealed method.

The override method and the overridden base method have the same return type.

The override declaration and the overridden base method have the same declared accessibility. In other words,

an override declaration cannot change the accessibility of the virtual method. However, if the overridden base

method is protected internal and it is declared in a different assembly than the assembly containing the

override method then the override method's declared accessibility must be protected.

The override declaration does not specify type-parameter-constraints-clauses. Instead the constraints are

inherited from the overridden base method. Note that constraints that are type parameters in the overridden

method may be replaced by type arguments in the inherited constraint. This can lead to constraints that are not

legal when explicitly specified, such as value types or sealed types.

The following example demonstrates how the overriding rules work for generic classes:



class A
{
    int x;

    public virtual void PrintFields() {
        Console.WriteLine("x = {0}", x);
    }
}

class B: A
{
    int y;

    public override void PrintFields() {
        base.PrintFields();
        Console.WriteLine("y = {0}", y);
    }
}

class A
{
    public virtual void F() {}
}

class B: A
{
    public virtual void F() {}        // Warning, hiding inherited F()
}

class A
{
    public virtual void F() {}
}

class B: A
{
    new private void F() {}        // Hides A.F within body of B
}

class C: B
{
    public override void F() {}    // Ok, overrides A.F
}

An override declaration can access the overridden base method using a base_access (Base access). In the example

the base.PrintFields()  invocation in B  invokes the PrintFields  method declared in A . A base_access disables

the virtual invocation mechanism and simply treats the base method as a non-virtual method. Had the invocation

in B  been written ((A)this).PrintFields() , it would recursively invoke the PrintFields  method declared in B ,

not the one declared in A , since PrintFields  is virtual and the run-time type of ((A)this)  is B .

Only by including an override  modifier can a method override another method. In all other cases, a method with

the same signature as an inherited method simply hides the inherited method. In the example

the F  method in B  does not include an override  modifier and therefore does not override the F  method in A .

Rather, the F  method in B  hides the method in A , and a warning is reported because the declaration does not

include a new  modifier.

In the example



            

            

Sealed methodsSealed methods

using System;

class A
{
    public virtual void F() {
        Console.WriteLine("A.F");
    }

    public virtual void G() {
        Console.WriteLine("A.G");
    }
}

class B: A
{
    sealed override public void F() {
        Console.WriteLine("B.F");
    } 

    override public void G() {
        Console.WriteLine("B.G");
    } 
}

class C: B
{
    override public void G() {
        Console.WriteLine("C.G");
    } 
}

Abstract methodsAbstract methods

the F  method in B  hides the virtual F  method inherited from A . Since the new F  in B  has private access, its

scope only includes the class body of B  and does not extend to C . Therefore, the declaration of F  in C  is

permitted to override the F  inherited from A .

When an instance method declaration includes a sealed  modifier, that method is said to be a sealed methodsealed method. If

an instance method declaration includes the sealed  modifier, it must also include the override  modifier. Use of

the sealed  modifier prevents a derived class from further overriding the method.

In the example

the class B  provides two override methods: an F  method that has the sealed  modifier and a G  method that

does not. B 's use of the sealed modifier  prevents C  from further overriding F .

When an instance method declaration includes an abstract  modifier, that method is said to be an abstractabstract

methodmethod. Although an abstract method is implicitly also a virtual method, it cannot have the modifier virtual .

An abstract method declaration introduces a new virtual method but does not provide an implementation of that

method. Instead, non-abstract derived classes are required to provide their own implementation by overriding that

method. Because an abstract method provides no actual implementation, the method_body of an abstract method

simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (Abstract classes).

In the example



public abstract class Shape
{
    public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse: Shape
{
    public override void Paint(Graphics g, Rectangle r) {
        g.DrawEllipse(r);
    }
}

public class Box: Shape
{
    public override void Paint(Graphics g, Rectangle r) {
        g.DrawRect(r);
    }
}

abstract class A
{
    public abstract void F();
}

class B: A
{
    public override void F() {
        base.F();                        // Error, base.F is abstract
    }
}

the Shape  class defines the abstract notion of a geometrical shape object that can paint itself. The Paint  method

is abstract because there is no meaningful default implementation. The Ellipse  and Box  classes are concrete 

Shape  implementations. Because these classes are non-abstract, they are required to override the Paint  method

and provide an actual implementation.

It is a compile-time error for a base_access (Base access) to reference an abstract method. In the example

a compile-time error is reported for the base.F()  invocation because it references an abstract method.

An abstract method declaration is permitted to override a virtual method. This allows an abstract class to force re-

implementation of the method in derived classes, and makes the original implementation of the method

unavailable. In the example



            

using System;

class A
{
    public virtual void F() {
        Console.WriteLine("A.F");
    }
}

abstract class B: A
{
    public abstract override void F();
}

class C: B
{
    public override void F() {
        Console.WriteLine("C.F");
    }
}

External methodsExternal methods

using System.Text;
using System.Security.Permissions;
using System.Runtime.InteropServices;

class Path
{
    [DllImport("kernel32", SetLastError=true)]
    static extern bool CreateDirectory(string name, SecurityAttribute sa);

    [DllImport("kernel32", SetLastError=true)]
    static extern bool RemoveDirectory(string name);

    [DllImport("kernel32", SetLastError=true)]
    static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

    [DllImport("kernel32", SetLastError=true)]
    static extern bool SetCurrentDirectory(string name);
}

Partial methods (recap)Partial methods (recap)

class A  declares a virtual method, class B  overrides this method with an abstract method, and class C  overrides

the abstract method to provide its own implementation.

When a method declaration includes an extern  modifier, that method is said to be an external methodexternal method. External

methods are implemented externally, typically using a language other than C#. Because an external method

declaration provides no actual implementation, the method_body of an external method simply consists of a

semicolon. An external method may not be generic.

The extern  modifier is typically used in conjunction with a DllImport  attribute (Interoperation with COM and

Win32 components), allowing external methods to be implemented by DLLs (Dynamic Link Libraries). The

execution environment may support other mechanisms whereby implementations of external methods can be

provided.

When an external method includes a DllImport  attribute, the method declaration must also include a static

modifier. This example demonstrates the use of the extern  modifier and the DllImport  attribute:

When a method declaration includes a partial  modifier, that method is said to be a par tial methodpar tial method. Partial

methods can only be declared as members of partial types (Partial types), and are subject to a number of



    

                  

Extension methodsExtension methods

public static class Extensions
{
    public static int ToInt32(this string s) {
        return Int32.Parse(s);
    }

    public static T[] Slice<T>(this T[] source, int index, int count) {
        if (index < 0 || count < 0 || source.Length - index < count)
            throw new ArgumentException();
        T[] result = new T[count];
        Array.Copy(source, index, result, 0, count);
        return result;
    }
}

static class Program
{
    static void Main() {
        string[] strings = { "1", "22", "333", "4444" };
        foreach (string s in strings.Slice(1, 2)) {
            Console.WriteLine(s.ToInt32());
        }
    }
}

static class Program
{
    static void Main() {
        string[] strings = { "1", "22", "333", "4444" };
        foreach (string s in Extensions.Slice(strings, 1, 2)) {
            Console.WriteLine(Extensions.ToInt32(s));
        }
    }
}

Method bodyMethod body

restrictions. Partial methods are further described in Partial methods.

When the first parameter of a method includes the this  modifier, that method is said to be an extensionextension

methodmethod. Extension methods can only be declared in non-generic, non-nested static classes. The first parameter of

an extension method can have no modifiers other than this , and the parameter type cannot be a pointer type.

The following is an example of a static class that declares two extension methods:

An extension method is a regular static method. In addition, where its enclosing static class is in scope, an

extension method can be invoked using instance method invocation syntax (Extension method invocations), using

the receiver expression as the first argument.

The following program uses the extension methods declared above:

The Slice  method is available on the string[] , and the ToInt32  method is available on string , because they

have been declared as extension methods. The meaning of the program is the same as the following, using

ordinary static method calls:

The method_body of a method declaration consists of either a block body, an expression body or a semicolon.

The result typeresult type of a method is void  if the return type is void , or if the method is async and the return type is 

System.Threading.Tasks.Task . Otherwise, the result type of a non-async method is its return type, and the result



       

class A
{
    public int F() {}            // Error, return value required

    public int G() {
        return 1;
    }

    public int H(bool b) {
        if (b) {
            return 1;
        }
        else {
            return 0;
        }
    }

    public int I(bool b) => b ? 1 : 0;
}

Method overloadingMethod overloading

Properties

type of an async method with return type System.Threading.Tasks.Task<T>  is T .

When a method has a void  result type and a block body, return  statements (The return statement) in the block

are not permitted to specify an expression. If execution of the block of a void method completes normally (that is,

control flows off the end of the method body), that method simply returns to its current caller.

When a method has a void  result and an expression body, the expression E  must be a statement_expression,

and the body is exactly equivalent to a block body of the form { E; } .

When a method has a non-void result type and a block body, each return  statement in the block must specify an

expression that is implicitly convertible to the result type. The endpoint of a block body of a value-returning

method must not be reachable. In other words, in a value-returning method with a block body, control is not

permitted to flow off the end of the method body.

When a method has a non-void result type and an expression body, the expression must be implicitly convertible

to the result type, and the body is exactly equivalent to a block body of the form { return E; } .

In the example

the value-returning F  method results in a compile-time error because control can flow off the end of the method

body. The G  and H  methods are correct because all possible execution paths end in a return statement that

specifies a return value. The I  method is correct, because its body is equivalent to a statement block with just a

single return statement in it.

The method overload resolution rules are described in Type inference.

A proper typroper ty  is a member that provides access to a characteristic of an object or a class. Examples of properties

include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.

Properties are a natural extension of fields—both are named members with associated types, and the syntax for

accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.

Instead, properties have accessorsaccessors  that specify the statements to be executed when their values are read or

written. Properties thus provide a mechanism for associating actions with the reading and writing of an object's

attributes; furthermore, they permit such attributes to be computed.

Properties are declared using property_declarations:



property_declaration
    : attributes? property_modifier* type member_name property_body
    ;

property_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'static'
    | 'virtual'
    | 'sealed'
    | 'override'
    | 'abstract'
    | 'extern'
    | property_modifier_unsafe
    ;

property_body
    : '{' accessor_declarations '}' property_initializer?
    | '=>' expression ';'
    ;

property_initializer
    : '=' variable_initializer ';'
    ;

A property_declaration may include a set of attributes (Attributes) and a valid combination of the four access

modifiers (Access modifiers), the new  (The new modifier), static  (Static and instance methods), virtual  (Virtual

methods), override  (Override methods), sealed  (Sealed methods), abstract  (Abstract methods), and extern

(External methods) modifiers.

Property declarations are subject to the same rules as method declarations (Methods) with regard to valid

combinations of modifiers.

The type of a property declaration specifies the type of the property introduced by the declaration, and the

member_name specifies the name of the property. Unless the property is an explicit interface member

implementation, the member_name is simply an identifier. For an explicit interface member implementation

(Explicit interface member implementations), the member_name consists of an interface_type followed by a " . "

and an identifier.

The type of a property must be at least as accessible as the property itself (Accessibility constraints).

A property_body may either consist of an accessor bodyaccessor body  or an expression bodyexpression body . In an accessor body,

accessor_declarations, which must be enclosed in " { " and " } " tokens, declare the accessors (Accessors) of the

property. The accessors specify the executable statements associated with reading and writing the property.

An expression body consisting of =>  followed by an expression E  and a semicolon is exactly equivalent to the

statement body { get { return E; } } , and can therefore only be used to specify getter-only properties where the

result of the getter is given by a single expression.

A property_initializer may only be given for an automatically implemented property (Automatically implemented

properties), and causes the initialization of the underlying field of such properties with the value given by the

expression.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as a

variable. Thus, it is not possible to pass a property as a ref  or out  argument.

When a property declaration includes an extern  modifier, the property is said to be an external proper tyexternal proper ty .

Because an external property declaration provides no actual implementation, each of its accessor_declarations



              

Static and instance propertiesStatic and instance properties

AccessorsAccessors

accessor_declarations
    : get_accessor_declaration set_accessor_declaration?
    | set_accessor_declaration get_accessor_declaration?
    ;

get_accessor_declaration
    : attributes? accessor_modifier? 'get' accessor_body
    ;

set_accessor_declaration
    : attributes? accessor_modifier? 'set' accessor_body
    ;

accessor_modifier
    : 'protected'
    | 'internal'
    | 'private'
    | 'protected' 'internal'
    | 'internal' 'protected'
    ;

accessor_body
    : block
    | ';'
    ;

consists of a semicolon.

When a property declaration includes a static  modifier, the property is said to be a static proper tystatic proper ty . When no 

static  modifier is present, the property is said to be an instance proper tyinstance proper ty .

A static property is not associated with a specific instance, and it is a compile-time error to refer to this  in the

accessors of a static property.

An instance property is associated with a given instance of a class, and that instance can be accessed as this  (This

access) in the accessors of that property.

When a property is referenced in a member_access (Member access) of the form E.M , if M  is a static property, E

must denote a type containing M , and if M  is an instance property, E must denote an instance of a type containing

M .

The differences between static and instance members are discussed further in Static and instance members.

The accessor_declarations of a property specify the executable statements associated with reading and writing that

property.

The accessor declarations consist of a get_accessor_declaration, a set_accessor_declaration, or both. Each accessor

declaration consists of the token get  or set  followed by an optional accessor_modifier and an accessor_body.

The use of accessor_modifiers is governed by the following restrictions:

An accessor_modifier may not be used in an interface or in an explicit interface member implementation.

For a property or indexer that has no override  modifier, an accessor_modifier is permitted only if the property

or indexer has both a get  and set  accessor, and then is permitted only on one of those accessors.

For a property or indexer that includes an override  modifier, an accessor must match the accessor_modifier, if

any, of the accessor being overridden.

The accessor_modifier must declare an accessibility that is strictly more restrictive than the declared

accessibility of the property or indexer itself. To be precise:



If the property or indexer has a declared accessibility of public , the accessor_modifier may be either 

protected internal , internal , protected , or private .

If the property or indexer has a declared accessibility of protected internal , the accessor_modifier may

be either internal , protected , or private .

If the property or indexer has a declared accessibility of internal  or protected , the accessor_modifier

must be private .

If the property or indexer has a declared accessibility of private , no accessor_modifier may be used.

For abstract  and extern  properties, the accessor_body for each accessor specified is simply a semicolon. A non-

abstract, non-extern property may have each accessor_body be a semicolon, in which case it is an automaticallyautomatically

implemented proper tyimplemented proper ty  (Automatically implemented properties). An automatically implemented property must

have at least a get accessor. For the accessors of any other non-abstract, non-extern property, the accessor_body is

a block which specifies the statements to be executed when the corresponding accessor is invoked.

A get  accessor corresponds to a parameterless method with a return value of the property type. Except as the

target of an assignment, when a property is referenced in an expression, the get  accessor of the property is

invoked to compute the value of the property (Values of expressions). The body of a get  accessor must conform

to the rules for value-returning methods described in Method body. In particular, all return  statements in the

body of a get  accessor must specify an expression that is implicitly convertible to the property type. Furthermore,

the endpoint of a get  accessor must not be reachable.

A set  accessor corresponds to a method with a single value parameter of the property type and a void  return

type. The implicit parameter of a set  accessor is always named value . When a property is referenced as the

target of an assignment (Assignment operators), or as the operand of ++  or --  (Postfix increment and decrement

operators, Prefix increment and decrement operators), the set  accessor is invoked with an argument (whose

value is that of the right-hand side of the assignment or the operand of the ++  or --  operator) that provides the

new value (Simple assignment). The body of a set  accessor must conform to the rules for void  methods

described in Method body. In particular, return  statements in the set  accessor body are not permitted to specify

an expression. Since a set  accessor implicitly has a parameter named value , it is a compile-time error for a local

variable or constant declaration in a set  accessor to have that name.

Based on the presence or absence of the get  and set  accessors, a property is classified as follows:

A property that includes both a get  accessor and a set  accessor is said to be a read-writeread-write property.

A property that has only a get  accessor is said to be a read-onlyread-only  property. It is a compile-time error for a

read-only property to be the target of an assignment.

A property that has only a set  accessor is said to be a write-onlywrite-only  property. Except as the target of an

assignment, it is a compile-time error to reference a write-only property in an expression.

In the example



public class Button: Control
{
    private string caption;

    public string Caption {
        get {
            return caption;
        }
        set {
            if (caption != value) {
                caption = value;
                Repaint();
            }
        }
    }

    public override void Paint(Graphics g, Rectangle r) {
        // Painting code goes here
    }
}

Button okButton = new Button();
okButton.Caption = "OK";            // Invokes set accessor
string s = okButton.Caption;        // Invokes get accessor

class A
{
    private string name;

    public string Name {                // Error, duplicate member name
        get { return name; }
    }

    public string Name {                // Error, duplicate member name
        set { name = value; }
    }
}

the Button  control declares a public Caption  property. The get  accessor of the Caption  property returns the

string stored in the private caption  field. The set  accessor checks if the new value is different from the current

value, and if so, it stores the new value and repaints the control. Properties often follow the pattern shown above:

The get  accessor simply returns a value stored in a private field, and the set  accessor modifies that private field

and then performs any additional actions required to fully update the state of the object.

Given the Button  class above, the following is an example of use of the Caption  property:

Here, the set  accessor is invoked by assigning a value to the property, and the get  accessor is invoked by

referencing the property in an expression.

The get  and set  accessors of a property are not distinct members, and it is not possible to declare the accessors

of a property separately. As such, it is not possible for the two accessors of a read-write property to have different

accessibility. The example

does not declare a single read-write property. Rather, it declares two properties with the same name, one read-only

and one write-only. Since two members declared in the same class cannot have the same name, the example

causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the derived property hides

the inherited property with respect to both reading and writing. In the example



class A
{
    public int P {
        set {...}
    }
}

class B: A
{
    new public int P {
        get {...}
    }
}

B b = new B();
b.P = 1;          // Error, B.P is read-only
((A)b).P = 1;     // Ok, reference to A.P

class Label
{
    private int x, y;
    private string caption;

    public Label(int x, int y, string caption) {
        this.x = x;
        this.y = y;
        this.caption = caption;
    }

    public int X {
        get { return x; }
    }

    public int Y {
        get { return y; }
    }

    public Point Location {
        get { return new Point(x, y); }
    }

    public string Caption {
        get { return caption; }
    }
}

the P  property in B  hides the P  property in A  with respect to both reading and writing. Thus, in the statements

the assignment to b.P  causes a compile-time error to be reported, since the read-only P  property in B  hides

the write-only P  property in A . Note, however, that a cast can be used to access the hidden P  property.

Unlike public fields, properties provide a separation between an object's internal state and its public interface.

Consider the example:

Here, the Label  class uses two int  fields, x  and y , to store its location. The location is publicly exposed both as

an X  and a Y  property and as a Location  property of type Point . If, in a future version of Label , it becomes

more convenient to store the location as a Point  internally, the change can be made without affecting the public

interface of the class:



class Label
{
    private Point location;
    private string caption;

    public Label(int x, int y, string caption) {
        this.location = new Point(x, y);
        this.caption = caption;
    }

    public int X {
        get { return location.x; }
    }

    public int Y {
        get { return location.y; }
    }

    public Point Location {
        get { return location; }
    }

    public string Caption {
        get { return caption; }
    }
}

class Counter
{
    private int next;

    public int Next {
        get { return next++; }
    }
}

Had x  and y  instead been public readonly  fields, it would have been impossible to make such a change to the 

Label  class.

Exposing state through properties is not necessarily any less efficient than exposing fields directly. In particular,

when a property is non-virtual and contains only a small amount of code, the execution environment may replace

calls to accessors with the actual code of the accessors. This process is known as inlininginlining, and it makes property

access as efficient as field access, yet preserves the increased flexibility of properties.

Since invoking a get  accessor is conceptually equivalent to reading the value of a field, it is considered bad

programming style for get  accessors to have observable side-effects. In the example

the value of the Next  property depends on the number of times the property has previously been accessed. Thus,

accessing the property produces an observable side-effect, and the property should be implemented as a method

instead.

The "no side-effects" convention for get  accessors doesn't mean that get  accessors should always be written to

simply return values stored in fields. Indeed, get  accessors often compute the value of a property by accessing

multiple fields or invoking methods. However, a properly designed get  accessor performs no actions that cause

observable changes in the state of the object.

Properties can be used to delay initialization of a resource until the moment it is first referenced. For example:



            

using System.IO;

public class Console
{
    private static TextReader reader;
    private static TextWriter writer;
    private static TextWriter error;

    public static TextReader In {
        get {
            if (reader == null) {
                reader = new StreamReader(Console.OpenStandardInput());
            }
            return reader;
        }
    }

    public static TextWriter Out {
        get {
            if (writer == null) {
                writer = new StreamWriter(Console.OpenStandardOutput());
            }
            return writer;
        }
    }

    public static TextWriter Error {
        get {
            if (error == null) {
                error = new StreamWriter(Console.OpenStandardError());
            }
            return error;
        }
    }
}

Console.Out.WriteLine("hello, world");

Automatically implemented propertiesAutomatically implemented properties

The Console  class contains three properties, In , Out , and Error , that represent the standard input, output, and

error devices, respectively. By exposing these members as properties, the Console  class can delay their

initialization until they are actually used. For example, upon first referencing the Out  property, as in

the underlying TextWriter  for the output device is created. But if the application makes no reference to the In

and Error  properties, then no objects are created for those devices.

An automatically implemented property (or auto-proper tyauto-proper ty  for short), is a non-abstract non-extern property with

semicolon-only accessor bodies. Auto-properties must have a get accessor and can optionally have a set accessor.

When a property is specified as an automatically implemented property, a hidden backing field is automatically

available for the property, and the accessors are implemented to read from and write to that backing field. If the

auto-property has no set accessor, the backing field is considered readonly  (Readonly fields). Just like a readonly

field, a getter-only auto-property can also be assigned to in the body of a constructor of the enclosing class. Such

an assignment assigns directly to the readonly backing field of the property.

An auto-property may optionally have a property_initializer, which is applied directly to the backing field as a

variable_initializer (Variable initializers).

The following example:



public class Point {
    public int X { get; set; } = 0;
    public int Y { get; set; } = 0;
}

public class Point {
    private int __x = 0;
    private int __y = 0;
    public int X { get { return __x; } set { __x = value; } }
    public int Y { get { return __y; } set { __y = value; } }
}

public class ReadOnlyPoint
{
 public int X { get; }
 public int Y { get; }
 public ReadOnlyPoint(int x, int y) { X = x; Y = y; }
}

public class ReadOnlyPoint
{
 private readonly int __x;
 private readonly int __y;
 public int X { get { return __x; } }
 public int Y { get { return __y; } }
    public ReadOnlyPoint(int x, int y) { __x = x; __y = y; }
}

AccessibilityAccessibility

is equivalent to the following declaration:

The following example:

is equivalent to the following declaration:

Notice that the assignments to the readonly field are legal, because they occur within the constructor.

If an accessor has an accessor_modifier, the accessibility domain (Accessibility domains) of the accessor is

determined using the declared accessibility of the accessor_modifier. If an accessor does not have an

accessor_modifier, the accessibility domain of the accessor is determined from the declared accessibility of the

property or indexer.

The presence of an accessor_modifier never affects member lookup (Operators) or overload resolution (Overload

resolution). The modifiers on the property or indexer always determine which property or indexer is bound to,

regardless of the context of the access.

Once a particular property or indexer has been selected, the accessibility domains of the specific accessors

involved are used to determine if that usage is valid:

If the usage is as a value (Values of expressions), the get  accessor must exist and be accessible.

If the usage is as the target of a simple assignment (Simple assignment), the set  accessor must exist and be

accessible.

If the usage is as the target of compound assignment (Compound assignment), or as the target of the ++  or 

--  operators (Function members.9, Invocation expressions), both the get  accessors and the set  accessor

must exist and be accessible.



class A
{
    public string Text {
        get { return "hello"; }
        set { }
    }

    public int Count {
        get { return 5; }
        set { }
    }
}

class B: A
{
    private string text = "goodbye"; 
    private int count = 0;

    new public string Text {
        get { return text; }
        protected set { text = value; }
    }

    new protected int Count { 
        get { return count; }
        set { count = value; }
    }
}

class M
{
    static void Main() {
        B b = new B();
        b.Count = 12;             // Calls A.Count set accessor
        int i = b.Count;          // Calls A.Count get accessor
        b.Text = "howdy";         // Error, B.Text set accessor not accessible
        string s = b.Text;        // Calls B.Text get accessor
    }
}

public interface I
{
    string Prop { get; }
}

public class C: I
{
    public string Prop {
        get { return "April"; }       // Must not have a modifier here
        internal set {...}            // Ok, because I.Prop has no set accessor
    }
}

Virtual, sealed, override, and abstract property accessorsVirtual, sealed, override, and abstract property accessors

In the following example, the property A.Text  is hidden by the property B.Text , even in contexts where only the 

set  accessor is called. In contrast, the property B.Count  is not accessible to class M , so the accessible property 

A.Count  is used instead.

An accessor that is used to implement an interface may not have an accessor_modifier. If only one accessor is used

to implement an interface, the other accessor may be declared with an accessor_modifier:

A virtual  property declaration specifies that the accessors of the property are virtual. The virtual  modifier



abstract class A
{
    int y;

    public virtual int X {
        get { return 0; }
    }

    public virtual int Y {
        get { return y; }
        set { y = value; }
    }

    public abstract int Z { get; set; }
}

applies to both accessors of a read-write property—it is not possible for only one accessor of a read-write

property to be virtual.

An abstract  property declaration specifies that the accessors of the property are virtual, but does not provide an

actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their own

implementation for the accessors by overriding the property. Because an accessor for an abstract property

declaration provides no actual implementation, its accessor_body simply consists of a semicolon.

A property declaration that includes both the abstract  and override  modifiers specifies that the property is

abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (Abstract classes).The accessors of an

inherited virtual property can be overridden in a derived class by including a property declaration that specifies an 

override  directive. This is known as an overr iding proper ty declarationoverr iding proper ty declaration. An overriding property declaration

does not declare a new property. Instead, it simply specializes the implementations of the accessors of an existing

virtual property.

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as the

inherited property. If the inherited property has only a single accessor (i.e., if the inherited property is read-only or

write-only), the overriding property must include only that accessor. If the inherited property includes both

accessors (i.e., if the inherited property is read-write), the overriding property can include either a single accessor

or both accessors.

An overriding property declaration may include the sealed  modifier. Use of this modifier prevents a derived class

from further overriding the property. The accessors of a sealed property are also sealed.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors behave

exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in Virtual methods,

Override methods, Sealed methods, and Abstract methods apply as if accessors were methods of a corresponding

form:

A get  accessor corresponds to a parameterless method with a return value of the property type and the same

modifiers as the containing property.

A set  accessor corresponds to a method with a single value parameter of the property type, a void  return

type, and the same modifiers as the containing property.

In the example

X  is a virtual read-only property, Y  is a virtual read-write property, and Z  is an abstract read-write property.

Because Z  is abstract, the containing class A  must also be declared abstract.

A class that derives from A  is show below:



           

class B: A
{
    int z;

    public override int X {
        get { return base.X + 1; }
    }

    public override int Y {
        set { base.Y = value < 0? 0: value; }
    }

    public override int Z {
        get { return z; }
        set { z = value; }
    }
}

public class B
{
    public virtual int P {
        protected set {...}
        get {...}
    }
}

public class D: B
{
    public override int P {
        protected set {...}            // Must specify protected here
        get {...}                      // Must not have a modifier here
    }
}

Events

Here, the declarations of X , Y , and Z  are overriding property declarations. Each property declaration exactly

matches the accessibility modifiers, type, and name of the corresponding inherited property. The get  accessor of 

X  and the set  accessor of Y  use the base  keyword to access the inherited accessors. The declaration of Z

overrides both abstract accessors—thus, there are no outstanding abstract function members in B , and B  is

permitted to be a non-abstract class.

When a property is declared as an override , any overridden accessors must be accessible to the overriding code.

In addition, the declared accessibility of both the property or indexer itself, and of the accessors, must match that of

the overridden member and accessors. For example:

An eventevent is a member that enables an object or class to provide notifications. Clients can attach executable code

for events by supplying event handlersevent handlers .

Events are declared using event_declarations:



event_declaration
    : attributes? event_modifier* 'event' type variable_declarators ';'
    | attributes? event_modifier* 'event' type member_name '{' event_accessor_declarations '}'
    ;

event_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'static'
    | 'virtual'
    | 'sealed'
    | 'override'
    | 'abstract'
    | 'extern'
    | event_modifier_unsafe
    ;

event_accessor_declarations
    : add_accessor_declaration remove_accessor_declaration
    | remove_accessor_declaration add_accessor_declaration
    ;

add_accessor_declaration
    : attributes? 'add' block
    ;

remove_accessor_declaration
    : attributes? 'remove' block
    ;

An event_declaration may include a set of attributes (Attributes) and a valid combination of the four access

modifiers (Access modifiers), the new  (The new modifier), static  (Static and instance methods), virtual  (Virtual

methods), override  (Override methods), sealed  (Sealed methods), abstract  (Abstract methods), and extern

(External methods) modifiers.

Event declarations are subject to the same rules as method declarations (Methods) with regard to valid

combinations of modifiers.

The type of an event declaration must be a delegate_type (Reference types), and that delegate_type must be at least

as accessible as the event itself (Accessibility constraints).

An event declaration may include event_accessor_declarations. However, if it does not, for non-extern, non-abstract

events, the compiler supplies them automatically (Field-like events); for extern events, the accessors are provided

externally.

An event declaration that omits event_accessor_declarations defines one or more events—one for each of the

variable_declarators. The attributes and modifiers apply to all of the members declared by such an

event_declaration.

It is a compile-time error for an event_declaration to include both the abstract  modifier and brace-delimited

event_accessor_declarations.

When an event declaration includes an extern  modifier, the event is said to be an external eventexternal event. Because an

external event declaration provides no actual implementation, it is an error for it to include both the extern

modifier and event_accessor_declarations.

It is a compile-time error for a variable_declarator of an event declaration with an abstract  or external  modifier

to include a variable_initializer.



        

public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
    public event EventHandler Click;
}

public class LoginDialog: Form
{
    Button OkButton;
    Button CancelButton;

    public LoginDialog() {
        OkButton = new Button(...);
        OkButton.Click += new EventHandler(OkButtonClick);
        CancelButton = new Button(...);
        CancelButton.Click += new EventHandler(CancelButtonClick);
    }

    void OkButtonClick(object sender, EventArgs e) {
        // Handle OkButton.Click event
    }

    void CancelButtonClick(object sender, EventArgs e) {
        // Handle CancelButton.Click event
    }
}

Field-like eventsField-like events

An event can be used as the left-hand operand of the +=  and -=  operators (Event assignment). These operators

are used, respectively, to attach event handlers to or to remove event handlers from an event, and the access

modifiers of the event control the contexts in which such operations are permitted.

Since +=  and -=  are the only operations that are permitted on an event outside the type that declares the event,

external code can add and remove handlers for an event, but cannot in any other way obtain or modify the

underlying list of event handlers.

In an operation of the form x += y  or x -= y , when x  is an event and the reference takes place outside the type

that contains the declaration of x , the result of the operation has type void  (as opposed to having the type of x ,

with the value of x  after the assignment). This rule prohibits external code from indirectly examining the

underlying delegate of an event.

The following example shows how event handlers are attached to instances of the Button  class:

Here, the LoginDialog  instance constructor creates two Button  instances and attaches event handlers to the 

Click  events.

Within the program text of the class or struct that contains the declaration of an event, certain events can be used

like fields. To be used in this way, an event must not be abstract  or extern , and must not explicitly include

event_accessor_declarations. Such an event can be used in any context that permits a field. The field contains a

delegate (Delegates) which refers to the list of event handlers that have been added to the event. If no event

handlers have been added, the field contains null .

In the example



public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
    public event EventHandler Click;

    protected void OnClick(EventArgs e) {
        if (Click != null) Click(this, e);
    }

    public void Reset() {
        Click = null;
    }
}

b.Click += new EventHandler(...);

b.Click -= new EventHandler(...);

class X
{
    public event D Ev;
}

Click  is used as a field within the Button  class. As the example demonstrates, the field can be examined,

modified, and used in delegate invocation expressions. The OnClick  method in the Button  class "raises" the 

Click  event. The notion of raising an event is precisely equivalent to invoking the delegate represented by the

event—thus, there are no special language constructs for raising events. Note that the delegate invocation is

preceded by a check that ensures the delegate is non-null.

Outside the declaration of the Button  class, the Click  member can only be used on the left-hand side of the +=

and -=  operators, as in

which appends a delegate to the invocation list of the Click  event, and

which removes a delegate from the invocation list of the Click  event.

When compiling a field-like event, the compiler automatically creates storage to hold the delegate, and creates

accessors for the event that add or remove event handlers to the delegate field. The addition and removal

operations are thread safe, and may (but are not required to) be done while holding the lock (The lock statement)

on the containing object for an instance event, or the type object (Anonymous object creation expressions) for a

static event.

Thus, an instance event declaration of the form:

will be compiled to something equivalent to:



class X
{
    private D __Ev;  // field to hold the delegate

    public event D Ev {
        add {
            /* add the delegate in a thread safe way */
        }

        remove {
            /* remove the delegate in a thread safe way */
        }
    }
}

Event accessorsEvent accessors

Within the class X , references to Ev  on the left-hand side of the +=  and -=  operators cause the add and

remove accessors to be invoked. All other references to Ev  are compiled to reference the hidden field __Ev

instead (Member access). The name " __Ev " is arbitrary; the hidden field could have any name or no name at all.

Event declarations typically omit event_accessor_declarations, as in the Button  example above. One situation for

doing so involves the case in which the storage cost of one field per event is not acceptable. In such cases, a class

can include event_accessor_declarations and use a private mechanism for storing the list of event handlers.

The event_accessor_declarations of an event specify the executable statements associated with adding and

removing event handlers.

The accessor declarations consist of an add_accessor_declaration and a remove_accessor_declaration. Each

accessor declaration consists of the token add  or remove  followed by a block. The block associated with an

add_accessor_declaration specifies the statements to execute when an event handler is added, and the block

associated with a remove_accessor_declaration specifies the statements to execute when an event handler is

removed.

Each add_accessor_declaration and remove_accessor_declaration corresponds to a method with a single value

parameter of the event type and a void  return type. The implicit parameter of an event accessor is named value .

When an event is used in an event assignment, the appropriate event accessor is used. Specifically, if the

assignment operator is +=  then the add accessor is used, and if the assignment operator is -=  then the remove

accessor is used. In either case, the right-hand operand of the assignment operator is used as the argument to the

event accessor. The block of an add_accessor_declaration or a remove_accessor_declaration must conform to the

rules for void  methods described in Method body. In particular, return  statements in such a block are not

permitted to specify an expression.

Since an event accessor implicitly has a parameter named value , it is a compile-time error for a local variable or

constant declared in an event accessor to have that name.

In the example



class Control: Component
{
    // Unique keys for events
    static readonly object mouseDownEventKey = new object();
    static readonly object mouseUpEventKey = new object();

    // Return event handler associated with key
    protected Delegate GetEventHandler(object key) {...}

    // Add event handler associated with key
    protected void AddEventHandler(object key, Delegate handler) {...}

    // Remove event handler associated with key
    protected void RemoveEventHandler(object key, Delegate handler) {...}

    // MouseDown event
    public event MouseEventHandler MouseDown {
        add { AddEventHandler(mouseDownEventKey, value); }
        remove { RemoveEventHandler(mouseDownEventKey, value); }
    }

    // MouseUp event
    public event MouseEventHandler MouseUp {
        add { AddEventHandler(mouseUpEventKey, value); }
        remove { RemoveEventHandler(mouseUpEventKey, value); }
    }

    // Invoke the MouseUp event
    protected void OnMouseUp(MouseEventArgs args) {
        MouseEventHandler handler; 
        handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey);
        if (handler != null)
            handler(this, args);
    }
}

Static and instance eventsStatic and instance events

Virtual, sealed, override, and abstract event accessorsVirtual, sealed, override, and abstract event accessors

the Control  class implements an internal storage mechanism for events. The AddEventHandler  method associates

a delegate value with a key, the GetEventHandler  method returns the delegate currently associated with a key, and

the RemoveEventHandler  method removes a delegate as an event handler for the specified event. Presumably, the

underlying storage mechanism is designed such that there is no cost for associating a null  delegate value with a

key, and thus unhandled events consume no storage.

When an event declaration includes a static  modifier, the event is said to be a static eventstatic event. When no static

modifier is present, the event is said to be an instance eventinstance event.

A static event is not associated with a specific instance, and it is a compile-time error to refer to this  in the

accessors of a static event.

An instance event is associated with a given instance of a class, and this instance can be accessed as this  (This

access) in the accessors of that event.

When an event is referenced in a member_access (Member access) of the form E.M , if M  is a static event, E  must

denote a type containing M , and if M  is an instance event, E must denote an instance of a type containing M .

The differences between static and instance members are discussed further in Static and instance members.

A virtual  event declaration specifies that the accessors of that event are virtual. The virtual  modifier applies to

both accessors of an event.



              Indexers

An abstract  event declaration specifies that the accessors of the event are virtual, but does not provide an actual

implementation of the accessors. Instead, non-abstract derived classes are required to provide their own

implementation for the accessors by overriding the event. Because an abstract event declaration provides no actual

implementation, it cannot provide brace-delimited event_accessor_declarations.

An event declaration that includes both the abstract  and override  modifiers specifies that the event is abstract

and overrides a base event. The accessors of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (Abstract classes).

The accessors of an inherited virtual event can be overridden in a derived class by including an event declaration

that specifies an override  modifier. This is known as an overr iding event declarationoverr iding event declaration. An overriding event

declaration does not declare a new event. Instead, it simply specializes the implementations of the accessors of an

existing virtual event.

An overriding event declaration must specify the exact same accessibility modifiers, type, and name as the

overridden event.

An overriding event declaration may include the sealed  modifier. Use of this modifier prevents a derived class

from further overriding the event. The accessors of a sealed event are also sealed.

It is a compile-time error for an overriding event declaration to include a new  modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors behave

exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in Virtual methods,

Override methods, Sealed methods, and Abstract methods apply as if accessors were methods of a corresponding

form. Each accessor corresponds to a method with a single value parameter of the event type, a void  return type,

and the same modifiers as the containing event.

An indexerindexer  is a member that enables an object to be indexed in the same way as an array. Indexers are declared

using indexer_declarations:



indexer_declaration
    : attributes? indexer_modifier* indexer_declarator indexer_body
    ;

indexer_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'virtual'
    | 'sealed'
    | 'override'
    | 'abstract'
    | 'extern'
    | indexer_modifier_unsafe
    ;

indexer_declarator
    : type 'this' '[' formal_parameter_list ']'
    | type interface_type '.' 'this' '[' formal_parameter_list ']'
    ;

indexer_body
    : '{' accessor_declarations '}' 
    | '=>' expression ';'
    ;

An indexer_declaration may include a set of attributes (Attributes) and a valid combination of the four access

modifiers (Access modifiers), the new  (The new modifier), virtual  (Virtual methods), override  (Override

methods), sealed  (Sealed methods), abstract  (Abstract methods), and extern  (External methods) modifiers.

Indexer declarations are subject to the same rules as method declarations (Methods) with regard to valid

combinations of modifiers, with the one exception being that the static modifier is not permitted on an indexer

declaration.

The modifiers virtual , override , and abstract  are mutually exclusive except in one case. The abstract  and 

override  modifiers may be used together so that an abstract indexer can override a virtual one.

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration. Unless

the indexer is an explicit interface member implementation, the type is followed by the keyword this . For an

explicit interface member implementation, the type is followed by an interface_type, a " . ", and the keyword this

. Unlike other members, indexers do not have user-defined names.

The formal_parameter_list specifies the parameters of the indexer. The formal parameter list of an indexer

corresponds to that of a method (Method parameters), except that at least one parameter must be specified, and

that the ref  and out  parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal_parameter_list must be at least as accessible

as the indexer itself (Accessibility constraints).

An indexer_body may either consist of an accessor bodyaccessor body  or an expression bodyexpression body . In an accessor body,

accessor_declarations, which must be enclosed in " { " and " } " tokens, declare the accessors (Accessors) of the

property. The accessors specify the executable statements associated with reading and writing the property.

An expression body consisting of " => " followed by an expression E  and a semicolon is exactly equivalent to the

statement body { get { return E; } } , and can therefore only be used to specify getter-only indexers where the

result of the getter is given by a single expression.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer



element is not classified as a variable. Thus, it is not possible to pass an indexer element as a ref  or out

argument.

The formal parameter list of an indexer defines the signature (Signatures and overloading) of the indexer.

Specifically, the signature of an indexer consists of the number and types of its formal parameters. The element

type and names of the formal parameters are not part of an indexer's signature.

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

A property is identified by its name, whereas an indexer is identified by its signature.

A property is accessed through a simple_name (Simple names) or a member_access (Member access), whereas

an indexer element is accessed through an element_access (Indexer access).

A property can be a static  member, whereas an indexer is always an instance member.

A get  accessor of a property corresponds to a method with no parameters, whereas a get  accessor of an

indexer corresponds to a method with the same formal parameter list as the indexer.

A set  accessor of a property corresponds to a method with a single parameter named value , whereas a set

accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus an

additional parameter named value .

It is a compile-time error for an indexer accessor to declare a local variable with the same name as an indexer

parameter.

In an overriding property declaration, the inherited property is accessed using the syntax base.P , where P  is

the property name. In an overriding indexer declaration, the inherited indexer is accessed using the syntax 

base[E] , where E  is a comma separated list of expressions.

There is no concept of an "automatically implemented indexer". It is an error to have a non-abstract, non-

external indexer with semicolon accessors.

Aside from these differences, all rules defined in Accessors and Automatically implemented properties apply to

indexer accessors as well as to property accessors.

When an indexer declaration includes an extern  modifier, the indexer is said to be an external indexerexternal indexer . Because

an external indexer declaration provides no actual implementation, each of its accessor_declarations consists of a

semicolon.

The example below declares a BitArray  class that implements an indexer for accessing the individual bits in the

bit array.



using System;

class BitArray
{
    int[] bits;
    int length;

    public BitArray(int length) {
        if (length < 0) throw new ArgumentException();
        bits = new int[((length - 1) >> 5) + 1];
        this.length = length;
    }

    public int Length {
        get { return length; }
    }

    public bool this[int index] {
        get {
            if (index < 0 || index >= length) {
                throw new IndexOutOfRangeException();
            }
            return (bits[index >> 5] & 1 << index) != 0;
        }
        set {
            if (index < 0 || index >= length) {
                throw new IndexOutOfRangeException();
            }
            if (value) {
                bits[index >> 5] |= 1 << index;
            }
            else {
                bits[index >> 5] &= ~(1 << index);
            }
        }
    }
}

An instance of the BitArray  class consumes substantially less memory than a corresponding bool[]  (since each

value of the former occupies only one bit instead of the latter's one byte), but it permits the same operations as a 

bool[] .

The following CountPrimes  class uses a BitArray  and the classical "sieve" algorithm to compute the number of

primes between 1 and a given maximum:



class CountPrimes
{
    static int Count(int max) {
        BitArray flags = new BitArray(max + 1);
        int count = 1;
        for (int i = 2; i <= max; i++) {
            if (!flags[i]) {
                for (int j = i * 2; j <= max; j += i) flags[j] = true;
                count++;
            }
        }
        return count;
    }

    static void Main(string[] args) {
        int max = int.Parse(args[0]);
        int count = Count(max);
        Console.WriteLine("Found {0} primes between 1 and {1}", count, max);
    }
}

using System;

class Grid
{
    const int NumRows = 26;
    const int NumCols = 10;

    int[,] cells = new int[NumRows, NumCols];

    public int this[char c, int col] {
        get {
            c = Char.ToUpper(c);
            if (c < 'A' || c > 'Z') {
                throw new ArgumentException();
            }
            if (col < 0 || col >= NumCols) {
                throw new IndexOutOfRangeException();
            }
            return cells[c - 'A', col];
        }

        set {
            c = Char.ToUpper(c);
            if (c < 'A' || c > 'Z') {
                throw new ArgumentException();
            }
            if (col < 0 || col >= NumCols) {
                throw new IndexOutOfRangeException();
            }
            cells[c - 'A', col] = value;
        }
    }
}

Indexer overloadingIndexer overloading

Note that the syntax for accessing elements of the BitArray  is precisely the same as for a bool[] .

The following example shows a 26 * 10 grid class that has an indexer with two parameters. The first parameter is

required to be an upper- or lowercase letter in the range A-Z, and the second is required to be an integer in the

range 0-9.

The indexer overload resolution rules are described in Type inference.



           Operators

operator_declaration
    : attributes? operator_modifier+ operator_declarator operator_body
    ;

operator_modifier
    : 'public'
    | 'static'
    | 'extern'
    | operator_modifier_unsafe
    ;

operator_declarator
    : unary_operator_declarator
    | binary_operator_declarator
    | conversion_operator_declarator
    ;

unary_operator_declarator
    : type 'operator' overloadable_unary_operator '(' type identifier ')'
    ;

overloadable_unary_operator
    : '+' | '-' | '!' | '~' | '++' | '--' | 'true' | 'false'
    ;

binary_operator_declarator
    : type 'operator' overloadable_binary_operator '(' type identifier ',' type identifier ')'
    ;

overloadable_binary_operator
    : '+'   | '-'   | '*'   | '/'   | '%'   | '&'   | '|'   | '^'   | '<<'
    | right_shift | '=='  | '!='  | '>'   | '<'   | '>='  | '<='
    ;

conversion_operator_declarator
    : 'implicit' 'operator' type '(' type identifier ')'
    | 'explicit' 'operator' type '(' type identifier ')'
    ;

operator_body
    : block
    | '=>' expression ';'
    | ';'
    ;

An operatoroperator  is a member that defines the meaning of an expression operator that can be applied to instances of

the class. Operators are declared using operator_declarations:

There are three categories of overloadable operators: Unary operators (Unary operators), binary operators (Binary

operators), and conversion operators (Conversion operators).

The operator_body is either a semicolon, a statement bodystatement body  or an expression bodyexpression body . A statement body consists

of a block, which specifies the statements to execute when the operator is invoked. The block must conform to the

rules for value-returning methods described in Method body. An expression body consists of =>  followed by an

expression and a semicolon, and denotes a single expression to perform when the operator is invoked.

For extern  operators, the operator_body consists simply of a semicolon. For all other operators, the

operator_body is either a block body or an expression body.

The following rules apply to all operator declarations:

An operator declaration must include both a public  and a static  modifier.



    Unary operatorsUnary operators

The parameter(s) of an operator must be value parameters (Value parameters). It is a compile-time error for an

operator declaration to specify ref  or out  parameters.

The signature of an operator (Unary operators, Binary operators, Conversion operators) must differ from the

signatures of all other operators declared in the same class.

All types referenced in an operator declaration must be at least as accessible as the operator itself (Accessibility

constraints).

It is an error for the same modifier to appear multiple times in an operator declaration.

Each operator category imposes additional restrictions, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator

declarations always require the class or struct in which the operator is declared to participate in the signature of

the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a base

class. Thus, the new  modifier is never required, and therefore never permitted, in an operator declaration.

Additional information on unary and binary operators can be found in Operators.

Additional information on conversion operators can be found in User-defined conversions.

The following rules apply to unary operator declarations, where T  denotes the instance type of the class or struct

that contains the operator declaration:

A unary + , - , ! , or ~  operator must take a single parameter of type T  or T?  and can return any type.

A unary ++  or --  operator must take a single parameter of type T  or T?  and must return that same type or

a type derived from it.

A unary true  or false  operator must take a single parameter of type T  or T?  and must return type bool .

The signature of a unary operator consists of the operator token ( + , - , ! , ~ , ++ , -- , true , or false ) and

the type of the single formal parameter. The return type is not part of a unary operator's signature, nor is the name

of the formal parameter.

The true  and false  unary operators require pair-wise declaration. A compile-time error occurs if a class declares

one of these operators without also declaring the other. The true  and false  operators are described further in

User-defined conditional logical operators and Boolean expressions.

The following example shows an implementation and subsequent usage of operator ++  for an integer vector

class:



    

            

public class IntVector
{
    public IntVector(int length) {...}

    public int Length {...}                 // read-only property

    public int this[int index] {...}        // read-write indexer

    public static IntVector operator ++(IntVector iv) {
        IntVector temp = new IntVector(iv.Length);
        for (int i = 0; i < iv.Length; i++)
            temp[i] = iv[i] + 1;
        return temp;
    }
}

class Test
{
    static void Main() {
        IntVector iv1 = new IntVector(4);    // vector of 4 x 0
        IntVector iv2;

        iv2 = iv1++;    // iv2 contains 4 x 0, iv1 contains 4 x 1
        iv2 = ++iv1;    // iv2 contains 4 x 2, iv1 contains 4 x 2
    }
}

Binary operatorsBinary operators

Conversion operatorsConversion operators

Note how the operator method returns the value produced by adding 1 to the operand, just like the postfix

increment and decrement operators (Postfix increment and decrement operators), and the prefix increment and

decrement operators (Prefix increment and decrement operators). Unlike in C++, this method need not modify the

value of its operand directly. In fact, modifying the operand value would violate the standard semantics of the

postfix increment operator.

The following rules apply to binary operator declarations, where T  denotes the instance type of the class or struct

that contains the operator declaration:

A binary non-shift operator must take two parameters, at least one of which must have type T  or T? , and can

return any type.

A binary <<  or >>  operator must take two parameters, the first of which must have type T  or T?  and the

second of which must have type int  or int? , and can return any type.

The signature of a binary operator consists of the operator token ( + , - , * , / , % , & , | , ^ , << , >> , == , != ,

> , < , >= , or <= ) and the types of the two formal parameters. The return type and the names of the formal

parameters are not part of a binary operator's signature.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair, there

must be a matching declaration of the other operator of the pair. Two operator declarations match when they have

the same return type and the same type for each parameter. The following operators require pair-wise declaration:

operator ==  and operator !=

operator >  and operator <

operator >=  and operator <=

A conversion operator declaration introduces a user-defined conversionuser-defined conversion (User-defined conversions) which

augments the pre-defined implicit and explicit conversions.

A conversion operator declaration that includes the implicit  keyword introduces a user-defined implicit



class C<T> {...}

class D<T>: C<T>
{
    public static implicit operator C<int>(D<T> value) {...}      // Ok
    public static implicit operator C<string>(D<T> value) {...}   // Ok
    public static implicit operator C<T>(D<T> value) {...}        // Error
}

struct Convertible<T>
{
    public static implicit operator Convertible<T>(T value) {...}
    public static explicit operator T(Convertible<T> value) {...}
}

conversion. Implicit conversions can occur in a variety of situations, including function member invocations, cast

expressions, and assignments. This is described further in Implicit conversions.

A conversion operator declaration that includes the explicit  keyword introduces a user-defined explicit

conversion. Explicit conversions can occur in cast expressions, and are described further in Explicit conversions.

A conversion operator converts from a source type, indicated by the parameter type of the conversion operator, to

a target type, indicated by the return type of the conversion operator.

For a given source type S  and target type T , if S  or T  are nullable types, let S0  and T0  refer to their

underlying types, otherwise S0  and T0  are equal to S  and T  respectively. A class or struct is permitted to

declare a conversion from a source type S  to a target type T  only if all of the following are true:

S0  and T0  are different types.

Either S0  or T0  is the class or struct type in which the operator declaration takes place.

Neither S0  nor T0  is an interface_type.

Excluding user-defined conversions, a conversion does not exist from S  to T  or from T  to S .

For the purposes of these rules, any type parameters associated with S  or T  are considered to be unique types

that have no inheritance relationship with other types, and any constraints on those type parameters are ignored.

In the example

the first two operator declarations are permitted because, for the purposes of Indexers.3, T  and int  and string

respectively are considered unique types with no relationship. However, the third operator is an error because 

C<T>  is the base class of D<T> .

From the second rule it follows that a conversion operator must convert either to or from the class or struct type in

which the operator is declared. For example, it is possible for a class or struct type C  to define a conversion from 

C  to int  and from int  to C , but not from int  to bool .

It is not possible to directly redefine a pre-defined conversion. Thus, conversion operators are not allowed to

convert from or to object  because implicit and explicit conversions already exist between object  and all other

types. Likewise, neither the source nor the target types of a conversion can be a base type of the other, since a

conversion would then already exist.

However, it is possible to declare operators on generic types that, for particular type arguments, specify

conversions that already exist as pre-defined conversions. In the example

when type object  is specified as a type argument for T , the second operator declares a conversion that already

exists (an implicit, and therefore also an explicit, conversion exists from any type to type object ).



void F(int i, Convertible<int> n) {
    i = n;                          // Error
    i = (int)n;                     // User-defined explicit conversion
    n = i;                          // User-defined implicit conversion
    n = (Convertible<int>)i;        // User-defined implicit conversion
}

void F(object o, Convertible<object> n) {
    o = n;                         // Pre-defined boxing conversion
    o = (object)n;                 // Pre-defined boxing conversion
    n = o;                         // User-defined implicit conversion
    n = (Convertible<object>)o;    // Pre-defined unboxing conversion
}

In cases where a pre-defined conversion exists between two types, any user-defined conversions between those

types are ignored. Specifically:

If a pre-defined implicit conversion (Implicit conversions) exists from type S  to type T , all user-defined

conversions (implicit or explicit) from S  to T  are ignored.

If a pre-defined explicit conversion (Explicit conversions) exists from type S  to type T , any user-defined

explicit conversions from S  to T  are ignored. Furthermore:

If T  is an interface type, user-defined implicit conversions from S  to T  are ignored.

Otherwise, user-defined implicit conversions from S  to T  are still considered.

For all types but object , the operators declared by the Convertible<T>  type above do not conflict with pre-

defined conversions. For example:

However, for type object , pre-defined conversions hide the user-defined conversions in all cases but one:

User-defined conversions are not allowed to convert from or to interface_types. In particular, this restriction

ensures that no user-defined transformations occur when converting to an interface_type, and that a conversion to

an interface_type succeeds only if the object being converted actually implements the specified interface_type.

The signature of a conversion operator consists of the source type and the target type. (Note that this is the only

form of member for which the return type participates in the signature.) The implicit  or explicit  classification

of a conversion operator is not part of the operator's signature. Thus, a class or struct cannot declare both an 

implicit  and an explicit  conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose

information. If a user-defined conversion can give rise to exceptions (for example, because the source argument is

out of range) or loss of information (such as discarding high-order bits), then that conversion should be defined as

an explicit conversion.

In the example



      

using System;

public struct Digit
{
    byte value;

    public Digit(byte value) {
        if (value < 0 || value > 9) throw new ArgumentException();
        this.value = value;
    }

    public static implicit operator byte(Digit d) {
        return d.value;
    }

    public static explicit operator Digit(byte b) {
        return new Digit(b);
    }
}

Instance constructors

constructor_declaration
    : attributes? constructor_modifier* constructor_declarator constructor_body
    ;

constructor_modifier
    : 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'extern'
    | constructor_modifier_unsafe
    ;

constructor_declarator
    : identifier '(' formal_parameter_list? ')' constructor_initializer?
    ;

constructor_initializer
    : ':' 'base' '(' argument_list? ')'
    | ':' 'this' '(' argument_list? ')'
    ;

constructor_body
    : block
    | ';'
    ;

the conversion from Digit  to byte  is implicit because it never throws exceptions or loses information, but the

conversion from byte  to Digit  is explicit since Digit  can only represent a subset of the possible values of a 

byte .

An instance constructorinstance constructor  is a member that implements the actions required to initialize an instance of a class.

Instance constructors are declared using constructor_declarations:

A constructor_declaration may include a set of attributes (Attributes), a valid combination of the four access

modifiers (Access modifiers), and an extern  (External methods) modifier. A constructor declaration is not

permitted to include the same modifier multiple times.

The identifier of a constructor_declarator must name the class in which the instance constructor is declared. If any



        Constructor initializersConstructor initializers

C(...) {...}

C(...): base() {...}

other name is specified, a compile-time error occurs.

The optional formal_parameter_list of an instance constructor is subject to the same rules as the

formal_parameter_list of a method (Methods). The formal parameter list defines the signature (Signatures and

overloading) of an instance constructor and governs the process whereby overload resolution (Type inference)

selects a particular instance constructor in an invocation.

Each of the types referenced in the formal_parameter_list of an instance constructor must be at least as accessible

as the constructor itself (Accessibility constraints).

The optional constructor_initializer specifies another instance constructor to invoke before executing the

statements given in the constructor_body of this instance constructor. This is described further in Constructor

initializers.

When a constructor declaration includes an extern  modifier, the constructor is said to be an externalexternal

constructorconstructor . Because an external constructor declaration provides no actual implementation, its constructor_body

consists of a semicolon. For all other constructors, the constructor_body consists of a block which specifies the

statements to initialize a new instance of the class. This corresponds exactly to the block of an instance method

with a void  return type (Method body).

Instance constructors are not inherited. Thus, a class has no instance constructors other than those actually

declared in the class. If a class contains no instance constructor declarations, a default instance constructor is

automatically provided (Default constructors).

Instance constructors are invoked by object_creation_expressions (Object creation expressions) and through

constructor_initializers.

All instance constructors (except those for class object ) implicitly include an invocation of another instance

constructor immediately before the constructor_body. The constructor to implicitly invoke is determined by the

constructor_initializer:

An instance constructor initializer of the form base(argument_list)  or base()  causes an instance constructor

from the direct base class to be invoked. That constructor is selected using argument_list if present and the

overload resolution rules of Overload resolution. The set of candidate instance constructors consists of all

accessible instance constructors contained in the direct base class, or the default constructor (Default

constructors), if no instance constructors are declared in the direct base class. If this set is empty, or if a single

best instance constructor cannot be identified, a compile-time error occurs.

An instance constructor initializer of the form this(argument-list)  or this()  causes an instance constructor

from the class itself to be invoked. The constructor is selected using argument_list if present and the overload

resolution rules of Overload resolution. The set of candidate instance constructors consists of all accessible

instance constructors declared in the class itself. If this set is empty, or if a single best instance constructor

cannot be identified, a compile-time error occurs. If an instance constructor declaration includes a constructor

initializer that invokes the constructor itself, a compile-time error occurs.

If an instance constructor has no constructor initializer, a constructor initializer of the form base()  is implicitly

provided. Thus, an instance constructor declaration of the form

is exactly equivalent to

The scope of the parameters given by the formal_parameter_list of an instance constructor declaration includes the



class A
{
    public A(int x, int y) {}
}

class B: A
{
    public B(int x, int y): base(x + y, x - y) {}
}

Instance variable initializersInstance variable initializers

Constructor executionConstructor execution

using System;

class A
{
    public A() {
        PrintFields();
    }

    public virtual void PrintFields() {}
}

class B: A
{
    int x = 1;
    int y;

    public B() {
        y = -1;
    }

    public override void PrintFields() {
        Console.WriteLine("x = {0}, y = {1}", x, y);
    }
}

constructor initializer of that declaration. Thus, a constructor initializer is permitted to access the parameters of the

constructor. For example:

An instance constructor initializer cannot access the instance being created. Therefore it is a compile-time error to

reference this  in an argument expression of the constructor initializer, as is it a compile-time error for an

argument expression to reference any instance member through a simple_name.

When an instance constructor has no constructor initializer, or it has a constructor initializer of the form base(...) ,

that constructor implicitly performs the initializations specified by the variable_initializers of the instance fields

declared in its class. This corresponds to a sequence of assignments that are executed immediately upon entry to

the constructor and before the implicit invocation of the direct base class constructor. The variable initializers are

executed in the textual order in which they appear in the class declaration.

Variable initializers are transformed into assignment statements, and these assignment statements are executed

before the invocation of the base class instance constructor. This ordering ensures that all instance fields are

initialized by their variable initializers before any statements that have access to that instance are executed.

Given the example

when new B()  is used to create an instance of B , the following output is produced:



x = 1, y = 0

using System;
using System.Collections;

class A
{
    int x = 1, y = -1, count;

    public A() {
        count = 0;
    }

    public A(int n) {
        count = n;
    }
}

class B: A
{
    double sqrt2 = Math.Sqrt(2.0);
    ArrayList items = new ArrayList(100);
    int max;

    public B(): this(100) {
        items.Add("default");
    }

    public B(int n): base(n - 1) {
        max = n;
    }
}

The value of x  is 1 because the variable initializer is executed before the base class instance constructor is

invoked. However, the value of y  is 0 (the default value of an int ) because the assignment to y  is not executed

until after the base class constructor returns.

It is useful to think of instance variable initializers and constructor initializers as statements that are automatically

inserted before the constructor_body. The example

contains several variable initializers; it also contains constructor initializers of both forms ( base  and this ). The

example corresponds to the code shown below, where each comment indicates an automatically inserted

statement (the syntax used for the automatically inserted constructor invocations isn't valid, but merely serves to

illustrate the mechanism).



          

using System.Collections;

class A
{
    int x, y, count;

    public A() {
        x = 1;                       // Variable initializer
        y = -1;                      // Variable initializer
        object();                    // Invoke object() constructor
        count = 0;
    }

    public A(int n) {
        x = 1;                       // Variable initializer
        y = -1;                      // Variable initializer
        object();                    // Invoke object() constructor
        count = n;
    }
}

class B: A
{
    double sqrt2;
    ArrayList items;
    int max;

    public B(): this(100) {
        B(100);                      // Invoke B(int) constructor
        items.Add("default");
    }

    public B(int n): base(n - 1) {
        sqrt2 = Math.Sqrt(2.0);      // Variable initializer
        items = new ArrayList(100);  // Variable initializer
        A(n - 1);                    // Invoke A(int) constructor
        max = n;
    }
}

Default constructorsDefault constructors

protected C(): base() {}

public C(): base() {}

If a class contains no instance constructor declarations, a default instance constructor is automatically provided.

That default constructor simply invokes the parameterless constructor of the direct base class. If the class is

abstract then the declared accessibility for the default constructor is protected. Otherwise, the declared accessibility

for the default constructor is public. Thus, the default constructor is always of the form

or

where C  is the name of the class. If overload resolution is unable to determine a unique best candidate for the

base class constructor initializer then a compile-time error occurs.

In the example



class Message
{
    object sender;
    string text;
}

class Message
{
    object sender;
    string text;

    public Message(): base() {}
}

Private constructorsPrivate constructors

public class Trig
{
    private Trig() {}        // Prevent instantiation

    public const double PI = 3.14159265358979323846;

    public static double Sin(double x) {...}
    public static double Cos(double x) {...}
    public static double Tan(double x) {...}
}

Optional instance constructor parametersOptional instance constructor parameters

class Text
{
    public Text(): this(0, 0, null) {}

    public Text(int x, int y): this(x, y, null) {}

    public Text(int x, int y, string s) {
        // Actual constructor implementation
    }
}

a default constructor is provided because the class contains no instance constructor declarations. Thus, the

example is precisely equivalent to

When a class T  declares only private instance constructors, it is not possible for classes outside the program text

of T  to derive from T  or to directly create instances of T . Thus, if a class contains only static members and isn't

intended to be instantiated, adding an empty private instance constructor will prevent instantiation. For example:

The Trig  class groups related methods and constants, but is not intended to be instantiated. Therefore it declares

a single empty private instance constructor. At least one instance constructor must be declared to suppress the

automatic generation of a default constructor.

The this(...)  form of constructor initializer is commonly used in conjunction with overloading to implement

optional instance constructor parameters. In the example

the first two instance constructors merely provide the default values for the missing arguments. Both use a 

this(...)  constructor initializer to invoke the third instance constructor, which actually does the work of

initializing the new instance. The effect is that of optional constructor parameters:



        

Text t1 = new Text();                    // Same as Text(0, 0, null)
Text t2 = new Text(5, 10);               // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

Static constructors

static_constructor_declaration
    : attributes? static_constructor_modifiers identifier '(' ')' static_constructor_body
    ;

static_constructor_modifiers
    : 'extern'? 'static'
    | 'static' 'extern'?
    | static_constructor_modifiers_unsafe
    ;

static_constructor_body
    : block
    | ';'
    ;

A static constructorstatic constructor  is a member that implements the actions required to initialize a closed class type. Static

constructors are declared using static_constructor_declarations:

A static_constructor_declaration may include a set of attributes (Attributes) and an extern  modifier (External

methods).

The identifier of a static_constructor_declaration must name the class in which the static constructor is declared. If

any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an extern  modifier, the static constructor is said to be an externalexternal

static constructorstatic constructor . Because an external static constructor declaration provides no actual implementation, its

static_constructor_body consists of a semicolon. For all other static constructor declarations, the

static_constructor_body consists of a block which specifies the statements to execute in order to initialize the class.

This corresponds exactly to the method_body of a static method with a void  return type (Method body).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a closed class type executes at most once in a given application domain. The execution of

a static constructor is triggered by the first of the following events to occur within an application domain:

An instance of the class type is created.

Any of the static members of the class type are referenced.

If a class contains the Main  method (Application Startup) in which execution begins, the static constructor for that

class executes before the Main  method is called.

To initialize a new closed class type, first a new set of static fields (Static and instance fields) for that particular

closed type is created. Each of the static fields is initialized to its default value (Default values). Next, the static field

initializers (Static field initialization) are executed for those static fields. Finally, the static constructor is executed.

The example



using System;

class Test
{
    static void Main() {
        A.F();
        B.F();
    }
}

class A
{
    static A() {
        Console.WriteLine("Init A");
    }
    public static void F() {
        Console.WriteLine("A.F");
    }
}

class B
{
    static B() {
        Console.WriteLine("Init B");
    }
    public static void F() {
        Console.WriteLine("B.F");
    }
}

Init A
A.F
Init B
B.F

must produce the output:

because the execution of A 's static constructor is triggered by the call to A.F , and the execution of B 's static

constructor is triggered by the call to B.F .

It is possible to construct circular dependencies that allow static fields with variable initializers to be observed in

their default value state.

The example



       

using System;

class A
{
    public static int X;

    static A() {
        X = B.Y + 1;
    }
}

class B
{
    public static int Y = A.X + 1;

    static B() {}

    static void Main() {
        Console.WriteLine("X = {0}, Y = {1}", A.X, B.Y);
    }
}

X = 1, Y = 2

class Gen<T> where T: struct
{
    static Gen() {
        if (!typeof(T).IsEnum) {
            throw new ArgumentException("T must be an enum");
        }
    }
}

Destructors

produces the output

To execute the Main  method, the system first runs the initializer for B.Y , prior to class B 's static constructor. Y 's

initializer causes A 's static constructor to be run because the value of A.X  is referenced. The static constructor of 

A  in turn proceeds to compute the value of X , and in doing so fetches the default value of Y , which is zero. A.X

is thus initialized to 1. The process of running A 's static field initializers and static constructor then completes,

returning to the calculation of the initial value of Y , the result of which becomes 2.

Because the static constructor is executed exactly once for each closed constructed class type, it is a convenient

place to enforce run-time checks on the type parameter that cannot be checked at compile-time via constraints

(Type parameter constraints). For example, the following type uses a static constructor to enforce that the type

argument is an enum:

A destructordestructor  is a member that implements the actions required to destruct an instance of a class. A destructor is

declared using a destructor_declaration:



destructor_declaration
    : attributes? 'extern'? '~' identifier '(' ')' destructor_body
    | destructor_declaration_unsafe
    ;

destructor_body
    : block
    | ';'
    ;

A destructor_declaration may include a set of attributes (Attributes).

The identifier of a destructor_declaration must name the class in which the destructor is declared. If any other

name is specified, a compile-time error occurs.

When a destructor declaration includes an extern  modifier, the destructor is said to be an external destructorexternal destructor .

Because an external destructor declaration provides no actual implementation, its destructor_body consists of a

semicolon. For all other destructors, the destructor_body consists of a block which specifies the statements to

execute in order to destruct an instance of the class. A destructor_body corresponds exactly to the method_body of

an instance method with a void  return type (Method body).

Destructors are not inherited. Thus, a class has no destructors other than the one which may be declared in that

class.

Since a destructor is required to have no parameters, it cannot be overloaded, so a class can have, at most, one

destructor.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for

destruction when it is no longer possible for any code to use that instance. Execution of the destructor for the

instance may occur at any time after the instance becomes eligible for destruction. When an instance is destructed,

the destructors in that instance's inheritance chain are called, in order, from most derived to least derived. A

destructor may be executed on any thread. For further discussion of the rules that govern when and how a

destructor is executed, see Automatic memory management.

The output of the example



             

using System;

class A
{
    ~A() {
        Console.WriteLine("A's destructor");
    }
}

class B: A
{
    ~B() {
        Console.WriteLine("B's destructor");
    }
}

class Test
{
   static void Main() {
        B b = new B();
        b = null;
        GC.Collect();
        GC.WaitForPendingFinalizers();
   }
}

B's destructor
A's destructor

class A 
{
    override protected void Finalize() {}    // error

    public void F() {
        this.Finalize();                     // error
    }
}

class A 
{
    void Finalize() {}                            // permitted
}

Iterators

is

since destructors in an inheritance chain are called in order, from most derived to least derived.

Destructors are implemented by overriding the virtual method Finalize  on System.Object . C# programs are not

permitted to override this method or call it (or overrides of it) directly. For instance, the program

contains two errors.

The compiler behaves as if this method, and overrides of it, do not exist at all. Thus, this program:

is valid, and the method shown hides System.Object 's Finalize  method.

For a discussion of the behavior when an exception is thrown from a destructor, see How exceptions are handled.



          

      

    

      

Enumerator interfacesEnumerator interfaces

Enumerable interfacesEnumerable interfaces

Yield typeYield type

Enumerator objectsEnumerator objects

The MoveNext methodThe MoveNext method

A function member (Function members) implemented using an iterator block (Blocks) is called an iteratoriterator .

An iterator block may be used as the body of a function member as long as the return type of the corresponding

function member is one of the enumerator interfaces (Enumerator interfaces) or one of the enumerable interfaces

(Enumerable interfaces). It can occur as a method_body, operator_body or accessor_body, whereas events, instance

constructors, static constructors and destructors cannot be implemented as iterators.

When a function member is implemented using an iterator block, it is a compile-time error for the formal

parameter list of the function member to specify any ref  or out  parameters.

The enumerator interfacesenumerator interfaces  are the non-generic interface System.Collections.IEnumerator  and all instantiations

of the generic interface System.Collections.Generic.IEnumerator<T> . For the sake of brevity, in this chapter these

interfaces are referenced as IEnumerator  and IEnumerator<T> , respectively.

The enumerable interfacesenumerable interfaces  are the non-generic interface System.Collections.IEnumerable  and all instantiations

of the generic interface System.Collections.Generic.IEnumerable<T> . For the sake of brevity, in this chapter these

interfaces are referenced as IEnumerable  and IEnumerable<T> , respectively.

An iterator produces a sequence of values, all of the same type. This type is called the yield typeyield type of the iterator.

The yield type of an iterator that returns IEnumerator  or IEnumerable  is object .

The yield type of an iterator that returns IEnumerator<T>  or IEnumerable<T>  is T .

When a function member returning an enumerator interface type is implemented using an iterator block, invoking

the function member does not immediately execute the code in the iterator block. Instead, an enumerator objectenumerator object

is created and returned. This object encapsulates the code specified in the iterator block, and execution of the code

in the iterator block occurs when the enumerator object's MoveNext  method is invoked. An enumerator object has

the following characteristics:

It implements IEnumerator  and IEnumerator<T> , where T  is the yield type of the iterator.

It implements System.IDisposable .

It is initialized with a copy of the argument values (if any) and instance value passed to the function member.

It has four potential states, beforebefore, runningrunning, suspendedsuspended, and afterafter , and is initially in the beforebefore state.

An enumerator object is typically an instance of a compiler-generated enumerator class that encapsulates the code

in the iterator block and implements the enumerator interfaces, but other methods of implementation are possible.

If an enumerator class is generated by the compiler, that class will be nested, directly or indirectly, in the class

containing the function member, it will have private accessibility, and it will have a name reserved for compiler use

(Identifiers).

An enumerator object may implement more interfaces than those specified above.

The following sections describe the exact behavior of the MoveNext , Current , and Dispose  members of the 

IEnumerable  and IEnumerable<T>  interface implementations provided by an enumerator object.

Note that enumerator objects do not support the IEnumerator.Reset  method. Invoking this method causes a 

System.NotSupportedException  to be thrown.

The MoveNext  method of an enumerator object encapsulates the code of an iterator block. Invoking the MoveNext

method executes code in the iterator block and sets the Current  property of the enumerator object as appropriate.

The precise action performed by MoveNext  depends on the state of the enumerator object when MoveNext  is



The Current propertyThe Current property

invoked:

If the state of the enumerator object is beforebefore, invoking MoveNext :

If the state of the enumerator object is runningrunning, the result of invoking MoveNext  is unspecified.

If the state of the enumerator object is suspendedsuspended, invoking MoveNext :

If the state of the enumerator object is afterafter , invoking MoveNext  returns false .

Changes the state to runningrunning.

Initializes the parameters (including this ) of the iterator block to the argument values and instance

value saved when the enumerator object was initialized.

Executes the iterator block from the beginning until execution is interrupted (as described below).

Changes the state to runningrunning.

Restores the values of all local variables and parameters (including this) to the values saved when

execution of the iterator block was last suspended. Note that the contents of any objects referenced by

these variables may have changed since the previous call to MoveNext.

Resumes execution of the iterator block immediately following the yield return  statement that caused

the suspension of execution and continues until execution is interrupted (as described below).

When MoveNext  executes the iterator block, execution can be interrupted in four ways: By a yield return

statement, by a yield break  statement, by encountering the end of the iterator block, and by an exception being

thrown and propagated out of the iterator block.

When a yield return  statement is encountered (The yield statement):

When a yield break  statement is encountered (The yield statement):

When the end of the iterator body is encountered:

When an exception is thrown and propagated out of the iterator block:

The expression given in the statement is evaluated, implicitly converted to the yield type, and assigned to

the Current  property of the enumerator object.

Execution of the iterator body is suspended. The values of all local variables and parameters (including 

this ) are saved, as is the location of this yield return  statement. If the yield return  statement is

within one or more try  blocks, the associated finally  blocks are not executed at this time.

The state of the enumerator object is changed to suspendedsuspended.

The MoveNext  method returns true  to its caller, indicating that the iteration successfully advanced to the

next value.

If the yield break  statement is within one or more try  blocks, the associated finally  blocks are

executed.

The state of the enumerator object is changed to afterafter .

The MoveNext  method returns false  to its caller, indicating that the iteration is complete.

The state of the enumerator object is changed to afterafter .

The MoveNext  method returns false  to its caller, indicating that the iteration is complete.

Appropriate finally  blocks in the iterator body will have been executed by the exception propagation.

The state of the enumerator object is changed to afterafter .

The exception propagation continues to the caller of the MoveNext  method.

An enumerator object's Current  property is affected by yield return  statements in the iterator block.

When an enumerator object is in the suspendedsuspended state, the value of Current  is the value set by the previous call to

MoveNext . When an enumerator object is in the beforebefore, runningrunning, or afterafter  states, the result of accessing Current

is unspecified.

For an iterator with a yield type other than object , the result of accessing Current  through the enumerator



    

The Dispose methodThe Dispose method

Enumerable objectsEnumerable objects

The GetEnumerator methodThe GetEnumerator method

Implementation exampleImplementation example

object's IEnumerable  implementation corresponds to accessing Current  through the enumerator object's 

IEnumerator<T>  implementation and casting the result to object .

The Dispose  method is used to clean up the iteration by bringing the enumerator object to the afterafter  state.

If the state of the enumerator object is beforebefore, invoking Dispose  changes the state to afterafter .

If the state of the enumerator object is runningrunning, the result of invoking Dispose  is unspecified.

If the state of the enumerator object is suspendedsuspended, invoking Dispose :

If the state of the enumerator object is afterafter , invoking Dispose  has no affect.

Changes the state to runningrunning.

Executes any finally blocks as if the last executed yield return  statement were a yield break

statement. If this causes an exception to be thrown and propagated out of the iterator body, the state of

the enumerator object is set to afterafter  and the exception is propagated to the caller of the Dispose

method.

Changes the state to afterafter .

When a function member returning an enumerable interface type is implemented using an iterator block, invoking

the function member does not immediately execute the code in the iterator block. Instead, an enumerable objectenumerable object

is created and returned. The enumerable object's GetEnumerator  method returns an enumerator object that

encapsulates the code specified in the iterator block, and execution of the code in the iterator block occurs when

the enumerator object's MoveNext  method is invoked. An enumerable object has the following characteristics:

It implements IEnumerable  and IEnumerable<T> , where T  is the yield type of the iterator.

It is initialized with a copy of the argument values (if any) and instance value passed to the function member.

An enumerable object is typically an instance of a compiler-generated enumerable class that encapsulates the code

in the iterator block and implements the enumerable interfaces, but other methods of implementation are possible.

If an enumerable class is generated by the compiler, that class will be nested, directly or indirectly, in the class

containing the function member, it will have private accessibility, and it will have a name reserved for compiler use

(Identifiers).

An enumerable object may implement more interfaces than those specified above. In particular, an enumerable

object may also implement IEnumerator  and IEnumerator<T> , enabling it to serve as both an enumerable and an

enumerator. In that type of implementation, the first time an enumerable object's GetEnumerator  method is

invoked, the enumerable object itself is returned. Subsequent invocations of the enumerable object's 

GetEnumerator , if any, return a copy of the enumerable object. Thus, each returned enumerator has its own state

and changes in one enumerator will not affect another.

An enumerable object provides an implementation of the GetEnumerator  methods of the IEnumerable  and 

IEnumerable<T>  interfaces. The two GetEnumerator  methods share a common implementation that acquires and

returns an available enumerator object. The enumerator object is initialized with the argument values and instance

value saved when the enumerable object was initialized, but otherwise the enumerator object functions as

described in Enumerator objects.

This section describes a possible implementation of iterators in terms of standard C# constructs. The

implementation described here is based on the same principles used by the Microsoft C# compiler, but it is by no

means a mandated implementation or the only one possible.

The following Stack<T>  class implements its GetEnumerator  method using an iterator. The iterator enumerates the

elements of the stack in top to bottom order.



using System;
using System.Collections;
using System.Collections.Generic;

class Stack<T>: IEnumerable<T>
{
    T[] items;
    int count;

    public void Push(T item) {
        if (items == null) {
            items = new T[4];
        }
        else if (items.Length == count) {
            T[] newItems = new T[count * 2];
            Array.Copy(items, 0, newItems, 0, count);
            items = newItems;
        }
        items[count++] = item;
    }

    public T Pop() {
        T result = items[--count];
        items[count] = default(T);
        return result;
    }

    public IEnumerator<T> GetEnumerator() {
        for (int i = count - 1; i >= 0; --i) yield return items[i];
    }
}

The GetEnumerator  method can be translated into an instantiation of a compiler-generated enumerator class that

encapsulates the code in the iterator block, as shown in the following.



class Stack<T>: IEnumerable<T>
{
    ...

    public IEnumerator<T> GetEnumerator() {
        return new __Enumerator1(this);
    }

    class __Enumerator1: IEnumerator<T>, IEnumerator
    {
        int __state;
        T __current;
        Stack<T> __this;
        int i;

        public __Enumerator1(Stack<T> __this) {
            this.__this = __this;
        }

        public T Current {
            get { return __current; }
        }

        object IEnumerator.Current {
            get { return __current; }
        }

        public bool MoveNext() {
            switch (__state) {
                case 1: goto __state1;
                case 2: goto __state2;
            }
            i = __this.count - 1;
        __loop:
            if (i < 0) goto __state2;
            __current = __this.items[i];
            __state = 1;
            return true;
        __state1:
            --i;
            goto __loop;
        __state2:
            __state = 2;
            return false;
        }

        public void Dispose() {
            __state = 2;
        }

        void IEnumerator.Reset() {
            throw new NotSupportedException();
        }
    }
}

In the preceding translation, the code in the iterator block is turned into a state machine and placed in the 

MoveNext  method of the enumerator class. Furthermore, the local variable i  is turned into a field in the

enumerator object so it can continue to exist across invocations of MoveNext .

The following example prints a simple multiplication table of the integers 1 through 10. The FromTo  method in the

example returns an enumerable object and is implemented using an iterator.



using System;
using System.Collections.Generic;

class Test
{
    static IEnumerable<int> FromTo(int from, int to) {
        while (from <= to) yield return from++;
    }

    static void Main() {
        IEnumerable<int> e = FromTo(1, 10);
        foreach (int x in e) {
            foreach (int y in e) {
                Console.Write("{0,3} ", x * y);
            }
            Console.WriteLine();
        }
    }
}

using System;
using System.Threading;
using System.Collections;
using System.Collections.Generic;

class Test
{
    ...

    static IEnumerable<int> FromTo(int from, int to) {
        return new __Enumerable1(from, to);
    }

    class __Enumerable1:
        IEnumerable<int>, IEnumerable,
        IEnumerator<int>, IEnumerator
    {
        int __state;
        int __current;
        int __from;
        int from;
        int to;
        int i;

        public __Enumerable1(int __from, int to) {
            this.__from = __from;
            this.to = to;
        }

        public IEnumerator<int> GetEnumerator() {
            __Enumerable1 result = this;
            if (Interlocked.CompareExchange(ref __state, 1, 0) != 0) {
                result = new __Enumerable1(__from, to);
                result.__state = 1;
            }
            result.from = result.__from;
            return result;
        }

        IEnumerator IEnumerable.GetEnumerator() {
            return (IEnumerator)GetEnumerator();
        }

The FromTo  method can be translated into an instantiation of a compiler-generated enumerable class that

encapsulates the code in the iterator block, as shown in the following.



        public int Current {
            get { return __current; }
        }

        object IEnumerator.Current {
            get { return __current; }
        }

        public bool MoveNext() {
            switch (__state) {
            case 1:
                if (from > to) goto case 2;
                __current = from++;
                __state = 1;
                return true;
            case 2:
                __state = 2;
                return false;
            default:
                throw new InvalidOperationException();
            }
        }

        public void Dispose() {
            __state = 2;
        }

        void IEnumerator.Reset() {
            throw new NotSupportedException();
        }
    }
}

The enumerable class implements both the enumerable interfaces and the enumerator interfaces, enabling it to

serve as both an enumerable and an enumerator. The first time the GetEnumerator  method is invoked, the

enumerable object itself is returned. Subsequent invocations of the enumerable object's GetEnumerator , if any,

return a copy of the enumerable object. Thus, each returned enumerator has its own state and changes in one

enumerator will not affect another. The Interlocked.CompareExchange  method is used to ensure thread-safe

operation.

The from  and to  parameters are turned into fields in the enumerable class. Because from  is modified in the

iterator block, an additional __from  field is introduced to hold the initial value given to from  in each enumerator.

The MoveNext  method throws an InvalidOperationException  if it is called when __state  is 0 . This protects

against use of the enumerable object as an enumerator object without first calling GetEnumerator .

The following example shows a simple tree class. The Tree<T>  class implements its GetEnumerator  method using

an iterator. The iterator enumerates the elements of the tree in infix order.



using System;
using System.Collections.Generic;

class Tree<T>: IEnumerable<T>
{
    T value;
    Tree<T> left;
    Tree<T> right;

    public Tree(T value, Tree<T> left, Tree<T> right) {
        this.value = value;
        this.left = left;
        this.right = right;
    }

    public IEnumerator<T> GetEnumerator() {
        if (left != null) foreach (T x in left) yield x;
        yield value;
        if (right != null) foreach (T x in right) yield x;
    }
}

class Program
{
    static Tree<T> MakeTree<T>(T[] items, int left, int right) {
        if (left > right) return null;
        int i = (left + right) / 2;
        return new Tree<T>(items[i], 
            MakeTree(items, left, i - 1),
            MakeTree(items, i + 1, right));
    }

    static Tree<T> MakeTree<T>(params T[] items) {
        return MakeTree(items, 0, items.Length - 1);
    }

    // The output of the program is:
    // 1 2 3 4 5 6 7 8 9
    // Mon Tue Wed Thu Fri Sat Sun

    static void Main() {
        Tree<int> ints = MakeTree(1, 2, 3, 4, 5, 6, 7, 8, 9);
        foreach (int i in ints) Console.Write("{0} ", i);
        Console.WriteLine();

        Tree<string> strings = MakeTree(
            "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun");
        foreach (string s in strings) Console.Write("{0} ", s);
        Console.WriteLine();
    }
}

class Tree<T>: IEnumerable<T>
{
    ...

    public IEnumerator<T> GetEnumerator() {
        return new __Enumerator1(this);
    }

    class __Enumerator1 : IEnumerator<T>, IEnumerator
    {
        Node<T> __this;

The GetEnumerator  method can be translated into an instantiation of a compiler-generated enumerator class that

encapsulates the code in the iterator block, as shown in the following.



        Node<T> __this;
        IEnumerator<T> __left, __right;
        int __state;
        T __current;

        public __Enumerator1(Node<T> __this) {
            this.__this = __this;
        }

        public T Current {
            get { return __current; }
        }

        object IEnumerator.Current {
            get { return __current; }
        }

        public bool MoveNext() {
            try {
                switch (__state) {

                case 0:
                    __state = -1;
                    if (__this.left == null) goto __yield_value;
                    __left = __this.left.GetEnumerator();
                    goto case 1;

                case 1:
                    __state = -2;
                    if (!__left.MoveNext()) goto __left_dispose;
                    __current = __left.Current;
                    __state = 1;
                    return true;

                __left_dispose:
                    __state = -1;
                    __left.Dispose();

                __yield_value:
                    __current = __this.value;
                    __state = 2;
                    return true;

                case 2:
                    __state = -1;
                    if (__this.right == null) goto __end;
                    __right = __this.right.GetEnumerator();
                    goto case 3;

                case 3:
                    __state = -3;
                    if (!__right.MoveNext()) goto __right_dispose;
                    __current = __right.Current;
                    __state = 3;
                    return true;

                __right_dispose:
                    __state = -1;
                    __right.Dispose();

                __end:
                    __state = 4;
                    break;

                }
            }
            finally {
                if (__state < 0) Dispose();
            }
            return false;



   

            return false;
        }

        public void Dispose() {
            try {
                switch (__state) {

                case 1:
                case -2:
                    __left.Dispose();
                    break;

                case 3:
                case -3:
                    __right.Dispose();
                    break;

                }
            }
            finally {
                __state = 4;
            }
        }

        void IEnumerator.Reset() {
            throw new NotSupportedException();
        }
    }
}

Async functions

Evaluation of a task-returning async functionEvaluation of a task-returning async function

The compiler generated temporaries used in the foreach  statements are lifted into the __left  and __right  fields

of the enumerator object. The __state  field of the enumerator object is carefully updated so that the correct 

Dispose()  method will be called correctly if an exception is thrown. Note that it is not possible to write the

translated code with simple foreach  statements.

A method (Methods) or anonymous function (Anonymous function expressions) with the async  modifier is called

an async functionasync function. In general, the term asyncasync is used to describe any kind of function that has the async

modifier.

It is a compile-time error for the formal parameter list of an async function to specify any ref  or out  parameters.

The return_type of an async method must be either void  or a task typetask type. The task types are 

System.Threading.Tasks.Task  and types constructed from System.Threading.Tasks.Task<T> . For the sake of brevity,

in this chapter these types are referenced as Task  and Task<T> , respectively. An async method returning a task

type is said to be task-returning.

The exact definition of the task types is implementation defined, but from the language's point of view a task type

is in one of the states incomplete, succeeded or faulted. A faulted task records a pertinent exception. A succeeded 

Task<T>  records a result of type T . Task types are awaitable, and can therefore be the operands of await

expressions (Await expressions).

An async function invocation has the ability to suspend evaluation by means of await expressions (Await

expressions) in its body. Evaluation may later be resumed at the point of the suspending await expression by

means of a resumption delegateresumption delegate. The resumption delegate is of type System.Action , and when it is invoked,

evaluation of the async function invocation will resume from the await expression where it left off. The currentcurrent

callercaller  of an async function invocation is the original caller if the function invocation has never been suspended, or

the most recent caller of the resumption delegate otherwise.



Evaluation of a void-returning async functionEvaluation of a void-returning async function

Invocation of a task-returning async function causes an instance of the returned task type to be generated. This is

called the return taskreturn task of the async function. The task is initially in an incomplete state.

The async function body is then evaluated until it is either suspended (by reaching an await expression) or

terminates, at which point control is returned to the caller, along with the return task.

When the body of the async function terminates, the return task is moved out of the incomplete state:

If the function body terminates as the result of reaching a return statement or the end of the body, any result

value is recorded in the return task, which is put into a succeeded state.

If the function body terminates as the result of an uncaught exception (The throw statement) the exception is

recorded in the return task which is put into a faulted state.

If the return type of the async function is void , evaluation differs from the above in the following way: Because no

task is returned, the function instead communicates completion and exceptions to the current thread's

synchronization contextsynchronization context. The exact definition of synchronization context is implementation-dependent, but is a

representation of "where" the current thread is running. The synchronization context is notified when evaluation of

a void-returning async function commences, completes successfully, or causes an uncaught exception to be

thrown.

This allows the context to keep track of how many void-returning async functions are running under it, and to

decide how to propagate exceptions coming out of them.
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Struct declarations

struct_declaration
    : attributes? struct_modifier* 'partial'? 'struct' identifier type_parameter_list?
      struct_interfaces? type_parameter_constraints_clause* struct_body ';'?
    ;

Struct modifiersStruct modifiers

struct_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | struct_modifier_unsafe
    ;

Partial modifierPartial modifier

Structs are similar to classes in that they represent data structures that can contain data members and function

members. However, unlike classes, structs are value types and do not require heap allocation. A variable of a struct

type directly contains the data of the struct, whereas a variable of a class type contains a reference to the data, the

latter known as an object.

Structs are particularly useful for small data structures that have value semantics. Complex numbers, points in a

coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to these data structures

is that they have few data members, that they do not require use of inheritance or referential identity, and that they

can be conveniently implemented using value semantics where assignment copies the value instead of the

reference.

As described in Simple types, the simple types provided by C#, such as int , double , and bool , are in fact all

struct types. Just as these predefined types are structs, it is also possible to use structs and operator overloading to

implement new "primitive" types in the C# language. Two examples of such types are given at the end of this

chapter (Struct examples).

A struct_declaration is a type_declaration (Type declarations) that declares a new struct:

A struct_declaration consists of an optional set of attributes (Attributes), followed by an optional set of

struct_modifiers (Struct modifiers), followed by an optional partial  modifier, followed by the keyword struct

and an identifier that names the struct, followed by an optional type_parameter_list specification (Type parameters),

followed by an optional struct_interfaces specification (Partial modifier) ), followed by an optional

type_parameter_constraints_clauses specification (Type parameter constraints), followed by a struct_body (Struct

body), optionally followed by a semicolon.

A struct_declaration may optionally include a sequence of struct modifiers:

It is a compile-time error for the same modifier to appear multiple times in a struct declaration.

The modifiers of a struct declaration have the same meaning as those of a class declaration (Class declarations).

https://github.com/dotnet/csharplang/blob/master/spec/structs.md


  

   

 

Struct interfacesStruct interfaces

struct_interfaces
    : ':' interface_type_list
    ;

Struct bodyStruct body

struct_body
    : '{' struct_member_declaration* '}'
    ;

Struct members

struct_member_declaration
    : constant_declaration
    | field_declaration
    | method_declaration
    | property_declaration
    | event_declaration
    | indexer_declaration
    | operator_declaration
    | constructor_declaration
    | static_constructor_declaration
    | type_declaration
    | struct_member_declaration_unsafe
    ;

Class and struct differences

The partial  modifier indicates that this struct_declaration is a partial type declaration. Multiple partial struct

declarations with the same name within an enclosing namespace or type declaration combine to form one struct

declaration, following the rules specified in Partial types.

A struct declaration may include a struct_interfaces specification, in which case the struct is said to directly

implement the given interface types.

Interface implementations are discussed further in Interface implementations.

The struct_body of a struct defines the members of the struct.

The members of a struct consist of the members introduced by its struct_member_declarations and the members

inherited from the type System.ValueType .

Except for the differences noted in Class and struct differences, the descriptions of class members provided in Class

members through Iterators apply to struct members as well.

Structs differ from classes in several important ways:

Structs are value types (Value semantics).

All struct types implicitly inherit from the class System.ValueType  (Inheritance).

Assignment to a variable of a struct type creates a copy of the value being assigned (Assignment).

The default value of a struct is the value produced by setting all value type fields to their default value and all

reference type fields to null  (Default values).

Boxing and unboxing operations are used to convert between a struct type and object  (Boxing and unboxing).

The meaning of this  is different for structs (This access).



  Value semanticsValue semantics

struct Node
{
    int data;
    Node next; // error, Node directly depends on itself
}

struct A { B b; }

struct B { C c; }

struct C { A a; }

struct Point
{
    public int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

Point a = new Point(10, 10);
Point b = a;
a.x = 100;
System.Console.WriteLine(b.x);

Instance field declarations for a struct are not permitted to include variable initializers (Field initializers).

A struct is not permitted to declare a parameterless instance constructor (Constructors).

A struct is not permitted to declare a destructor (Destructors).

Structs are value types (Value types) and are said to have value semantics. Classes, on the other hand, are reference

types (Reference types) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains a

reference to the data, the latter known as an object. When a struct B  contains an instance field of type A  and A

is a struct type, it is a compile-time error for A  to depend on B  or a type constructed from B . A struct X

directly depends ondirectly depends on a struct Y  if X  contains an instance field of type Y . Given this definition, the complete set

of structs upon which a struct depends is the transitive closure of the directly depends ondirectly depends on relationship. For

example

is an error because Node  contains an instance field of its own type. Another example

is an error because each of the types A , B , and C  depend on each other.

With classes, it is possible for two variables to reference the same object, and thus possible for operations on one

variable to affect the object referenced by the other variable. With structs, the variables each have their own copy of

the data (except in the case of ref  and out  parameter variables), and it is not possible for operations on one to

affect the other. Furthermore, because structs are not reference types, it is not possible for values of a struct type to

be null .

Given the declaration

the code fragment



          

  

      

InheritanceInheritance

AssignmentAssignment

Default valuesDefault values

Point[] a = new Point[100];

outputs the value 10 . The assignment of a  to b  creates a copy of the value, and b  is thus unaffected by the

assignment to a.x . Had Point  instead been declared as a class, the output would be 100  because a  and b

would reference the same object.

All struct types implicitly inherit from the class System.ValueType , which, in turn, inherits from class object . A

struct declaration may specify a list of implemented interfaces, but it is not possible for a struct declaration to

specify a base class.

Struct types are never abstract and are always implicitly sealed. The abstract  and sealed  modifiers are therefore

not permitted in a struct declaration.

Since inheritance isn't supported for structs, the declared accessibility of a struct member cannot be protected  or 

protected internal .

Function members in a struct cannot be abstract  or virtual , and the override  modifier is allowed only to

override methods inherited from System.ValueType .

Assignment to a variable of a struct type creates a copy of the value being assigned. This differs from assignment

to a variable of a class type, which copies the reference but not the object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a function

member, a copy of the struct is created. A struct may be passed by reference to a function member using a ref  or 

out  parameter.

When a property or indexer of a struct is the target of an assignment, the instance expression associated with the

property or indexer access must be classified as a variable. If the instance expression is classified as a value, a

compile-time error occurs. This is described in further detail in Simple assignment.

As described in Default values, several kinds of variables are automatically initialized to their default value when

they are created. For variables of class types and other reference types, this default value is null . However, since

structs are value types that cannot be null , the default value of a struct is the value produced by setting all value

type fields to their default value and all reference type fields to null .

Referring to the Point  struct declared above, the example

initializes each Point  in the array to the value produced by setting the x  and y  fields to zero.

The default value of a struct corresponds to the value returned by the default constructor of the struct (Default

constructors). Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every

struct implicitly has a parameterless instance constructor which always returns the value that results from setting

all value type fields to their default value and all reference type fields to null .

Structs should be designed to consider the default initialization state a valid state. In the example



  

using System;

struct KeyValuePair
{
    string key;
    string value;

    public KeyValuePair(string key, string value) {
        if (key == null || value == null) throw new ArgumentException();
        this.key = key;
        this.value = value;
    }
}

Boxing and unboxingBoxing and unboxing

the user-defined instance constructor protects against null values only where it is explicitly called. In cases where a 

KeyValuePair  variable is subject to default value initialization, the key  and value  fields will be null, and the struct

must be prepared to handle this state.

A value of a class type can be converted to type object  or to an interface type that is implemented by the class

simply by treating the reference as another type at compile-time. Likewise, a value of type object  or a value of an

interface type can be converted back to a class type without changing the reference (but of course a run-time type

check is required in this case).

Since structs are not reference types, these operations are implemented differently for struct types. When a value

of a struct type is converted to type object  or to an interface type that is implemented by the struct, a boxing

operation takes place. Likewise, when a value of type object  or a value of an interface type is converted back to a

struct type, an unboxing operation takes place. A key difference from the same operations on class types is that

boxing and unboxing copies the struct value either into or out of the boxed instance. Thus, following a boxing or

unboxing operation, changes made to the unboxed struct are not reflected in the boxed struct.

When a struct type overrides a virtual method inherited from System.Object  (such as Equals , GetHashCode , or 

ToString ), invocation of the virtual method through an instance of the struct type does not cause boxing to occur.

This is true even when the struct is used as a type parameter and the invocation occurs through an instance of the

type parameter type. For example:



using System;

struct Counter
{
    int value;

    public override string ToString() {
        value++;
        return value.ToString();
    }
}

class Program
{
    static void Test<T>() where T: new() {
        T x = new T();
        Console.WriteLine(x.ToString());
        Console.WriteLine(x.ToString());
        Console.WriteLine(x.ToString());
    }

    static void Main() {
        Test<Counter>();
    }
}

1
2
3

The output of the program is:

Although it is bad style for ToString  to have side effects, the example demonstrates that no boxing occurred for

the three invocations of x.ToString() .

Similarly, boxing never implicitly occurs when accessing a member on a constrained type parameter. For example,

suppose an interface ICounter  contains a method Increment  which can be used to modify a value. If ICounter  is

used as a constraint, the implementation of the Increment  method is called with a reference to the variable that 

Increment  was called on, never a boxed copy.



  

using System;

interface ICounter
{
    void Increment();
}

struct Counter: ICounter
{
    int value;

    public override string ToString() {
        return value.ToString();
    }

    void ICounter.Increment() {
        value++;
    }
}

class Program
{
    static void Test<T>() where T: ICounter, new() {
        T x = new T();
        Console.WriteLine(x);
        x.Increment();                    // Modify x
        Console.WriteLine(x);
        ((ICounter)x).Increment();        // Modify boxed copy of x
        Console.WriteLine(x);
    }

    static void Main() {
        Test<Counter>();
    }
}

0
1
1

Meaning of thisMeaning of this

Field initializersField initializers

The first call to Increment  modifies the value in the variable x . This is not equivalent to the second call to 

Increment , which modifies the value in a boxed copy of x . Thus, the output of the program is:

For further details on boxing and unboxing, see Boxing and unboxing.

Within an instance constructor or instance function member of a class, this  is classified as a value. Thus, while 

this  can be used to refer to the instance for which the function member was invoked, it is not possible to assign

to this  in a function member of a class.

Within an instance constructor of a struct, this  corresponds to an out  parameter of the struct type, and within an

instance function member of a struct, this  corresponds to a ref  parameter of the struct type. In both cases, 

this  is classified as a variable, and it is possible to modify the entire struct for which the function member was

invoked by assigning to this  or by passing this as a ref  or out  parameter.

As described in Default values, the default value of a struct consists of the value that results from setting all value

type fields to their default value and all reference type fields to null . For this reason, a struct does not permit

instance field declarations to include variable initializers. This restriction applies only to instance fields. Static fields

of a struct are permitted to include variable initializers.



      

struct Point
{
    public int x = 1;  // Error, initializer not permitted
    public int y = 1;  // Error, initializer not permitted
}

ConstructorsConstructors

struct Point
{
    int x, y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

Point p1 = new Point();
Point p2 = new Point(0, 0);

The example

is in error because the instance field declarations include variable initializers.

Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct

implicitly has a parameterless instance constructor which always returns the value that results from setting all

value type fields to their default value and all reference type fields to null (Default constructors). A struct can

declare instance constructors having parameters. For example

Given the above declaration, the statements

both create a Point  with x  and y  initialized to zero.

A struct instance constructor is not permitted to include a constructor initializer of the form base(...) .

If the struct instance constructor doesn't specify a constructor initializer, the this  variable corresponds to an out

parameter of the struct type, and similar to an out  parameter, this  must be definitely assigned (Definite

assignment) at every location where the constructor returns. If the struct instance constructor specifies a

constructor initializer, the this  variable corresponds to a ref  parameter of the struct type, and similar to a ref

parameter, this  is considered definitely assigned on entry to the constructor body. Consider the instance

constructor implementation below:



  

 

struct Point
{
    int x, y;

    public int X {
        set { x = value; }
    }

    public int Y {
        set { y = value; }
    }

    public Point(int x, int y) {
        X = x;        // error, this is not yet definitely assigned
        Y = y;        // error, this is not yet definitely assigned
    }
}

struct Point
{
 public int X { get; set; }
 public int Y { get; set; }

 public Point(int x, int y) {
  X = x;  // allowed, definitely assigns backing field
  Y = y;  // allowed, definitely assigns backing field
 }

DestructorsDestructors

Static constructorsStatic constructors

Struct examples

Database integer typeDatabase integer type

No instance member function (including the set accessors for the properties X  and Y ) can be called until all fields

of the struct being constructed have been definitely assigned. The only exception involves automatically

implemented properties (Automatically implemented properties). The definite assignment rules (Simple

assignment expressions) specifically exempt assignment to an auto-property of a struct type within an instance

constructor of that struct type: such an assignment is considered a definite assignment of the hidden backing field

of the auto-property. Thus, the following is allowed:

A struct is not permitted to declare a destructor.

Static constructors for structs follow most of the same rules as for classes. The execution of a static constructor for

a struct type is triggered by the first of the following events to occur within an application domain:

A static member of the struct type is referenced.

An explicitly declared constructor of the struct type is called.

The creation of default values (Default values) of struct types does not trigger the static constructor. (An example of

this is the initial value of elements in an array.)

The following shows two significant examples of using struct  types to create types that can be used similarly to

the predefined types of the language, but with modified semantics.

The DBInt  struct below implements an integer type that can represent the complete set of values of the int  type,

plus an additional state that indicates an unknown value. A type with these characteristics is commonly used in

databases.



using System;

public struct DBInt
{
    // The Null member represents an unknown DBInt value.

    public static readonly DBInt Null = new DBInt();

    // When the defined field is true, this DBInt represents a known value
    // which is stored in the value field. When the defined field is false,
    // this DBInt represents an unknown value, and the value field is 0.

    int value;
    bool defined;

    // Private instance constructor. Creates a DBInt with a known value.

    DBInt(int value) {
        this.value = value;
        this.defined = true;
    }

    // The IsNull property is true if this DBInt represents an unknown value.

    public bool IsNull { get { return !defined; } }

    // The Value property is the known value of this DBInt, or 0 if this
    // DBInt represents an unknown value.

    public int Value { get { return value; } }

    // Implicit conversion from int to DBInt.

    public static implicit operator DBInt(int x) {
        return new DBInt(x);
    }

    // Explicit conversion from DBInt to int. Throws an exception if the
    // given DBInt represents an unknown value.

    public static explicit operator int(DBInt x) {
        if (!x.defined) throw new InvalidOperationException();
        return x.value;
    }

    public static DBInt operator +(DBInt x) {
        return x;
    }

    public static DBInt operator -(DBInt x) {
        return x.defined ? -x.value : Null;
    }

    public static DBInt operator +(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value + y.value: Null;
    }

    public static DBInt operator -(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value - y.value: Null;
    }

    public static DBInt operator *(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value * y.value: Null;
    }

    public static DBInt operator /(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value / y.value: Null;
    }



        

    public static DBInt operator %(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value % y.value: Null;
    }

    public static DBBool operator ==(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value == y.value: DBBool.Null;
    }

    public static DBBool operator !=(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value != y.value: DBBool.Null;
    }

    public static DBBool operator >(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value > y.value: DBBool.Null;
    }

    public static DBBool operator <(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value < y.value: DBBool.Null;
    }

    public static DBBool operator >=(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value >= y.value: DBBool.Null;
    }

    public static DBBool operator <=(DBInt x, DBInt y) {
        return x.defined && y.defined? x.value <= y.value: DBBool.Null;
    }

    public override bool Equals(object obj) {
        if (!(obj is DBInt)) return false;
        DBInt x = (DBInt)obj;
        return value == x.value && defined == x.defined;
    }

    public override int GetHashCode() {
        return value;
    }

    public override string ToString() {
        return defined? value.ToString(): "DBInt.Null";
    }
}

Database boolean typeDatabase boolean type

using System;

public struct DBBool
{
    // The three possible DBBool values.

    public static readonly DBBool Null = new DBBool(0);
    public static readonly DBBool False = new DBBool(-1);
    public static readonly DBBool True = new DBBool(1);

    // Private field that stores -1, 0, 1 for False, Null, True.

    sbyte value;

    // Private instance constructor. The value parameter must be -1, 0, or 1.

    DBBool(int value) {

The DBBool  struct below implements a three-valued logical type. The possible values of this type are DBBool.True , 

DBBool.False , and DBBool.Null , where the Null  member indicates an unknown value. Such three-valued logical

types are commonly used in databases.



    DBBool(int value) {
        this.value = (sbyte)value;
    }

    // Properties to examine the value of a DBBool. Return true if this
    // DBBool has the given value, false otherwise.

    public bool IsNull { get { return value == 0; } }

    public bool IsFalse { get { return value < 0; } }

    public bool IsTrue { get { return value > 0; } }

    // Implicit conversion from bool to DBBool. Maps true to DBBool.True and
    // false to DBBool.False.

    public static implicit operator DBBool(bool x) {
        return x? True: False;
    }

    // Explicit conversion from DBBool to bool. Throws an exception if the
    // given DBBool is Null, otherwise returns true or false.

    public static explicit operator bool(DBBool x) {
        if (x.value == 0) throw new InvalidOperationException();
        return x.value > 0;
    }

    // Equality operator. Returns Null if either operand is Null, otherwise
    // returns True or False.

    public static DBBool operator ==(DBBool x, DBBool y) {
        if (x.value == 0 || y.value == 0) return Null;
        return x.value == y.value? True: False;
    }

    // Inequality operator. Returns Null if either operand is Null, otherwise
    // returns True or False.

    public static DBBool operator !=(DBBool x, DBBool y) {
        if (x.value == 0 || y.value == 0) return Null;
        return x.value != y.value? True: False;
    }

    // Logical negation operator. Returns True if the operand is False, Null
    // if the operand is Null, or False if the operand is True.

    public static DBBool operator !(DBBool x) {
        return new DBBool(-x.value);
    }

    // Logical AND operator. Returns False if either operand is False,
    // otherwise Null if either operand is Null, otherwise True.

    public static DBBool operator &(DBBool x, DBBool y) {
        return new DBBool(x.value < y.value? x.value: y.value);
    }

    // Logical OR operator. Returns True if either operand is True, otherwise
    // Null if either operand is Null, otherwise False.

    public static DBBool operator |(DBBool x, DBBool y) {
        return new DBBool(x.value > y.value? x.value: y.value);
    }

    // Definitely true operator. Returns true if the operand is True, false
    // otherwise.

    public static bool operator true(DBBool x) {
        return x.value > 0;



        return x.value > 0;
    }

    // Definitely false operator. Returns true if the operand is False, false
    // otherwise.

    public static bool operator false(DBBool x) {
        return x.value < 0;
    }

    public override bool Equals(object obj) {
        if (!(obj is DBBool)) return false;
        return value == ((DBBool)obj).value;
    }

    public override int GetHashCode() {
        return value;
    }

    public override string ToString() {
        if (value > 0) return "DBBool.True";
        if (value < 0) return "DBBool.False";
        return "DBBool.Null";
    }
}
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Array types

array_type
    : non_array_type rank_specifier+
    ;

non_array_type
    : type
    ;

rank_specifier
    : '[' dim_separator* ']'
    ;

dim_separator
    : ','
    ;

An array is a data structure that contains a number of variables which are accessed through computed indices. The

variables contained in an array, also called the elements of the array, are all of the same type, and this type is called

the element type of the array.

An array has a rank which determines the number of indices associated with each array element. The rank of an

array is also referred to as the dimensions of the array. An array with a rank of one is called a single-dimensionalsingle-dimensional

arrayarray . An array with a rank greater than one is called a multi-dimensional arraymulti-dimensional array . Specific sized multi-

dimensional arrays are often referred to as two-dimensional arrays, three-dimensional arrays, and so on.

Each dimension of an array has an associated length which is an integral number greater than or equal to zero. The

dimension lengths are not part of the type of the array, but rather are established when an instance of the array

type is created at run-time. The length of a dimension determines the valid range of indices for that dimension: For

a dimension of length N , indices can range from 0  to N - 1  inclusive. The total number of elements in an array

is the product of the lengths of each dimension in the array. If one or more of the dimensions of an array have a

length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

An array type is written as a non_array_type followed by one or more rank_specifiers:

A non_array_type is any type that is not itself an array_type.

The rank of an array type is given by the leftmost rank_specifier in the array_type: A rank_specifier indicates that

the array is an array with a rank of one plus the number of " , " tokens in the rank_specifier.

The element type of an array type is the type that results from deleting the leftmost rank_specifier:

An array type of the form T[R]  is an array with rank R  and a non-array element type T .

An array type of the form T[R][R1]...[Rn]  is an array with rank R  and an element type T[R1]...[Rn] .

In effect, the rank_specifiers are read from left to right before the final non-array element type. The type 

int[][,,][,]  is a single-dimensional array of three-dimensional arrays of two-dimensional arrays of int .

At run-time, a value of an array type can be null  or a reference to an instance of that array type.

https://github.com/dotnet/csharplang/blob/master/spec/arrays.md


The System.Array typeThe System.Array type

Arrays and the generic IList interfaceArrays and the generic IList interface

using System.Collections.Generic;

class Test
{
    static void Main() {
        string[] sa = new string[5];
        object[] oa1 = new object[5];
        object[] oa2 = sa;

        IList<string> lst1 = sa;                    // Ok
        IList<string> lst2 = oa1;                   // Error, cast needed
        IList<object> lst3 = sa;                    // Ok
        IList<object> lst4 = oa1;                   // Ok

        IList<string> lst5 = (IList<string>)oa1;    // Exception
        IList<string> lst6 = (IList<string>)oa2;    // Ok
    }
}

Array creation

The type System.Array  is the abstract base type of all array types. An implicit reference conversion (Implicit

reference conversions) exists from any array type to System.Array , and an explicit reference conversion (Explicit

reference conversions) exists from System.Array  to any array type. Note that System.Array  is not itself an

array_type. Rather, it is a class_type from which all array_types are derived.

At run-time, a value of type System.Array  can be null  or a reference to an instance of any array type.

A one-dimensional array T[]  implements the interface System.Collections.Generic.IList<T>  ( IList<T>  for short)

and its base interfaces. Accordingly, there is an implicit conversion from T[]  to IList<T>  and its base interfaces.

In addition, if there is an implicit reference conversion from S  to T  then S[]  implements IList<T>  and there is

an implicit reference conversion from S[]  to IList<T>  and its base interfaces (Implicit reference conversions). If

there is an explicit reference conversion from S  to T  then there is an explicit reference conversion from S[]  to 

IList<T>  and its base interfaces (Explicit reference conversions). For example:

The assignment lst2 = oa1  generates a compile-time error since the conversion from object[]  to 

IList<string>  is an explicit conversion, not implicit. The cast (IList<string>)oa1  will cause an exception to be

thrown at run-time since oa1  references an object[]  and not a string[] . However the cast (IList<string>)oa2

will not cause an exception to be thrown since oa2  references a string[] .

Whenever there is an implicit or explicit reference conversion from S[]  to IList<T> , there is also an explicit

reference conversion from IList<T>  and its base interfaces to S[]  (Explicit reference conversions).

When an array type S[]  implements IList<T> , some of the members of the implemented interface may throw

exceptions. The precise behavior of the implementation of the interface is beyond the scope of this specification.

Array instances are created by array_creation_expressions (Array creation expressions) or by field or local variable

declarations that include an array_initializer (Array initializers).

When an array instance is created, the rank and length of each dimension are established and then remain

constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing

array instance, nor is it possible to resize its dimensions.

An array instance is always of an array type. The System.Array  type is an abstract type that cannot be instantiated.

Elements of arrays created by array_creation_expressions are always initialized to their default value (Default



    

   

Array element access

Array members

Array covariance

class Test
{
    static void Fill(object[] array, int index, int count, object value) {
        for (int i = index; i < index + count; i++) array[i] = value;
    }

    static void Main() {
        string[] strings = new string[100];
        Fill(strings, 0, 100, "Undefined");
        Fill(strings, 0, 10, null);
        Fill(strings, 90, 10, 0);
    }
}

Array initializers

values).

Array elements are accessed using element_access expressions (Array access) of the form A[I1, I2, ..., In] ,

where A  is an expression of an array type and each Ix  is an expression of type int , uint , long , ulong , or can

be implicitly converted to one or more of these types. The result of an array element access is a variable, namely

the array element selected by the indices.

The elements of an array can be enumerated using a foreach  statement (The foreach statement).

Every array type inherits the members declared by the System.Array  type.

For any two reference_types A  and B , if an implicit reference conversion (Implicit reference conversions) or

explicit reference conversion (Explicit reference conversions) exists from A  to B , then the same reference

conversion also exists from the array type A[R]  to the array type B[R] , where R  is any given rank_specifier (but

the same for both array types). This relationship is known as array covariancearray covariance. Array covariance in particular

means that a value of an array type A[R]  may actually be a reference to an instance of an array type B[R] ,

provided an implicit reference conversion exists from B  to A .

Because of array covariance, assignments to elements of reference type arrays include a run-time check which

ensures that the value being assigned to the array element is actually of a permitted type (Simple assignment). For

example:

The assignment to array[i]  in the Fill  method implicitly includes a run-time check which ensures that the

object referenced by value  is either null  or an instance that is compatible with the actual element type of array

. In Main , the first two invocations of Fill  succeed, but the third invocation causes a 

System.ArrayTypeMismatchException  to be thrown upon executing the first assignment to array[i] . The exception

occurs because a boxed int  cannot be stored in a string  array.

Array covariance specifically does not extend to arrays of value_types. For example, no conversion exists that

permits an int[]  to be treated as an object[] .

Array initializers may be specified in field declarations (Fields), local variable declarations (Local variable

declarations), and array creation expressions (Array creation expressions):



array_initializer
    : '{' variable_initializer_list? '}'
    | '{' variable_initializer_list ',' '}'
    ;

variable_initializer_list
    : variable_initializer (',' variable_initializer)*
    ;

variable_initializer
    : expression
    | array_initializer
    ;

int[] a = {0, 2, 4, 6, 8};

int[] a = new int[] {0, 2, 4, 6, 8};

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

int[,] b = new int[5, 2];

An array initializer consists of a sequence of variable initializers, enclosed by " { " and " } " tokens and separated

by " , " tokens. Each variable initializer is an expression or, in the case of a multi-dimensional array, a nested array

initializer.

The context in which an array initializer is used determines the type of the array being initialized. In an array

creation expression, the array type immediately precedes the initializer, or is inferred from the expressions in the

array initializer. In a field or variable declaration, the array type is the type of the field or variable being declared.

When an array initializer is used in a field or variable declaration, such as:

it is simply shorthand for an equivalent array creation expression:

For a single-dimensional array, the array initializer must consist of a sequence of expressions that are assignment

compatible with the element type of the array. The expressions initialize array elements in increasing order, starting

with the element at index zero. The number of expressions in the array initializer determines the length of the array

instance being created. For example, the array initializer above creates an int[]  instance of length 5 and then

initializes the instance with the following values:

For a multi-dimensional array, the array initializer must have as many levels of nesting as there are dimensions in

the array. The outermost nesting level corresponds to the leftmost dimension and the innermost nesting level

corresponds to the rightmost dimension. The length of each dimension of the array is determined by the number

of elements at the corresponding nesting level in the array initializer. For each nested array initializer, the number

of elements must be the same as the other array initializers at the same level. The example:

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the

rightmost dimension:

and then initializes the array instance with the following values:



b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

int[,] c = {};

int[,] c = new int[0, 0];

int i = 3;
int[] x = new int[3] {0, 1, 2};        // OK
int[] y = new int[i] {0, 1, 2};        // Error, i not a constant
int[] z = new int[3] {0, 1, 2, 3};     // Error, length/initializer mismatch

If a dimension other than the rightmost is given with length zero, the subsequent dimensions are assumed to also

have length zero. The example:

creates a two-dimensional array with a length of zero for both the leftmost and the rightmost dimension:

When an array creation expression includes both explicit dimension lengths and an array initializer, the lengths

must be constant expressions and the number of elements at each nesting level must match the corresponding

dimension length. Here are some examples:

Here, the initializer for y  results in a compile-time error because the dimension length expression is not a

constant, and the initializer for z  results in a compile-time error because the length and the number of elements

in the initializer do not agree.
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Interface declarations

interface_declaration
    : attributes? interface_modifier* 'partial'? 'interface'
      identifier variant_type_parameter_list? interface_base?
      type_parameter_constraints_clause* interface_body ';'?
    ;

Interface modifiersInterface modifiers

interface_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | interface_modifier_unsafe
    ;

Partial modifierPartial modifier

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An

interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide

implementations for the members that it defines. The interface merely specifies the members that must be

supplied by classes or structs that implement the interface.

An interface_declaration is a type_declaration (Type declarations) that declares a new interface type.

An interface_declaration consists of an optional set of attributes (Attributes), followed by an optional set of

interface_modifiers (Interface modifiers), followed by an optional partial  modifier, followed by the keyword 

interface  and an identifier that names the interface, followed by an optional variant_type_parameter_list

specification (Variant type parameter lists), followed by an optional interface_base specification (Base interfaces),

followed by an optional type_parameter_constraints_clauses specification (Type parameter constraints), followed

by an interface_body (Interface body), optionally followed by a semicolon.

An interface_declaration may optionally include a sequence of interface modifiers:

It is a compile-time error for the same modifier to appear multiple times in an interface declaration.

The new  modifier is only permitted on interfaces defined within a class. It specifies that the interface hides an

inherited member by the same name, as described in The new modifier.

The public , protected , internal , and private  modifiers control the accessibility of the interface. Depending on

the context in which the interface declaration occurs, only some of these modifiers may be permitted (Declared

accessibility).

The partial  modifier indicates that this interface_declaration is a partial type declaration. Multiple partial

interface declarations with the same name within an enclosing namespace or type declaration combine to form

one interface declaration, following the rules specified in Partial types.

https://github.com/dotnet/csharplang/blob/master/spec/interfaces.md


        

      

Variant type parameter listsVariant type parameter lists

variant_type_parameter_list
    : '<' variant_type_parameters '>'
    ;

variant_type_parameters
    : attributes? variance_annotation? type_parameter
    | variant_type_parameters ',' attributes? variance_annotation? type_parameter
    ;

variance_annotation
    : 'in'
    | 'out'
    ;

interface C<out X, in Y, Z> 
{
  X M(Y y);
  Z P { get; set; }
}

Variance safetyVariance safety

Variant type parameter lists can only occur on interface and delegate types. The difference from ordinary

type_parameter_lists is the optional variance_annotation on each type parameter.

If the variance annotation is out , the type parameter is said to be covariantcovariant. If the variance annotation is in , the

type parameter is said to be contravar iantcontravar iant. If there is no variance annotation, the type parameter is said to be

invar iantinvar iant.

In the example

X  is covariant, Y  is contravariant and Z  is invariant.

The occurrence of variance annotations in the type parameter list of a type restricts the places where types can

occur within the type declaration.

A type T  is output-unsafeoutput-unsafe if one of the following holds:

T  is a contravariant type parameter

T  is an array type with an output-unsafe element type

T  is an interface or delegate type S<A1,...,Ak>  constructed from a generic type S<X1,...,Xk>  where for at

least one Ai  one of the following holds:

Xi  is covariant or invariant and Ai  is output-unsafe.

Xi  is contravariant or invariant and Ai  is input-safe.

A type T  is input-unsafeinput-unsafe if one of the following holds:

T  is a covariant type parameter

T  is an array type with an input-unsafe element type

T  is an interface or delegate type S<A1,...,Ak>  constructed from a generic type S<X1,...,Xk>  where for at

least one Ai  one of the following holds:

Xi  is covariant or invariant and Ai  is input-unsafe.

Xi  is contravariant or invariant and Ai  is output-unsafe.

Intuitively, an output-unsafe type is prohibited in an output position, and an input-unsafe type is prohibited in an

input position.



                    

  

Variance conversionVariance conversion

Base interfacesBase interfaces

interface_base
    : ':' interface_type_list
    ;

interface IControl
{
    void Paint();
}

interface ITextBox: IControl
{
    void SetText(string text);
}

interface IListBox: IControl
{
    void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

A type is output-safeoutput-safe if it is not output-unsafe, and input-safeinput-safe if it is not input-unsafe.

The purpose of variance annotations is to provide for more lenient (but still type safe) conversions to interface and

delegate types. To this end the definitions of implicit (Implicit conversions) and explicit conversions (Explicit

conversions) make use of the notion of variance-convertibility, which is defined as follows:

A type T<A1,...,An>  is variance-convertible to a type T<B1,...,Bn>  if T  is either an interface or a delegate type

declared with the variant type parameters T<X1,...,Xn> , and for each variant type parameter Xi  one of the

following holds:

Xi  is covariant and an implicit reference or identity conversion exists from Ai  to Bi

Xi  is contravariant and an implicit reference or identity conversion exists from Bi  to Ai

Xi  is invariant and an identity conversion exists from Ai  to Bi

An interface can inherit from zero or more interface types, which are called the explicit base interfacesexplicit base interfaces  of the

interface. When an interface has one or more explicit base interfaces, then in the declaration of that interface, the

interface identifier is followed by a colon and a comma separated list of base interface types.

For a constructed interface type, the explicit base interfaces are formed by taking the explicit base interface

declarations on the generic type declaration, and substituting, for each type_parameter in the base interface

declaration, the corresponding type_argument of the constructed type.

The explicit base interfaces of an interface must be at least as accessible as the interface itself (Accessibility

constraints). For example, it is a compile-time error to specify a private  or internal  interface in the

interface_base of a public  interface.

It is a compile-time error for an interface to directly or indirectly inherit from itself.

The base interfacesbase interfaces  of an interface are the explicit base interfaces and their base interfaces. In other words, the

set of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base interfaces,

and so on. An interface inherits all members of its base interfaces. In the example

the base interfaces of IComboBox  are IControl , ITextBox , and IListBox .

In other words, the IComboBox  interface above inherits members SetText  and SetItems  as well as Paint .



  

    

Interface bodyInterface body

interface_body
    : '{' interface_member_declaration* '}'
    ;

Interface members

interface_member_declaration
    : interface_method_declaration
    | interface_property_declaration
    | interface_event_declaration
    | interface_indexer_declaration
    ;

public delegate void StringListEvent(IStringList sender);

public interface IStringList
{
    void Add(string s);
    int Count { get; }
    event StringListEvent Changed;
    string this[int index] { get; set; }
}

Every base interface of an interface must be output-safe (Variance safety). A class or struct that implements an

interface also implicitly implements all of the interface's base interfaces.

The interface_body of an interface defines the members of the interface.

The members of an interface are the members inherited from the base interfaces and the members declared by

the interface itself.

An interface declaration may declare zero or more members. The members of an interface must be methods,

properties, events, or indexers. An interface cannot contain constants, fields, operators, instance constructors,

destructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is a compile-time error for interface member declarations to

include any modifiers. In particular, interfaces members cannot be declared with the modifiers abstract , public , 

protected , internal , private , virtual , override , or static .

The example

declares an interface that contains one each of the possible kinds of members: A method, a property, an event, and

an indexer.

An interface_declaration creates a new declaration space (Declarations), and the interface_member_declarations

immediately contained by the interface_declaration introduce new members into this declaration space. The

following rules apply to interface_member_declarations:

The name of a method must differ from the names of all properties and events declared in the same interface.

In addition, the signature (Signatures and overloading) of a method must differ from the signatures of all other

methods declared in the same interface, and two methods declared in the same interface may not have

signatures that differ solely by ref  and out .

The name of a property or event must differ from the names of all other members declared in the same

interface.

The signature of an indexer must differ from the signatures of all other indexers declared in the same interface.



Interface methodsInterface methods

interface_method_declaration
    : attributes? 'new'? return_type identifier type_parameter_list
      '(' formal_parameter_list? ')' type_parameter_constraints_clause* ';'
    ;

interface I<out T> { void M<U>() where U : T; }

class B {}
class D : B{}
class E : B {}
class C : I<D> { public void M<U>() {...} }
...
I<B> b = new C();
b.M<E>();

Interface propertiesInterface properties

The inherited members of an interface are specifically not part of the declaration space of the interface. Thus, an

interface is allowed to declare a member with the same name or signature as an inherited member. When this

occurs, the derived interface member is said to hide the base interface member. Hiding an inherited member is not

considered an error, but it does cause the compiler to issue a warning. To suppress the warning, the declaration of

the derived interface member must include a new  modifier to indicate that the derived member is intended to

hide the base member. This topic is discussed further in Hiding through inheritance.

If a new  modifier is included in a declaration that doesn't hide an inherited member, a warning is issued to that

effect. This warning is suppressed by removing the new  modifier.

Note that the members in class object  are not, strictly speaking, members of any interface (Interface members).

However, the members in class object  are available via member lookup in any interface type (Member lookup).

Interface methods are declared using interface_method_declarations:

The attributes, return_type, identifier, and formal_parameter_list of an interface method declaration have the same

meaning as those of a method declaration in a class (Methods). An interface method declaration is not permitted

to specify a method body, and the declaration therefore always ends with a semicolon.

Each formal parameter type of an interface method must be input-safe (Variance safety), and the return type must

be either void  or output-safe. Furthermore, each class type constraint, interface type constraint and type

parameter constraint on any type parameter of the method must be input-safe.

These rules ensure that any covariant or contravariant usage of the interface remains type-safe. For example,

is illegal because the usage of T  as a type parameter constraint on U  is not input-safe.

Were this restriction not in place it would be possible to violate type safety in the following manner :

This is actually a call to C.M<E> . But that call requires that E  derive from D , so type safety would be violated

here.

Interface properties are declared using interface_property_declarations:



    

interface_property_declaration
    : attributes? 'new'? type identifier '{' interface_accessors '}'
    ;

interface_accessors
    : attributes? 'get' ';'
    | attributes? 'set' ';'
    | attributes? 'get' ';' attributes? 'set' ';'
    | attributes? 'set' ';' attributes? 'get' ';'
    ;

Interface eventsInterface events

interface_event_declaration
    : attributes? 'new'? 'event' type identifier ';'
    ;

Interface indexersInterface indexers

interface_indexer_declaration
    : attributes? 'new'? type 'this' '[' formal_parameter_list ']' '{' interface_accessors '}'
    ;

Interface member accessInterface member access

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a

property declaration in a class (Properties).

The accessors of an interface property declaration correspond to the accessors of a class property declaration

(Accessors), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate

whether the property is read-write, read-only, or write-only.

The type of an interface property must be output-safe if there is a get accessor, and must be input-safe if there is a

set accessor.

Interface events are declared using interface_event_declarations:

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an event

declaration in a class (Events).

The type of an interface event must be input-safe.

Interface indexers are declared using interface_indexer_declarations:

The attributes, type, and formal_parameter_list of an interface indexer declaration have the same meaning as those

of an indexer declaration in a class (Indexers).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration

(Indexers), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate whether

the indexer is read-write, read-only, or write-only.

All the formal parameter types of an interface indexer must be input-safe . In addition, any out  or ref  formal

parameter types must also be output-safe. Note that even out  parameters are required to be input-safe, due to a

limitation of the underlying execution platform.

The type of an interface indexer must be output-safe if there is a get accessor, and must be input-safe if there is a

set accessor.

Interface members are accessed through member access (Member access) and indexer access (Indexer access)

expressions of the form I.M  and I[A] , where I  is an interface type, M  is a method, property, or event of that



interface IList
{
    int Count { get; set; }
}

interface ICounter
{
    void Count(int i);
}

interface IListCounter: IList, ICounter {}

class C
{
    void Test(IListCounter x) {
        x.Count(1);                  // Error
        x.Count = 1;                 // Error
        ((IList)x).Count = 1;        // Ok, invokes IList.Count.set
        ((ICounter)x).Count(1);      // Ok, invokes ICounter.Count
    }
}

interface type, and A  is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one

direct base interface), the effects of the member lookup (Member lookup), method invocation (Method

invocations), and indexer access (Indexer access) rules are exactly the same as for classes and structs: More derived

members hide less derived members with the same name or signature. However, for multiple-inheritance

interfaces, ambiguities can occur when two or more unrelated base interfaces declare members with the same

name or signature. This section shows several examples of such situations. In all cases, explicit casts can be used to

resolve the ambiguities.

In the example

the first two statements cause compile-time errors because the member lookup (Member lookup) of Count  in 

IListCounter  is ambiguous. As illustrated by the example, the ambiguity is resolved by casting x  to the

appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the instance as

a less derived type at compile-time.

In the example



interface IInteger
{
    void Add(int i);
}

interface IDouble
{
    void Add(double d);
}

interface INumber: IInteger, IDouble {}

class C
{
    void Test(INumber n) {
        n.Add(1);                // Invokes IInteger.Add
        n.Add(1.0);              // Only IDouble.Add is applicable
        ((IInteger)n).Add(1);    // Only IInteger.Add is a candidate
        ((IDouble)n).Add(1);     // Only IDouble.Add is a candidate
    }
}

interface IBase
{
    void F(int i);
}

interface ILeft: IBase
{
    new void F(int i);
}

interface IRight: IBase
{
    void G();
}

interface IDerived: ILeft, IRight {}

class A
{
    void Test(IDerived d) {
        d.F(1);                 // Invokes ILeft.F
        ((IBase)d).F(1);        // Invokes IBase.F
        ((ILeft)d).F(1);        // Invokes ILeft.F
        ((IRight)d).F(1);       // Invokes IBase.F
    }
}

the invocation n.Add(1)  selects IInteger.Add  by applying the overload resolution rules of Overload resolution.

Similarly the invocation n.Add(1.0)  selects IDouble.Add . When explicit casts are inserted, there is only one

candidate method, and thus no ambiguity.

In the example

the IBase.F  member is hidden by the ILeft.F  member. The invocation d.F(1)  thus selects ILeft.F , even

though IBase.F  appears to not be hidden in the access path that leads through IRight .

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden in any access

path, it is hidden in all access paths. Because the access path from IDerived  to ILeft  to IBase  hides IBase.F ,

the member is also hidden in the access path from IDerived  to IRight  to IBase .



    

Fully qualified interface member names

interface IControl
{
    void Paint();
}

interface ITextBox: IControl
{
    void SetText(string text);
}

namespace System
{
    public interface ICloneable
    {
        object Clone();
    }
}

Interface implementations

interface ICloneable
{
    object Clone();
}

interface IComparable
{
    int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable
{
    public object Clone() {...}
    public int CompareTo(object other) {...}
}

An interface member is sometimes referred to by its fully qualified namefully qualified name. The fully qualified name of an

interface member consists of the name of the interface in which the member is declared, followed by a dot,

followed by the name of the member. The fully qualified name of a member references the interface in which the

member is declared. For example, given the declarations

the fully qualified name of Paint  is IControl.Paint  and the fully qualified name of SetText  is ITextBox.SetText .

In the example above, it is not possible to refer to Paint  as ITextBox.Paint .

When an interface is part of a namespace, the fully qualified name of an interface member includes the namespace

name. For example

Here, the fully qualified name of the Clone  method is System.ICloneable.Clone .

Interfaces may be implemented by classes and structs. To indicate that a class or struct directly implements an

interface, the interface identifier is included in the base class list of the class or struct. For example:

A class or struct that directly implements an interface also directly implements all of the interface's base interfaces

implicitly. This is true even if the class or struct doesn't explicitly list all base interfaces in the base class list. For

example:



            

interface IControl
{
    void Paint();
}

interface ITextBox: IControl
{
    void SetText(string text);
}

class TextBox: ITextBox
{
    public void Paint() {...}
    public void SetText(string text) {...}
}

class C<U,V> {}

interface I1<V> {}

class D: C<string,int>, I1<string> {}

class E<T>: C<int,T>, I1<T> {}

Explicit interface member implementationsExplicit interface member implementations

interface IList<T>
{
    T[] GetElements();
}

interface IDictionary<K,V>
{
    V this[K key];
    void Add(K key, V value);
}

class List<T>: IList<T>, IDictionary<int,T>
{
    T[] IList<T>.GetElements() {...}
    T IDictionary<int,T>.this[int index] {...}
    void IDictionary<int,T>.Add(int index, T value) {...}
}

Here, class TextBox  implements both IControl  and ITextBox .

When a class C  directly implements an interface, all classes derived from C also implement the interface

implicitly. The base interfaces specified in a class declaration can be constructed interface types (Constructed

types). A base interface cannot be a type parameter on its own, though it can involve the type parameters that are

in scope. The following code illustrates how a class can implement and extend constructed types:

The base interfaces of a generic class declaration must satisfy the uniqueness rule described in Uniqueness of

implemented interfaces.

For purposes of implementing interfaces, a class or struct may declare explicit interface memberexplicit interface member

implementationsimplementations . An explicit interface member implementation is a method, property, event, or indexer

declaration that references a fully qualified interface member name. For example

Here IDictionary<int,T>.this  and IDictionary<int,T>.Add  are explicit interface member implementations.

In some cases, the name of an interface member may not be appropriate for the implementing class, in which case



interface IDisposable
{
    void Dispose();
}

class MyFile: IDisposable
{
    void IDisposable.Dispose() {
        Close();
    }

    public void Close() {
        // Do what's necessary to close the file
        System.GC.SuppressFinalize(this);
    }
}

class Shape: ICloneable
{
    object ICloneable.Clone() {...}
    int IComparable.CompareTo(object other) {...}    // invalid
}

the interface member may be implemented using explicit interface member implementation. A class implementing

a file abstraction, for example, would likely implement a Close  member function that has the effect of releasing

the file resource, and implement the Dispose  method of the IDisposable  interface using explicit interface

member implementation:

It is not possible to access an explicit interface member implementation through its fully qualified name in a

method invocation, property access, or indexer access. An explicit interface member implementation can only be

accessed through an interface instance, and is in that case referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include access modifiers, and it is a

compile-time error to include the modifiers abstract , virtual , override , or static .

Explicit interface member implementations have different accessibility characteristics than other members.

Because explicit interface member implementations are never accessible through their fully qualified name in a

method invocation or a property access, they are in a sense private. However, since they can be accessed through

an interface instance, they are in a sense also public.

Explicit interface member implementations serve two primary purposes:

Because explicit interface member implementations are not accessible through class or struct instances, they

allow interface implementations to be excluded from the public interface of a class or struct. This is particularly

useful when a class or struct implements an internal interface that is of no interest to a consumer of that class

or struct.

Explicit interface member implementations allow disambiguation of interface members with the same

signature. Without explicit interface member implementations it would be impossible for a class or struct to

have different implementations of interface members with the same signature and return type, as would it be

impossible for a class or struct to have any implementation at all of interface members with the same signature

but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interface in its base

class list that contains a member whose fully qualified name, type, and parameter types exactly match those of the

explicit interface member implementation. Thus, in the following class

the declaration of IComparable.CompareTo  results in a compile-time error because IComparable  is not listed in the



  

class Shape: ICloneable
{
    object ICloneable.Clone() {...}
}

class Ellipse: Shape
{
    object ICloneable.Clone() {...}    // invalid
}

interface IControl
{
    void Paint();
}

interface ITextBox: IControl
{
    void SetText(string text);
}

class TextBox: ITextBox
{
    void IControl.Paint() {...}
    void ITextBox.SetText(string text) {...}
}

Uniqueness of implemented interfacesUniqueness of implemented interfaces

interface I<T>
{
    void F();
}

class X<U,V>: I<U>, I<V>                    // Error: I<U> and I<V> conflict
{
    void I<U>.F() {...}
    void I<V>.F() {...}
}

I<int> x = new X<int,int>();
x.F();

base class list of Shape  and is not a base interface of ICloneable . Likewise, in the declarations

the declaration of ICloneable.Clone  in Ellipse  results in a compile-time error because ICloneable  is not

explicitly listed in the base class list of Ellipse .

The fully qualified name of an interface member must reference the interface in which the member was declared.

Thus, in the declarations

the explicit interface member implementation of Paint  must be written as IControl.Paint .

The interfaces implemented by a generic type declaration must remain unique for all possible constructed types.

Without this rule, it would be impossible to determine the correct method to call for certain constructed types. For

example, suppose a generic class declaration were permitted to be written as follows:

Were this permitted, it would be impossible to determine which code to execute in the following case:

To determine if the interface list of a generic type declaration is valid, the following steps are performed:



interface I<T>
{
    void F();
}

class Base<U>: I<U>
{
    void I<U>.F() {...}
}

class Derived<U,V>: Base<U>, I<V>    // Ok
{
    void I<V>.F() {...}
}

I<int> x = new Derived<int,int>();
x.F();

Implementation of generic methodsImplementation of generic methods

interface I<A,B,C>
{
    void F<T>(T t) where T: A;
    void G<T>(T t) where T: B;
    void H<T>(T t) where T: C;
}

class C: I<object,C,string>
{
    public void F<T>(T t) {...}                    // Ok
    public void G<T>(T t) where T: C {...}         // Ok
    public void H<T>(T t) where T: string {...}    // Error
}

Let L  be the list of interfaces directly specified in a generic class, struct, or interface declaration C .

Add to L  any base interfaces of the interfaces already in L .

Remove any duplicates from L .

If any possible constructed type created from C  would, after type arguments are substituted into L , cause

two interfaces in L  to be identical, then the declaration of C  is invalid. Constraint declarations are not

considered when determining all possible constructed types.

In the class declaration X  above, the interface list L  consists of I<U>  and I<V> . The declaration is invalid

because any constructed type with U  and V  being the same type would cause these two interfaces to be identical

types.

It is possible for interfaces specified at different inheritance levels to unify:

This code is valid even though Derived<U,V>  implements both I<U>  and I<V> . The code

invokes the method in Derived , since Derived<int,int>  effectively re-implements I<int>  (Interface re-

implementation).

When a generic method implicitly implements an interface method, the constraints given for each method type

parameter must be equivalent in both declarations (after any interface type parameters are replaced with the

appropriate type arguments), where method type parameters are identified by ordinal positions, left to right.

When a generic method explicitly implements an interface method, however, no constraints are allowed on the

implementing method. Instead, the constraints are inherited from the interface method



    

class C: I<object,C,string>
{
    ...

    public void H<U>(U u) where U: class {...}

    void I<object,C,string>.H<T>(T t) {
        string s = t;    // Ok
        H<T>(t);
    }
}

Interface mappingInterface mapping

The method C.F<T>  implicitly implements I<object,C,string>.F<T> . In this case, C.F<T>  is not required (nor

permitted) to specify the constraint T:object  since object  is an implicit constraint on all type parameters. The

method C.G<T>  implicitly implements I<object,C,string>.G<T>  because the constraints match those in the

interface, after the interface type parameters are replaced with the corresponding type arguments. The constraint

for method C.H<T>  is an error because sealed types ( string  in this case) cannot be used as constraints. Omitting

the constraint would also be an error since constraints of implicit interface method implementations are required

to match. Thus, it is impossible to implicitly implement I<object,C,string>.H<T> . This interface method can only

be implemented using an explicit interface member implementation:

In this example, the explicit interface member implementation invokes a public method having strictly weaker

constraints. Note that the assignment from t  to s  is valid since T  inherits a constraint of T:string , even

though this constraint is not expressible in source code.

A class or struct must provide implementations of all members of the interfaces that are listed in the base class list

of the class or struct. The process of locating implementations of interface members in an implementing class or

struct is known as interface mappinginterface mapping.

Interface mapping for a class or struct C  locates an implementation for each member of each interface specified

in the base class list of C . The implementation of a particular interface member I.M , where I  is the interface in

which the member M  is declared, is determined by examining each class or struct S , starting with C  and

repeating for each successive base class of C , until a match is located:

If S  contains a declaration of an explicit interface member implementation that matches I  and M , then this

member is the implementation of I.M .

Otherwise, if S  contains a declaration of a non-static public member that matches M , then this member is the

implementation of I.M . If more than one member matches, it is unspecified which member is the

implementation of I.M . This situation can only occur if S  is a constructed type where the two members as

declared in the generic type have different signatures, but the type arguments make their signatures identical.

A compile-time error occurs if implementations cannot be located for all members of all interfaces specified in the

base class list of C . Note that the members of an interface include those members that are inherited from base

interfaces.

For purposes of interface mapping, a class member A  matches an interface member B  when:

A  and B  are methods, and the name, type, and formal parameter lists of A  and B  are identical.

A  and B  are properties, the name and type of A  and B  are identical, and A  has the same accessors as B  (

A  is permitted to have additional accessors if it is not an explicit interface member implementation).

A  and B  are events, and the name and type of A  and B  are identical.

A  and B  are indexers, the type and formal parameter lists of A  and B  are identical, and A  has the same

accessors as B  ( A  is permitted to have additional accessors if it is not an explicit interface member

implementation).



interface ICloneable
{
    object Clone();
}

class C: ICloneable
{
    object ICloneable.Clone() {...}
    public object Clone() {...}
}

interface IControl
{
    void Paint();
}

interface IForm
{
    void Paint();
}

class Page: IControl, IForm
{
    public void Paint() {...}
}

interface IBase
{
    int P { get; }
}

interface IDerived: IBase
{
    new int P();
}

Notable implications of the interface mapping algorithm are:

Explicit interface member implementations take precedence over other members in the same class or struct

when determining the class or struct member that implements an interface member.

Neither non-public nor static members participate in interface mapping.

In the example

the ICloneable.Clone  member of C  becomes the implementation of Clone  in ICloneable  because explicit

interface member implementations take precedence over other members.

If a class or struct implements two or more interfaces containing a member with the same name, type, and

parameter types, it is possible to map each of those interface members onto a single class or struct member. For

example

Here, the Paint  methods of both IControl  and IForm  are mapped onto the Paint  method in Page . It is of

course also possible to have separate explicit interface member implementations for the two methods.

If a class or struct implements an interface that contains hidden members, then some members must necessarily

be implemented through explicit interface member implementations. For example

An implementation of this interface would require at least one explicit interface member implementation, and

would take one of the following forms



class C: IDerived
{
    int IBase.P { get {...} }
    int IDerived.P() {...}
}

class C: IDerived
{
    public int P { get {...} }
    int IDerived.P() {...}
}

class C: IDerived
{
    int IBase.P { get {...} }
    public int P() {...}
}

interface IControl
{
    void Paint();
}

interface ITextBox: IControl
{
    void SetText(string text);
}

interface IListBox: IControl
{
    void SetItems(string[] items);
}

class ComboBox: IControl, ITextBox, IListBox
{
    void IControl.Paint() {...}
    void ITextBox.SetText(string text) {...}
    void IListBox.SetItems(string[] items) {...}
}

When a class implements multiple interfaces that have the same base interface, there can be only one

implementation of the base interface. In the example

it is not possible to have separate implementations for the IControl  named in the base class list, the IControl

inherited by ITextBox , and the IControl  inherited by IListBox . Indeed, there is no notion of a separate identity

for these interfaces. Rather, the implementations of ITextBox  and IListBox  share the same implementation of 

IControl , and ComboBox  is simply considered to implement three interfaces, IControl , ITextBox , and IListBox .

The members of a base class participate in interface mapping. In the example



interface Interface1
{
    void F();
}

class Class1
{
    public void F() {}
    public void G() {}
}

class Class2: Class1, Interface1
{
    new public void G() {}
}

Interface implementation inheritanceInterface implementation inheritance

interface IControl
{
    void Paint();
}

class Control: IControl
{
    public void Paint() {...}
}

class TextBox: Control
{
    new public void Paint() {...}
}

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint();            // invokes Control.Paint();
t.Paint();            // invokes TextBox.Paint();
ic.Paint();           // invokes Control.Paint();
it.Paint();           // invokes Control.Paint();

the method F  in Class1  is used in Class2 's implementation of Interface1 .

A class inherits all interface implementations provided by its base classes.

Without explicitly re-implementingre-implementing an interface, a derived class cannot in any way alter the interface mappings it

inherits from its base classes. For example, in the declarations

the Paint  method in TextBox  hides the Paint  method in Control , but it does not alter the mapping of 

Control.Paint  onto IControl.Paint , and calls to Paint  through class instances and interface instances will have

the following effects

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived classes to

override the virtual method and alter the implementation of the interface. For example, rewriting the declarations

above to



  

interface IControl
{
    void Paint();
}

class Control: IControl
{
    public virtual void Paint() {...}
}

class TextBox: Control
{
    public override void Paint() {...}
}

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint();            // invokes Control.Paint();
t.Paint();            // invokes TextBox.Paint();
ic.Paint();           // invokes Control.Paint();
it.Paint();           // invokes TextBox.Paint();

interface IControl
{
    void Paint();
}

class Control: IControl
{
    void IControl.Paint() { PaintControl(); }
    protected virtual void PaintControl() {...}
}

class TextBox: Control
{
    protected override void PaintControl() {...}
}

Interface re-implementationInterface re-implementation

the following effects will now be observed

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an

explicit interface member implementation. However, it is perfectly valid for an explicit interface member

implementation to call another method, and that other method can be declared virtual to allow derived classes to

override it. For example

Here, classes derived from Control  can specialize the implementation of IControl.Paint  by overriding the 

PaintControl  method.

A class that inherits an interface implementation is permitted to re-implementre-implement the interface by including it in the

base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial implementation

of an interface. Thus, the inherited interface mapping has no effect whatsoever on the interface mapping

established for the re-implementation of the interface. For example, in the declarations



interface IControl
{
    void Paint();
}

class Control: IControl
{
    void IControl.Paint() {...}
}

class MyControl: Control, IControl
{
    public void Paint() {}
}

interface IMethods
{
    void F();
    void G();
    void H();
    void I();
}

class Base: IMethods
{
    void IMethods.F() {}
    void IMethods.G() {}
    public void H() {}
    public void I() {}
}

class Derived: Base, IMethods
{
    public void F() {}
    void IMethods.H() {}
}

the fact that Control  maps IControl.Paint  onto Control.IControl.Paint  doesn't affect the re-implementation in 

MyControl , which maps IControl.Paint  onto MyControl.Paint .

Inherited public member declarations and inherited explicit interface member declarations participate in the

interface mapping process for re-implemented interfaces. For example

Here, the implementation of IMethods  in Derived  maps the interface methods onto Derived.F , Base.IMethods.G , 

Derived.IMethods.H , and Base.I .

When a class implements an interface, it implicitly also implements all of that interface's base interfaces. Likewise,

a re-implementation of an interface is also implicitly a re-implementation of all of the interface's base interfaces.

For example



interface IBase
{
    void F();
}

interface IDerived: IBase
{
    void G();
}

class C: IDerived
{
    void IBase.F() {...}
    void IDerived.G() {...}
}

class D: C, IDerived
{
    public void F() {...}
    public void G() {...}
}

Abstract classes and interfacesAbstract classes and interfaces

interface IMethods
{
    void F();
    void G();
}

abstract class C: IMethods
{
    public abstract void F();
    public abstract void G();
}

interface IMethods
{
    void F();
    void G();
}

abstract class C: IMethods
{
    void IMethods.F() { FF(); }
    void IMethods.G() { GG(); }
    protected abstract void FF();
    protected abstract void GG();
}

Here, the re-implementation of IDerived  also re-implements IBase , mapping IBase.F  onto D.F .

Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces that are

listed in the base class list of the class. However, an abstract class is permitted to map interface methods onto

abstract methods. For example

Here, the implementation of IMethods  maps F  and G  onto abstract methods, which must be overridden in non-

abstract classes that derive from C .

Note that explicit interface member implementations cannot be abstract, but explicit interface member

implementations are of course permitted to call abstract methods. For example



Here, non-abstract classes that derive from C  would be required to override FF  and GG , thus providing the

actual implementation of IMethods .
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enum Color
{
    Red,
    Green,
    Blue
}

Enum declarations

enum_declaration
    : attributes? enum_modifier* 'enum' identifier enum_base? enum_body ';'?
    ;

enum_base
    : ':' integral_type
    ;

enum_body
    : '{' enum_member_declarations? '}'
    | '{' enum_member_declarations ',' '}'
    ;

enum Color: long
{
    Red,
    Green,
    Blue
}

An enum typeenum type is a distinct value type (Value types) that declares a set of named constants.

The example

declares an enum type named Color  with members Red , Green , and Blue .

An enum declaration declares a new enum type. An enum declaration begins with the keyword enum , and defines

the name, accessibility, underlying type, and members of the enum.

Each enum type has a corresponding integral type called the underlying typeunderlying type of the enum type. This underlying

type must be able to represent all the enumerator values defined in the enumeration. An enum declaration may

explicitly declare an underlying type of byte , sbyte , short , ushort , int , uint , long  or ulong . Note that 

char  cannot be used as an underlying type. An enum declaration that does not explicitly declare an underlying

type has an underlying type of int .

The example

declares an enum with an underlying type of long . A developer might choose to use an underlying type of long ,

as in the example, to enable the use of values that are in the range of long  but not in the range of int , or to

preserve this option for the future.

https://github.com/dotnet/csharplang/blob/master/spec/enums.md


        

Enum modifiers

enum_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    ;

Enum members

enum_member_declarations
    : enum_member_declaration (',' enum_member_declaration)*
    ;

enum_member_declaration
    : attributes? identifier ('=' constant_expression)?
    ;

enum Color: uint
{
    Red = -1,
    Green = -2,
    Blue = -3
}

enum Color 
{
    Red,
    Green,
    Blue,

    Max = Blue
}

An enum_declaration may optionally include a sequence of enum modifiers:

It is a compile-time error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (Class modifiers).

Note, however, that the abstract  and sealed  modifiers are not permitted in an enum declaration. Enums cannot

be abstract and do not permit derivation.

The body of an enum type declaration defines zero or more enum members, which are the named constants of the

enum type. No two enum members can have the same name.

Each enum member has an associated constant value. The type of this value is the underlying type for the

containing enum. The constant value for each enum member must be in the range of the underlying type for the

enum. The example

results in a compile-time error because the constant values -1 , -2 , and -3  are not in the range of the

underlying integral type uint .

Multiple enum members may share the same associated value. The example

shows an enum in which two enum members -- Blue  and Max  -- have the same associated value.



using System;

enum Color
{
    Red,
    Green = 10,
    Blue
}

class Test
{
    static void Main() {
        Console.WriteLine(StringFromColor(Color.Red));
        Console.WriteLine(StringFromColor(Color.Green));
        Console.WriteLine(StringFromColor(Color.Blue));
    }

    static string StringFromColor(Color c) {
        switch (c) {
            case Color.Red: 
                return String.Format("Red = {0}", (int) c);

            case Color.Green:
                return String.Format("Green = {0}", (int) c);

            case Color.Blue:
                return String.Format("Blue = {0}", (int) c);

            default:
                return "Invalid color";
        }
    }
}

Red = 0
Green = 10
Blue = 11

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the enum

member has a constant_expression initializer, the value of that constant expression, implicitly converted to the

underlying type of the enum, is the associated value of the enum member. If the declaration of the enum member

has no initializer, its associated value is set implicitly, as follows:

If the enum member is the first enum member declared in the enum type, its associated value is zero.

Otherwise, the associated value of the enum member is obtained by increasing the associated value of the

textually preceding enum member by one. This increased value must be within the range of values that can be

represented by the underlying type, otherwise a compile-time error occurs.

The example

prints out the enum member names and their associated values. The output is:

for the following reasons:

the enum member Red  is automatically assigned the value zero (since it has no initializer and is the first enum

member);

the enum member Green  is explicitly given the value 10 ;

and the enum member Blue  is automatically assigned the value one greater than the member that textually

precedes it.



enum Circular
{
    A = B,
    B
}

The System.Enum type

Enum values and operations

The associated value of an enum member may not, directly or indirectly, use the value of its own associated enum

member. Other than this circularity restriction, enum member initializers may freely refer to other enum member

initializers, regardless of their textual position. Within an enum member initializer, values of other enum members

are always treated as having the type of their underlying type, so that casts are not necessary when referring to

other enum members.

The example

results in a compile-time error because the declarations of A  and B  are circular. A  depends on B  explicitly, and 

B  depends on A  implicitly.

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of an

enum member is the body of its containing enum type. Within that scope, enum members can be referred to by

their simple name. From all other code, the name of an enum member must be qualified with the name of its

enum type. Enum members do not have any declared accessibility -- an enum member is accessible if its

containing enum type is accessible.

The type System.Enum  is the abstract base class of all enum types (this is distinct and different from the underlying

type of the enum type), and the members inherited from System.Enum  are available in any enum type. A boxing

conversion (Boxing conversions) exists from any enum type to System.Enum , and an unboxing conversion

(Unboxing conversions) exists from System.Enum  to any enum type.

Note that System.Enum  is not itself an enum_type. Rather, it is a class_type from which all enum_types are derived.

The type System.Enum  inherits from the type System.ValueType  (The System.ValueType type), which, in turn,

inherits from type object . At run-time, a value of type System.Enum  can be null  or a reference to a boxed value

of any enum type.

Each enum type defines a distinct type; an explicit enumeration conversion (Explicit enumeration conversions) is

required to convert between an enum type and an integral type, or between two enum types. The set of values that

an enum type can take on is not limited by its enum members. In particular, any value of the underlying type of an

enum can be cast to the enum type, and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers: see

Enum members). The value of an enum member declared in enum type E  with associated value v  is (E)v .

The following operators can be used on values of enum types: == , != , < , > , <= , >=  (Enumeration comparison

operators), binary +  (Addition operator), binary -  (Subtraction operator), ^ , & , |  (Enumeration logical

operators), ~  (Bitwise complement operator), ++  and --  (Postfix increment and decrement operators and Prefix

increment and decrement operators).

Every enum type automatically derives from the class System.Enum  (which, in turn, derives from System.ValueType

and object ). Thus, inherited methods and properties of this class can be used on values of an enum type.
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Delegate declarations

delegate_declaration
    : attributes? delegate_modifier* 'delegate' return_type
      identifier variant_type_parameter_list?
      '(' formal_parameter_list? ')' type_parameter_constraints_clause* ';'
    ;

delegate_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | delegate_modifier_unsafe
    ;

Delegates enable scenarios that other languages—such as C++, Pascal, and Modula -- have addressed with

function pointers. Unlike C++ function pointers, however, delegates are fully object oriented, and unlike C++

pointers to member functions, delegates encapsulate both an object instance and a method.

A delegate declaration defines a class that is derived from the class System.Delegate . A delegate instance

encapsulates an invocation list, which is a list of one or more methods, each of which is referred to as a callable

entity. For instance methods, a callable entity consists of an instance and a method on that instance. For static

methods, a callable entity consists of just a method. Invoking a delegate instance with an appropriate set of

arguments causes each of the delegate's callable entities to be invoked with the given set of arguments.

An interesting and useful property of a delegate instance is that it does not know or care about the classes of the

methods it encapsulates; all that matters is that those methods be compatible (Delegate declarations) with the

delegate's type. This makes delegates perfectly suited for "anonymous" invocation.

A delegate_declaration is a type_declaration (Type declarations) that declares a new delegate type.

It is a compile-time error for the same modifier to appear multiple times in a delegate declaration.

The new  modifier is only permitted on delegates declared within another type, in which case it specifies that such

a delegate hides an inherited member by the same name, as described in The new modifier.

The public , protected , internal , and private  modifiers control the accessibility of the delegate type.

Depending on the context in which the delegate declaration occurs, some of these modifiers may not be permitted

(Declared accessibility).

The delegate's type name is identifier.

The optional formal_parameter_list specifies the parameters of the delegate, and return_type indicates the return

type of the delegate.

The optional variant_type_parameter_list (Variant type parameter lists) specifies the type parameters to the

delegate itself.

The return type of a delegate type must be either void , or output-safe (Variance safety).

https://github.com/dotnet/csharplang/blob/master/spec/delegates.md


delegate int D1(int i, double d);

class A
{
    public static int M1(int a, double b) {...}
}

class B
{
    delegate int D2(int c, double d);
    public static int M1(int f, double g) {...}
    public static void M2(int k, double l) {...}
    public static int M3(int g) {...}
    public static void M4(int g) {...}
}

delegate bool Predicate<T>(T value);

class X
{
    static bool F(int i) {...}
    static bool G(string s) {...}
}

All the formal parameter types of a delegate type must be input-safe. Additionally, any out  or ref  parameter

types must also be output-safe. Note that even out  parameters are required to be input-safe, due to a limitation

of the underlying execution platform.

Delegate types in C# are name equivalent, not structurally equivalent. Specifically, two different delegate types

that have the same parameter lists and return type are considered different delegate types. However, instances of

two distinct but structurally equivalent delegate types may compare as equal (Delegate equality operators).

For example:

The methods A.M1  and B.M1  are compatible with both the delegate types D1  and D2  , since they have the

same return type and parameter list; however, these delegate types are two different types, so they are not

interchangeable. The methods B.M2 , B.M3 , and B.M4  are incompatible with the delegate types D1  and D2 ,

since they have different return types or parameter lists.

Like other generic type declarations, type arguments must be given to create a constructed delegate type. The

parameter types and return type of a constructed delegate type are created by substituting, for each type

parameter in the delegate declaration, the corresponding type argument of the constructed delegate type. The

resulting return type and parameter types are used in determining what methods are compatible with a

constructed delegate type. For example:

The method X.F  is compatible with the delegate type Predicate<int>  and the method X.G  is compatible with

the delegate type Predicate<string>  .

The only way to declare a delegate type is via a delegate_declaration. A delegate type is a class type that is derived

from System.Delegate . Delegate types are implicitly sealed , so it is not permissible to derive any type from a

delegate type. It is also not permissible to derive a non-delegate class type from System.Delegate . Note that 

System.Delegate  is not itself a delegate type; it is a class type from which all delegate types are derived.

C# provides special syntax for delegate instantiation and invocation. Except for instantiation, any operation that

can be applied to a class or class instance can also be applied to a delegate class or instance, respectively. In

particular, it is possible to access members of the System.Delegate  type via the usual member access syntax.

The set of methods encapsulated by a delegate instance is called an invocation list. When a delegate instance is



   

delegate void D(int x);

class C
{
    public static void M1(int i) {...}
    public static void M2(int i) {...}

}

class Test
{
    static void Main() {
        D cd1 = new D(C.M1);      // M1
        D cd2 = new D(C.M2);      // M2
        D cd3 = cd1 + cd2;        // M1 + M2
        D cd4 = cd3 + cd1;        // M1 + M2 + M1
        D cd5 = cd4 + cd3;        // M1 + M2 + M1 + M1 + M2
    }

}

Delegate compatibility

Delegate instantiation

created (Delegate compatibility) from a single method, it encapsulates that method, and its invocation list contains

only one entry. However, when two non-null delegate instances are combined, their invocation lists are

concatenated -- in the order left operand then right operand -- to form a new invocation list, which contains two

or more entries.

Delegates are combined using the binary +  (Addition operator) and +=  operators (Compound assignment). A

delegate can be removed from a combination of delegates, using the binary -  (Subtraction operator) and -=

operators (Compound assignment). Delegates can be compared for equality (Delegate equality operators).

The following example shows the instantiation of a number of delegates, and their corresponding invocation lists:

When cd1  and cd2  are instantiated, they each encapsulate one method. When cd3  is instantiated, it has an

invocation list of two methods, M1  and M2 , in that order. cd4 's invocation list contains M1 , M2 , and M1 , in that

order. Finally, cd5 's invocation list contains M1 , M2 , M1 , M1 , and M2 , in that order. For more examples of

combining (as well as removing) delegates, see Delegate invocation.

A method or delegate M  is compatiblecompatible with a delegate type D  if all of the following are true:

D  and M  have the same number of parameters, and each parameter in D  has the same ref  or out

modifiers as the corresponding parameter in M .

For each value parameter (a parameter with no ref  or out  modifier), an identity conversion (Identity

conversion) or implicit reference conversion (Implicit reference conversions) exists from the parameter type in 

D  to the corresponding parameter type in M .

For each ref  or out  parameter, the parameter type in D  is the same as the parameter type in M .

An identity or implicit reference conversion exists from the return type of M  to the return type of D .

An instance of a delegate is created by a delegate_creation_expression (Delegate creation expressions) or a

conversion to a delegate type. The newly created delegate instance then refers to either :

The static method referenced in the delegate_creation_expression, or

The target object (which cannot be null ) and instance method referenced in the

delegate_creation_expression, or



   

delegate void D(int x);

class C
{
    public static void M1(int i) {...}
    public void M2(int i) {...}
}

class Test
{
    static void Main() { 
        D cd1 = new D(C.M1);        // static method
        C t = new C();
        D cd2 = new D(t.M2);        // instance method
        D cd3 = new D(cd2);        // another delegate
    }
}

Delegate invocation

Another delegate.

For example:

Once instantiated, delegate instances always refer to the same target object and method. Remember, when two

delegates are combined, or one is removed from another, a new delegate results with its own invocation list; the

invocation lists of the delegates combined or removed remain unchanged.

C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation list

contains one entry is invoked, it invokes the one method with the same arguments it was given, and returns the

same value as the referred to method. (See Delegate invocations for detailed information on delegate invocation.)

If an exception occurs during the invocation of such a delegate, and that exception is not caught within the method

that was invoked, the search for an exception catch clause continues in the method that called the delegate, as if

that method had directly called the method to which that delegate referred.

Invocation of a delegate instance whose invocation list contains multiple entries proceeds by invoking each of the

methods in the invocation list, synchronously, in order. Each method so called is passed the same set of arguments

as was given to the delegate instance. If such a delegate invocation includes reference parameters (Reference

parameters), each method invocation will occur with a reference to the same variable; changes to that variable by

one method in the invocation list will be visible to methods further down the invocation list. If the delegate

invocation includes output parameters or a return value, their final value will come from the invocation of the last

delegate in the list.

If an exception occurs during processing of the invocation of such a delegate, and that exception is not caught

within the method that was invoked, the search for an exception catch clause continues in the method that called

the delegate, and any methods further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null results in an exception of type 

System.NullReferenceException .

The following example shows how to instantiate, combine, remove, and invoke delegates:



using System;

delegate void D(int x);

class C
{
    public static void M1(int i) {
        Console.WriteLine("C.M1: " + i);
    }

    public static void M2(int i) {
        Console.WriteLine("C.M2: " + i);
    }

    public void M3(int i) {
        Console.WriteLine("C.M3: " + i);
    }
}

class Test
{
    static void Main() { 
        D cd1 = new D(C.M1);
        cd1(-1);                // call M1

        D cd2 = new D(C.M2);
        cd2(-2);                // call M2

        D cd3 = cd1 + cd2;
        cd3(10);                // call M1 then M2

        cd3 += cd1;
        cd3(20);                // call M1, M2, then M1

        C c = new C();
        D cd4 = new D(c.M3);
        cd3 += cd4;
        cd3(30);                // call M1, M2, M1, then M3

        cd3 -= cd1;             // remove last M1
        cd3(40);                // call M1, M2, then M3

        cd3 -= cd4;
        cd3(50);                // call M1 then M2

        cd3 -= cd2;
        cd3(60);                // call M1

        cd3 -= cd2;             // impossible removal is benign
        cd3(60);                // call M1

        cd3 -= cd1;             // invocation list is empty so cd3 is null

        cd3(70);                // System.NullReferenceException thrown

        cd3 -= cd1;             // impossible removal is benign
    }
}

As shown in the statement cd3 += cd1; , a delegate can be present in an invocation list multiple times. In this case,

it is simply invoked once per occurrence. In an invocation list such as this, when that delegate is removed, the last

occurrence in the invocation list is the one actually removed.

Immediately prior to the execution of the final statement, cd3 -= cd1; , the delegate cd3  refers to an empty

invocation list. Attempting to remove a delegate from an empty list (or to remove a non-existent delegate from a



C.M1: -1
C.M2: -2
C.M1: 10
C.M2: 10
C.M1: 20
C.M2: 20
C.M1: 20
C.M1: 30
C.M2: 30
C.M1: 30
C.M3: 30
C.M1: 40
C.M2: 40
C.M3: 40
C.M1: 50
C.M2: 50
C.M1: 60
C.M1: 60

non-empty list) is not an error.

The output produced is:
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Causes of exceptions

The System.Exception class

How exceptions are handled

Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and application

level error conditions. The exception mechanism in C# is quite similar to that of C++, with a few important

differences:

In C#, all exceptions must be represented by an instance of a class type derived from System.Exception . In C++,

any value of any type can be used to represent an exception.

In C#, a finally block (The try statement) can be used to write termination code that executes in both normal

execution and exceptional conditions. Such code is difficult to write in C++ without duplicating code.

In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences have well defined

exception classes and are on a par with application-level error conditions.

Exception can be thrown in two different ways.

A throw  statement (The throw statement) throws an exception immediately and unconditionally. Control never

reaches the statement immediately following the throw .

Certain exceptional conditions that arise during the processing of C# statements and expression cause an

exception in certain circumstances when the operation cannot be completed normally. For example, an integer

division operation (Division operator) throws a System.DivideByZeroException  if the denominator is zero. See

Common Exception Classes for a list of the various exceptions that can occur in this way.

The System.Exception  class is the base type of all exceptions. This class has a few notable properties that all

exceptions share:

Message  is a read-only property of type string  that contains a human-readable description of the reason for

the exception.

InnerException  is a read-only property of type Exception . If its value is non-null, it refers to the exception that

caused the current exception—that is, the current exception was raised in a catch block handling the 

InnerException . Otherwise, its value is null, indicating that this exception was not caused by another exception.

The number of exception objects chained together in this manner can be arbitrary.

The value of these properties can be specified in calls to the instance constructor for System.Exception .

Exceptions are handled by a try  statement (The try statement).

When an exception occurs, the system searches for the nearest catch  clause that can handle the exception, as

determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing 

try  statement, and the associated catch clauses of the try statement are considered in order. If that fails, the

method that called the current method is searched for a lexically enclosing try  statement that encloses the point

of the call to the current method. This search continues until a catch  clause is found that can handle the current

exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the

exception being thrown. A catch  clause that doesn't name an exception class can handle any exception.

https://github.com/dotnet/csharplang/blob/master/spec/exceptions.md


 Common Exception Classes

System.ArithmeticException A base class for exceptions that occur during arithmetic
operations, such as System.DivideByZeroException  and 

System.OverflowException .

System.ArrayTypeMismatchException Thrown when a store into an array fails because the actual
type of the stored element is incompatible with the actual
type of the array.

System.DivideByZeroException Thrown when an attempt to divide an integral value by zero
occurs.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an index that is
less than zero or outside the bounds of the array.

System.InvalidCastException Thrown when an explicit conversion from a base type or
interface to a derived type fails at run time.

System.NullReferenceException Thrown when a null  reference is used in a way that causes

the referenced object to be required.

System.OutOfMemoryException Thrown when an attempt to allocate memory (via new ) fails.

System.OverflowException Thrown when an arithmetic operation in a checked  context

overflows.

System.StackOverflowException Thrown when the execution stack is exhausted by having too
many pending method calls; typically indicative of very deep
or unbounded recursion.

System.TypeInitializationException Thrown when a static constructor throws an exception, and no
catch  clauses exists to catch it.

Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch

clause. Before execution of the catch clause begins, the system first executes, in order, any finally  clauses that

were associated with try statements more nested that than the one that caught the exception.

If no matching catch clause is found, one of two things occurs:

If the search for a matching catch clause reaches a static constructor (Static constructors) or static field initializer,

then a System.TypeInitializationException  is thrown at the point that triggered the invocation of the static

constructor. The inner exception of the System.TypeInitializationException  contains the exception that was

originally thrown.

If the search for matching catch clauses reaches the code that initially started the thread, then execution of the

thread is terminated. The impact of such termination is implementation-defined.

Exceptions that occur during destructor execution are worth special mention. If an exception occurs during

destructor execution, and that exception is not caught, then the execution of that destructor is terminated and the

destructor of the base class (if any) is called. If there is no base class (as in the case of the object  type) or if there is

no base class destructor, then the exception is discarded.

The following exceptions are thrown by certain C# operations.
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Attribute classes

Attribute usageAttribute usage

using System;

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute: Attribute 
{
    ...
}

[Simple] class Class1 {...}

[Simple] interface Interface1 {...}

Much of the C# language enables the programmer to specify declarative information about the entities defined

in the program. For example, the accessibility of a method in a class is specified by decorating it with the

method_modifiers public , protected , internal , and private .

C# enables programmers to invent new kinds of declarative information, called attr ibutesattr ibutes . Programmers can

then attach attributes to various program entities, and retrieve attribute information in a run-time

environment. For instance, a framework might define a HelpAttribute  attribute that can be placed on certain

program elements (such as classes and methods) to provide a mapping from those program elements to their

documentation.

Attributes are defined through the declaration of attribute classes (Attribute classes), which may have

positional and named parameters (Positional and named parameters). Attributes are attached to entities in a C#

program using attribute specifications (Attribute specification), and can be retrieved at run-time as attribute

instances (Attribute instances).

A class that derives from the abstract class System.Attribute , whether directly or indirectly, is an attr ibuteattr ibute

classclass . The declaration of an attribute class defines a new kind of attr ibuteattr ibute that can be placed on a declaration.

By convention, attribute classes are named with a suffix of Attribute . Uses of an attribute may either include

or omit this suffix.

The attribute AttributeUsage  (The AttributeUsage attribute) is used to describe how an attribute class can be

used.

AttributeUsage  has a positional parameter (Positional and named parameters) that enables an attribute class

to specify the kinds of declarations on which it can be used. The example

defines an attribute class named SimpleAttribute  that can be placed on class_declarations and

interface_declarations only. The example

shows several uses of the Simple  attribute. Although this attribute is defined with the name SimpleAttribute ,

when this attribute is used, the Attribute  suffix may be omitted, resulting in the short name Simple . Thus, the

example above is semantically equivalent to the following:

https://github.com/dotnet/csharplang/blob/master/spec/attributes.md


[SimpleAttribute] class Class1 {...}

[SimpleAttribute] interface Interface1 {...}

using System;

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: Attribute
{
    private string name;

    public AuthorAttribute(string name) {
        this.name = name;
    }

    public string Name {
        get { return name; }
    }
}

[Author("Brian Kernighan"), Author("Dennis Ritchie")] 
class Class1
{
    ...
}

using System;

class X: Attribute {...}

AttributeUsage  has a named parameter (Positional and named parameters) called AllowMultiple , which

indicates whether the attribute can be specified more than once for a given entity. If AllowMultiple  for an

attribute class is true, then that attribute class is a multi-use attr ibute classmulti-use attr ibute class , and can be specified more than

once on an entity. If AllowMultiple  for an attribute class is false or it is unspecified, then that attribute class is a

single-use attr ibute classsingle-use attr ibute class , and can be specified at most once on an entity.

The example

defines a multi-use attribute class named AuthorAttribute . The example

shows a class declaration with two uses of the Author  attribute.

AttributeUsage  has another named parameter called Inherited , which indicates whether the attribute, when

specified on a base class, is also inherited by classes that derive from that base class. If Inherited  for an

attribute class is true, then that attribute is inherited. If Inherited  for an attribute class is false then that

attribute is not inherited. If it is unspecified, its default value is true.

An attribute class X  not having an AttributeUsage  attribute attached to it, as in

is equivalent to the following:



      

  

using System;

[AttributeUsage(
    AttributeTargets.All,
    AllowMultiple = false,
    Inherited = true)
]
class X: Attribute {...}

Positional and named parametersPositional and named parameters

using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpAttribute: Attribute
{
    public HelpAttribute(string url) {        // Positional parameter
        ...
    }

    public string Topic {                     // Named parameter
        get {...}
        set {...}
    }

    public string Url {
        get {...}
    }
}

[Help("http://www.mycompany.com/.../Class1.htm")]
class Class1
{
    ...
}

[Help("http://www.mycompany.com/.../Misc.htm", Topic = "Class2")]
class Class2
{
    ...
}

Attribute parameter typesAttribute parameter types

Attribute classes can have positional parameterspositional parameters  and named parametersnamed parameters . Each public instance constructor

for an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-static

public read-write field and property for an attribute class defines a named parameter for the attribute class.

The example

defines an attribute class named HelpAttribute  that has one positional parameter, url , and one named

parameter, Topic . Although it is non-static and public, the property Url  does not define a named parameter,

since it is not read-write.

This attribute class might be used as follows:

The types of positional and named parameters for an attribute class are limited to the attr ibute parameterattr ibute parameter

typestypes , which are:

One of the following types: bool , byte , char , double , float , int , long , sbyte , short , string , uint ,

ulong , ushort .



    Attribute specification

global_attributes
    : global_attribute_section+
    ;

global_attribute_section
    : '[' global_attribute_target_specifier attribute_list ']'
    | '[' global_attribute_target_specifier attribute_list ',' ']'
    ;

global_attribute_target_specifier
    : global_attribute_target ':'
    ;

global_attribute_target
    : 'assembly'
    | 'module'
    ;

attributes
    : attribute_section+
    ;

attribute_section
    : '[' attribute_target_specifier? attribute_list ']'
    | '[' attribute_target_specifier? attribute_list ',' ']'
    ;

attribute_target_specifier
    : attribute_target ':'
    ;

attribute_target
    : 'field'
    | 'event'
    | 'method'
    | 'param'
    | 'property'
    | 'return'
    | 'type'

The type object .

The type System.Type .

An enum type, provided it has public accessibility and the types in which it is nested (if any) also have public

accessibility (Attribute specification).

Single-dimensional arrays of the above types.

A constructor argument or public field which does not have one of these types, cannot be used as a

positional or named parameter in an attribute specification.

Attr ibute specificationAttr ibute specification is the application of a previously defined attribute to a declaration. An attribute is a

piece of additional declarative information that is specified for a declaration. Attributes can be specified at

global scope (to specify attributes on the containing assembly or module) and for type_declarations (Type

declarations), class_member_declarations (Type parameter constraints), interface_member_declarations

(Interface members), struct_member_declarations (Struct members), enum_member_declarations (Enum

members), accessor_declarations (Accessors), event_accessor_declarations (Field-like events), and

formal_parameter_lists (Method parameters).

Attributes are specified in attr ibute sectionsattr ibute sections . An attribute section consists of a pair of square brackets, which

surround a comma-separated list of one or more attributes. The order in which attributes are specified in such

a list, and the order in which sections attached to the same program entity are arranged, is not significant. For

instance, the attribute specifications [A][B] , [B][A] , [A,B] , and [B,A]  are equivalent.



    | 'type'
    ;

attribute_list
    : attribute (',' attribute)*
    ;

attribute
    : attribute_name attribute_arguments?
    ;

attribute_name
    : type_name
    ;

attribute_arguments
    : '(' positional_argument_list? ')'
    | '(' positional_argument_list ',' named_argument_list ')'
    | '(' named_argument_list ')'
    ;

positional_argument_list
    : positional_argument (',' positional_argument)*
    ;

positional_argument
    : attribute_argument_expression
    ;

named_argument_list
    : named_argument (','  named_argument)*
    ;

named_argument
    : identifier '=' attribute_argument_expression
    ;

attribute_argument_expression
    : expression
    ;

class Class1 {}

[Class1] class Class2 {}    // Error

An attribute consists of an attribute_name and an optional list of positional and named arguments. The

positional arguments (if any) precede the named arguments. A positional argument consists of an

attribute_argument_expression; a named argument consists of a name, followed by an equal sign, followed by

an attribute_argument_expression, which, together, are constrained by the same rules as simple assignment.

The order of named arguments is not significant.

The attribute_name identifies an attribute class. If the form of attribute_name is type_name then this name

must refer to an attribute class. Otherwise, a compile-time error occurs. The example

results in a compile-time error because it attempts to use Class1  as an attribute class when Class1  is not an

attribute class.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly

specify the target by including an attribute_target_specifier. When an attribute is placed at the global level, a

global_attribute_target_specifier is required. In all other locations, a reasonable default is applied, but an

attribute_target_specifier can be used to affirm or override the default in certain ambiguous cases (or to just

affirm the default in non-ambiguous cases). Thus, typically, attribute_target_specifiers can be omitted except at



[type: Author("Brian Kernighan")]
class Class1 {}

[Author("Dennis Ritchie")]
class Class2 {}

the global level. The potentially ambiguous contexts are resolved as follows:

An attribute specified at global scope can apply either to the target assembly or the target module. No

default exists for this context, so an attribute_target_specifier is always required in this context. The presence

of the assembly  attribute_target_specifier indicates that the attribute applies to the target assembly; the

presence of the module  attribute_target_specifier indicates that the attribute applies to the target module.

An attribute specified on a delegate declaration can apply either to the delegate being declared or to its

return value. In the absence of an attribute_target_specifier, the attribute applies to the delegate. The

presence of the type  attribute_target_specifier indicates that the attribute applies to the delegate; the

presence of the return  attribute_target_specifier indicates that the attribute applies to the return value.

An attribute specified on a method declaration can apply either to the method being declared or to its

return value. In the absence of an attribute_target_specifier, the attribute applies to the method. The

presence of the method  attribute_target_specifier indicates that the attribute applies to the method; the

presence of the return  attribute_target_specifier indicates that the attribute applies to the return value.

An attribute specified on an operator declaration can apply either to the operator being declared or to its

return value. In the absence of an attribute_target_specifier, the attribute applies to the operator. The

presence of the method  attribute_target_specifier indicates that the attribute applies to the operator ; the

presence of the return  attribute_target_specifier indicates that the attribute applies to the return value.

An attribute specified on an event declaration that omits event accessors can apply to the event being

declared, to the associated field (if the event is not abstract), or to the associated add and remove methods.

In the absence of an attribute_target_specifier, the attribute applies to the event. The presence of the event

attribute_target_specifier indicates that the attribute applies to the event; the presence of the field

attribute_target_specifier indicates that the attribute applies to the field; and the presence of the method

attribute_target_specifier indicates that the attribute applies to the methods.

An attribute specified on a get accessor declaration for a property or indexer declaration can apply either to

the associated method or to its return value. In the absence of an attribute_target_specifier, the attribute

applies to the method. The presence of the method  attribute_target_specifier indicates that the attribute

applies to the method; the presence of the return  attribute_target_specifier indicates that the attribute

applies to the return value.

An attribute specified on a set accessor for a property or indexer declaration can apply either to the

associated method or to its lone implicit parameter. In the absence of an attribute_target_specifier, the

attribute applies to the method. The presence of the method  attribute_target_specifier indicates that the

attribute applies to the method; the presence of the param  attribute_target_specifier indicates that the

attribute applies to the parameter ; the presence of the return  attribute_target_specifier indicates that the

attribute applies to the return value.

An attribute specified on an add or remove accessor declaration for an event declaration can apply either to

the associated method or to its lone parameter. In the absence of an attribute_target_specifier, the attribute

applies to the method. The presence of the method  attribute_target_specifier indicates that the attribute

applies to the method; the presence of the param  attribute_target_specifier indicates that the attribute

applies to the parameter ; the presence of the return  attribute_target_specifier indicates that the attribute

applies to the return value.

In other contexts, inclusion of an attribute_target_specifier is permitted but unnecessary. For instance, a class

declaration may either include or omit the specifier type :

It is an error to specify an invalid attribute_target_specifier. For instance, the specifier param  cannot be used on



[param: Author("Brian Kernighan")]        // Error
class Class1 {}

using System;

[AttributeUsage(AttributeTargets.All)]
public class X: Attribute
{}

[AttributeUsage(AttributeTargets.All)]
public class XAttribute: Attribute
{}

[X]                     // Error: ambiguity
class Class1 {}

[XAttribute]            // Refers to XAttribute
class Class2 {}

[@X]                    // Refers to X
class Class3 {}

[@XAttribute]           // Refers to XAttribute
class Class4 {}

using System;

[AttributeUsage(AttributeTargets.All)]
public class XAttribute: Attribute
{}

[X]                     // Refers to XAttribute
class Class1 {}

[XAttribute]            // Refers to XAttribute
class Class2 {}

[@X]                    // Error: no attribute named "X"
class Class3 {}

a class declaration:

By convention, attribute classes are named with a suffix of Attribute . An attribute_name of the form

type_name may either include or omit this suffix. If an attribute class is found both with and without this suffix,

an ambiguity is present, and a compile-time error results. If the attribute_name is spelled such that its right-

most identifier is a verbatim identifier (Identifiers), then only an attribute without a suffix is matched, thus

enabling such an ambiguity to be resolved. The example

shows two attribute classes named X  and XAttribute . The attribute [X]  is ambiguous, since it could refer to

either X  or XAttribute . Using a verbatim identifier allows the exact intent to be specified in such rare cases.

The attribute [XAttribute]  is not ambiguous (although it would be if there was an attribute class named 

XAttributeAttribute !). If the declaration for class X  is removed, then both attributes refer to the attribute

class named XAttribute , as follows:

It is a compile-time error to use a single-use attribute class more than once on the same entity. The example



using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute: Attribute
{
    string value;

    public HelpStringAttribute(string value) {
        this.value = value;
    }

    public string Value {
        get {...}
    }
}

[HelpString("Description of Class1")]
[HelpString("Another description of Class1")]
public class Class1 {}

using System;

[AttributeUsage(AttributeTargets.Class)]
public class TestAttribute: Attribute
{
    public int P1 {
        get {...}
        set {...}
    }

    public Type P2 {
        get {...}
        set {...}
    }

    public object P3 {
        get {...}
        set {...}
    }
}

[Test(P1 = 1234, P3 = new int[] {1, 3, 5}, P2 = typeof(float))]
class MyClass {}

results in a compile-time error because it attempts to use HelpString , which is a single-use attribute class,

more than once on the declaration of Class1 .

An expression E  is an attribute_argument_expression if all of the following statements are true:

The type of E  is an attribute parameter type (Attribute parameter types).

At compile-time, the value of E  can be resolved to one of the following:

A constant value.

A System.Type  object.

A one-dimensional array of attribute_argument_expressions.

For example:

A typeof_expression (The typeof operator) used as an attribute argument expression can reference a non-

generic type, a closed constructed type, or an unbound generic type, but it cannot reference an open type. This

is to ensure that the expression can be resolved at compile-time.



 

class A: Attribute
{
    public A(Type t) {...}
}

class G<T>
{
    [A(typeof(T))] T t;                  // Error, open type in attribute
}

class X
{
    [A(typeof(List<int>))] int x;        // Ok, closed constructed type
    [A(typeof(List<>))] int y;           // Ok, unbound generic type
}

Attribute instances

Compilation of an attributeCompilation of an attribute

Run-time retrieval of an attribute instanceRun-time retrieval of an attribute instance

An attr ibute instanceattr ibute instance is an instance that represents an attribute at run-time. An attribute is defined with an

attribute class, positional arguments, and named arguments. An attribute instance is an instance of the

attribute class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the

following sections.

The compilation of an attribute with attribute class T , positional_argument_list P  and named_argument_list 

N , consists of the following steps:

Follow the compile-time processing steps for compiling an object_creation_expression of the form 

new T(P) . These steps either result in a compile-time error, or determine an instance constructor C  on T

that can be invoked at run-time.

If C  does not have public accessibility, then a compile-time error occurs.

For each named_argument Arg  in N :

Keep the following information for run-time instantiation of the attribute: the attribute class T , the instance

constructor C  on T , the positional_argument_list P  and the named_argument_list N .

Let Name  be the identifier of the named_argument Arg .

Name  must identify a non-static read-write public field or property on T . If T  has no such field or

property, then a compile-time error occurs.

Compilation of an attribute yields an attribute class T , an instance constructor C  on T , a

positional_argument_list P , and a named_argument_list N . Given this information, an attribute instance can

be retrieved at run-time using the following steps:

Follow the run-time processing steps for executing an object_creation_expression of the form new T(P) ,

using the instance constructor C  as determined at compile-time. These steps either result in an exception,

or produce an instance O  of T .

For each named_argument Arg  in N , in order :

Let Name  be the identifier of the named_argument Arg . If Name  does not identify a non-static public

read-write field or property on O , then an exception is thrown.

Let Value  be the result of evaluating the attribute_argument_expression of Arg .

If Name  identifies a field on O , then set this field to Value .

Otherwise, Name  identifies a property on O . Set this property to Value .



    

  

Reserved attributes

The AttributeUsage attributeThe AttributeUsage attribute

namespace System
{
    [AttributeUsage(AttributeTargets.Class)]
    public class AttributeUsageAttribute: Attribute
    {
        public AttributeUsageAttribute(AttributeTargets validOn) {...}
        public virtual bool AllowMultiple { get {...} set {...} }
        public virtual bool Inherited { get {...} set {...} }
        public virtual AttributeTargets ValidOn { get {...} }
    }

    public enum AttributeTargets
    {
        Assembly     = 0x0001,
        Module       = 0x0002,
        Class        = 0x0004,
        Struct       = 0x0008,
        Enum         = 0x0010,
        Constructor  = 0x0020,
        Method       = 0x0040,
        Property     = 0x0080,
        Field        = 0x0100,
        Event        = 0x0200,
        Interface    = 0x0400,
        Parameter    = 0x0800,
        Delegate     = 0x1000,
        ReturnValue  = 0x2000,

        All = Assembly | Module | Class | Struct | Enum | Constructor | 
            Method | Property | Field | Event | Interface | Parameter | 
            Delegate | ReturnValue
    }
}

The Conditional attributeThe Conditional attribute

The result is O , an instance of the attribute class T  that has been initialized with the

positional_argument_list P  and the named_argument_list N .

A small number of attributes affect the language in some way. These attributes include:

System.AttributeUsageAttribute  (The AttributeUsage attribute), which is used to describe the ways in which

an attribute class can be used.

System.Diagnostics.ConditionalAttribute  (The Conditional attribute), which is used to define conditional

methods.

System.ObsoleteAttribute  (The Obsolete attribute), which is used to mark a member as obsolete.

System.Runtime.CompilerServices.CallerLineNumberAttribute , 

System.Runtime.CompilerServices.CallerFilePathAttribute  and 

System.Runtime.CompilerServices.CallerMemberNameAttribute  (Caller info attributes), which are used to supply

information about the calling context to optional parameters.

The attribute AttributeUsage  is used to describe the manner in which the attribute class can be used.

A class that is decorated with the AttributeUsage  attribute must derive from System.Attribute , either directly

or indirectly. Otherwise, a compile-time error occurs.

The attribute Conditional  enables the definition of conditional methodsconditional methods  and conditional attr ibuteconditional attr ibute



namespace System.Diagnostics
{
    [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class, AllowMultiple = true)]
    public class ConditionalAttribute: Attribute
    {
        public ConditionalAttribute(string conditionString) {...}
        public string ConditionString { get {...} }
    }
}

Conditional methodsConditional methods

#define DEBUG

using System;
using System.Diagnostics;

class Class1 
{
    [Conditional("DEBUG")]
    public static void M() {
        Console.WriteLine("Executed Class1.M");
    }
}

class Class2
{
    public static void Test() {
        Class1.M();
    }
}

classesclasses .

A method decorated with the Conditional  attribute is a conditional method. The Conditional  attribute

indicates a condition by testing a conditional compilation symbol. Calls to a conditional method are either

included or omitted depending on whether this symbol is defined at the point of the call. If the symbol is

defined, the call is included; otherwise, the call (including evaluation of the receiver and parameters of the call)

is omitted.

A conditional method is subject to the following restrictions:

The conditional method must be a method in a class_declaration or struct_declaration. A compile-time error

occurs if the Conditional  attribute is specified on a method in an interface declaration.

The conditional method must have a return type of void .

The conditional method must not be marked with the override  modifier. A conditional method may be

marked with the virtual  modifier, however. Overrides of such a method are implicitly conditional, and

must not be explicitly marked with a Conditional  attribute.

The conditional method must not be an implementation of an interface method. Otherwise, a compile-time

error occurs.

In addition, a compile-time error occurs if a conditional method is used in a delegate_creation_expression. The

example

declares Class1.M  as a conditional method. Class2 's Test  method calls this method. Since the conditional

compilation symbol DEBUG  is defined, if Class2.Test  is called, it will call M . If the symbol DEBUG  had not been

defined, then Class2.Test  would not call Class1.M .

It is important to note that the inclusion or exclusion of a call to a conditional method is controlled by the

conditional compilation symbols at the point of the call. In the example



using System.Diagnostics;

class Class1 
{
    [Conditional("DEBUG")]
    public static void F() {
        Console.WriteLine("Executed Class1.F");
    }
}

#define DEBUG

class Class2
{
    public static void G() {
        Class1.F();                // F is called
    }
}

#undef DEBUG

class Class3
{
    public static void H() {
        Class1.F();                // F is not called
    }
}

using System;
using System.Diagnostics;

class Class1 
{
    [Conditional("DEBUG")]
    public virtual void M() {
        Console.WriteLine("Class1.M executed");
    }
}

File class1.cs :

File class2.cs :

File class3.cs :

the classes Class2  and Class3  each contain calls to the conditional method Class1.F , which is conditional

based on whether or not DEBUG  is defined. Since this symbol is defined in the context of Class2  but not 

Class3 , the call to F  in Class2  is included, while the call to F  in Class3  is omitted.

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional method

through base , of the form base.M , are subject to the normal conditional method call rules. In the example

File class1.cs :

File class2.cs :



using System;

class Class2: Class1
{
    public override void M() {
        Console.WriteLine("Class2.M executed");
        base.M();                        // base.M is not called!
    }
}

#define DEBUG

using System;

class Class3
{
    public static void Test() {
        Class2 c = new Class2();
        c.M();                            // M is called
    }
}

Conditional attribute classesConditional attribute classes

using System;
using System.Diagnostics;
[Conditional("ALPHA")]
[Conditional("BETA")]
public class TestAttribute : Attribute {}

using System;
using System.Diagnostics;

[Conditional("DEBUG")]

public class TestAttribute : Attribute {}

File class3.cs :

Class2  includes a call to the M  defined in its base class. This call is omitted because the base method is

conditional based on the presence of the symbol DEBUG , which is undefined. Thus, the method writes to the

console " Class2.M executed " only. Judicious use of pp_declarations can eliminate such problems.

An attribute class (Attribute classes) decorated with one or more Conditional  attributes is a conditionalconditional

attr ibute classattr ibute class . A conditional attribute class is thus associated with the conditional compilation symbols

declared in its Conditional  attributes. This example:

declares TestAttribute  as a conditional attribute class associated with the conditional compilations symbols 

ALPHA  and BETA .

Attribute specifications (Attribute specification) of a conditional attribute are included if one or more of its

associated conditional compilation symbols is defined at the point of specification, otherwise the attribute

specification is omitted.

It is important to note that the inclusion or exclusion of an attribute specification of a conditional attribute class

is controlled by the conditional compilation symbols at the point of the specification. In the example

File test.cs :



  

#define DEBUG

[Test]                // TestAttribute is specified

class Class1 {}

#undef DEBUG

[Test]                 // TestAttribute is not specified

class Class2 {}

The Obsolete attributeThe Obsolete attribute

namespace System
{
    [AttributeUsage(
        AttributeTargets.Class | 
        AttributeTargets.Struct |
        AttributeTargets.Enum | 
        AttributeTargets.Interface | 
        AttributeTargets.Delegate |
        AttributeTargets.Method | 
        AttributeTargets.Constructor |
        AttributeTargets.Property | 
        AttributeTargets.Field |
        AttributeTargets.Event,
        Inherited = false)
    ]
    public class ObsoleteAttribute: Attribute
    {
        public ObsoleteAttribute() {...}
        public ObsoleteAttribute(string message) {...}
        public ObsoleteAttribute(string message, bool error) {...}
        public string Message { get {...} }
        public bool IsError { get {...} }
    }
}

File class1.cs :

File class2.cs :

the classes Class1  and Class2  are each decorated with attribute Test , which is conditional based on

whether or not DEBUG  is defined. Since this symbol is defined in the context of Class1  but not Class2 , the

specification of the Test  attribute on Class1  is included, while the specification of the Test  attribute on 

Class2  is omitted.

The attribute Obsolete  is used to mark types and members of types that should no longer be used.

If a program uses a type or member that is decorated with the Obsolete  attribute, the compiler issues a

warning or an error. Specifically, the compiler issues a warning if no error parameter is provided, or if the error

parameter is provided and has the value false . The compiler issues an error if the error parameter is specified

and has the value true .

In the example



      

[Obsolete("This class is obsolete; use class B instead")]
class A
{
    public void F() {}
}

class B
{
    public void F() {}
}

class Test
{
    static void Main() {
        A a = new A();         // Warning
        a.F();
    }
}

Caller info attributesCaller info attributes

using System.Runtime.CompilerServices

...

public void Log(
    [CallerLineNumber] int line = -1,
    [CallerFilePath]   string path = null,
    [CallerMemberName] string name = null
)
{
    Console.WriteLine((line < 0) ? "No line" : "Line "+ line);
    Console.WriteLine((path == null) ? "No file path" : path);
    Console.WriteLine((name == null) ? "No member name" : name);
}

the class A  is decorated with the Obsolete  attribute. Each use of A  in Main  results in a warning that includes

the specified message, "This class is obsolete; use class B instead."

For purposes such as logging and reporting, it is sometimes useful for a function member to obtain certain

compile-time information about the calling code. The caller info attributes provide a way to pass such

information transparently.

When an optional parameter is annotated with one of the caller info attributes, omitting the corresponding

argument in a call does not necessarily cause the default parameter value to be substituted. Instead, if the

specified information about the calling context is available, that information will be passed as the argument

value.

For example:

A call to Log()  with no arguments would print the line number and file path of the call, as well as the name of

the member within which the call occurred.

Caller info attributes can occur on optional parameters anywhere, including in delegate declarations. However,

the specific caller info attributes have restrictions on the types of the parameters they can attribute, so that

there will always be an implicit conversion from a substituted value to the parameter type.

It is an error to have the same caller info attribute on a parameter of both the defining and implementing part

of a partial method declaration. Only caller info attributes in the defining part are applied, whereas caller info

attributes occurring only in the implementing part are ignored.



The CallerLineNumber attributeThe CallerLineNumber attribute

The CallerFilePath attributeThe CallerFilePath attribute

The CallerMemberName attributeThe CallerMemberName attribute

Caller information does not affect overload resolution. As the attributed optional parameters are still omitted

from the source code of the caller, overload resolution ignores those parameters in the same way it ignores

other omitted optional parameters (Overload resolution).

Caller information is only substituted when a function is explicitly invoked in source code. Implicit invocations

such as implicit parent constructor calls do not have a source location and will not substitute caller information.

Also, calls that are dynamically bound will not substitute caller information. When a caller info attributed

parameter is omitted in such cases, the specified default value of the parameter is used instead.

One exception is query-expressions. These are considered syntactic expansions, and if the calls they expand to

omit optional parameters with caller info attributes, caller information will be substituted. The location used is

the location of the query clause which the call was generated from.

If more than one caller info attribute is specified on a given parameter, they are preferred in the following

order : CallerLineNumber , CallerFilePath , CallerMemberName .

The System.Runtime.CompilerServices.CallerLineNumberAttribute  is allowed on optional parameters when there

is a standard implicit conversion (Standard implicit conversions) from the constant value int.MaxValue  to the

parameter's type. This ensures that any non-negative line number up to that value can be passed without error.

If a function invocation from a location in source code omits an optional parameter with the 

CallerLineNumberAttribute , then a numeric literal representing that location's line number is used as an

argument to the invocation instead of the default parameter value.

If the invocation spans multiple lines, the line chosen is implementation-dependent.

Note that the line number may be affected by #line  directives (Line directives).

The System.Runtime.CompilerServices.CallerFilePathAttribute  is allowed on optional parameters when there is

a standard implicit conversion (Standard implicit conversions) from string  to the parameter's type.

If a function invocation from a location in source code omits an optional parameter with the 

CallerFilePathAttribute , then a string literal representing that location's file path is used as an argument to

the invocation instead of the default parameter value.

The format of the file path is implementation-dependent.

Note that the file path may be affected by #line  directives (Line directives).

The System.Runtime.CompilerServices.CallerMemberNameAttribute  is allowed on optional parameters when there

is a standard implicit conversion (Standard implicit conversions) from string  to the parameter's type.

If a function invocation from a location within the body of a function member or within an attribute applied to

the function member itself or its return type, parameters or type parameters in source code omits an optional

parameter with the CallerMemberNameAttribute , then a string literal representing the name of that member is

used as an argument to the invocation instead of the default parameter value.

For invocations that occur within generic methods, only the method name itself is used, without the type

parameter list.

For invocations that occur within explicit interface member implementations, only the method name itself is

used, without the preceding interface qualification.

For invocations that occur within property or event accessors, the member name used is that of the property

or event itself.



    

  

Attributes for Interoperation

Interoperation with COM and Win32 componentsInteroperation with COM and Win32 components

Interoperation with other .NET languagesInteroperation with other .NET languages
The IndexerName attributeThe IndexerName attribute

namespace System.Runtime.CompilerServices.CSharp
{
    [AttributeUsage(AttributeTargets.Property)]
    public class IndexerNameAttribute: Attribute
    {
        public IndexerNameAttribute(string indexerName) {...}
        public string Value { get {...} } 
    }
}

For invocations that occur within indexer accessors, the member name used is that supplied by an 

IndexerNameAttribute  (The IndexerName attribute) on the indexer member, if present, or the default name 

Item  otherwise.

For invocations that occur within declarations of instance constructors, static constructors, destructors and

operators the member name used is implementation-dependent.

Note: This section is applicable only to the Microsoft .NET implementation of C#.

The .NET run-time provides a large number of attributes that enable C# programs to interoperate with

components written using COM and Win32 DLLs. For example, the DllImport  attribute can be used on a 

static extern  method to indicate that the implementation of the method is to be found in a Win32 DLL. These

attributes are found in the System.Runtime.InteropServices  namespace, and detailed documentation for these

attributes is found in the .NET runtime documentation.

Indexers are implemented in .NET using indexed properties, and have a name in the .NET metadata. If no 

IndexerName  attribute is present for an indexer, then the name Item  is used by default. The IndexerName

attribute enables a developer to override this default and specify a different name.
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Unsafe contexts

The core C# language, as defined in the preceding chapters, differs notably from C and C++ in its omission of

pointers as a data type. Instead, C# provides references and the ability to create objects that are managed by a

garbage collector. This design, coupled with other features, makes C# a much safer language than C or C++. In the

core C# language it is simply not possible to have an uninitialized variable, a "dangling" pointer, or an expression

that indexes an array beyond its bounds. Whole categories of bugs that routinely plague C and C++ programs are

thus eliminated.

While practically every pointer type construct in C or C++ has a reference type counterpart in C#, nonetheless,

there are situations where access to pointer types becomes a necessity. For example, interfacing with the

underlying operating system, accessing a memory-mapped device, or implementing a time-critical algorithm may

not be possible or practical without access to pointers. To address this need, C# provides the ability to write unsafeunsafe

codecode.

In unsafe code it is possible to declare and operate on pointers, to perform conversions between pointers and

integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much like writing C

code within a C# program.

Unsafe code is in fact a "safe" feature from the perspective of both developers and users. Unsafe code must be

clearly marked with the modifier unsafe , so developers can't possibly use unsafe features accidentally, and the

execution engine works to ensure that unsafe code cannot be executed in an untrusted environment.

The unsafe features of C# are available only in unsafe contexts. An unsafe context is introduced by including an 

unsafe  modifier in the declaration of a type or member, or by employing an unsafe_statement:

A declaration of a class, struct, interface, or delegate may include an unsafe  modifier, in which case the entire

textual extent of that type declaration (including the body of the class, struct, or interface) is considered an

unsafe context.

A declaration of a field, method, property, event, indexer, operator, instance constructor, destructor, or static

constructor may include an unsafe  modifier, in which case the entire textual extent of that member declaration

is considered an unsafe context.

An unsafe_statement enables the use of an unsafe context within a block. The entire textual extent of the

associated block is considered an unsafe context.

The associated grammar productions are shown below.

https://github.com/dotnet/csharplang/blob/master/spec/unsafe-code.md


class_modifier_unsafe
    : 'unsafe'
    ;

struct_modifier_unsafe
    : 'unsafe'
    ;

interface_modifier_unsafe
    : 'unsafe'
    ;

delegate_modifier_unsafe
    : 'unsafe'
    ;

field_modifier_unsafe
    : 'unsafe'
    ;

method_modifier_unsafe
    : 'unsafe'
    ;

property_modifier_unsafe
    : 'unsafe'
    ;

event_modifier_unsafe
    : 'unsafe'
    ;

indexer_modifier_unsafe
    : 'unsafe'
    ;

operator_modifier_unsafe
    : 'unsafe'
    ;

constructor_modifier_unsafe
    : 'unsafe'
    ;

destructor_declaration_unsafe
    : attributes? 'extern'? 'unsafe'? '~' identifier '(' ')' destructor_body
    | attributes? 'unsafe'? 'extern'? '~' identifier '(' ')' destructor_body
    ;

static_constructor_modifiers_unsafe
    : 'extern'? 'unsafe'? 'static'
    | 'unsafe'? 'extern'? 'static'
    | 'extern'? 'static' 'unsafe'?
    | 'unsafe'? 'static' 'extern'?
    | 'static' 'extern'? 'unsafe'?
    | 'static' 'unsafe'? 'extern'?
    ;

embedded_statement_unsafe
    : unsafe_statement
    | fixed_statement
    ;

unsafe_statement
    : 'unsafe' block
    ;



public unsafe struct Node
{
    public int Value;
    public Node* Left;
    public Node* Right;
}

public struct Node
{
    public int Value;
    public unsafe Node* Left;
    public unsafe Node* Right;
}

public class A
{
    public unsafe virtual void F() {
        char* p;
        ...
    }
}

public class B: A
{
    public override void F() {
        base.F();
        ...
    }
}

public unsafe class A
{
    public virtual void F(char* p) {...}
}

public class B: A
{
    public unsafe override void F(char* p) {...}
}

In the example

the unsafe  modifier specified in the struct declaration causes the entire textual extent of the struct declaration to

become an unsafe context. Thus, it is possible to declare the Left  and Right  fields to be of a pointer type. The

example above could also be written

Here, the unsafe  modifiers in the field declarations cause those declarations to be considered unsafe contexts.

Other than establishing an unsafe context, thus permitting the use of pointer types, the unsafe  modifier has no

effect on a type or a member. In the example

the unsafe  modifier on the F  method in A  simply causes the textual extent of F  to become an unsafe context in

which the unsafe features of the language can be used. In the override of F  in B , there is no need to re-specify

the unsafe  modifier -- unless, of course, the F  method in B  itself needs access to unsafe features.

The situation is slightly different when a pointer type is part of the method's signature

Here, because F 's signature includes a pointer type, it can only be written in an unsafe context. However, the

unsafe context can be introduced by either making the entire class unsafe, as is the case in A , or by including an 



        Pointer types

type_unsafe
    : pointer_type
    ;

pointer_type
    : unmanaged_type '*'
    | 'void' '*'
    ;

unmanaged_type
    : type
    ;

EXA M P L EEXA M P L E DESC RIP T IO NDESC RIP T IO N

byte* Pointer to byte

char* Pointer to char

int** Pointer to pointer to int

int*[] Single-dimensional array of pointers to int

unsafe  modifier in the method declaration, as is the case in B .

In an unsafe context, a type (Types) may be a pointer_type as well as a value_type or a reference_type. However, a

pointer_type may also be used in a typeof  expression (Anonymous object creation expressions) outside of an

unsafe context as such usage is not unsafe.

A pointer_type is written as an unmanaged_type or the keyword void , followed by a *  token:

The type specified before the *  in a pointer type is called the referent typereferent type of the pointer type. It represents the

type of the variable to which a value of the pointer type points.

Unlike references (values of reference types), pointers are not tracked by the garbage collector -- the garbage

collector has no knowledge of pointers and the data to which they point. For this reason a pointer is not permitted

to point to a reference or to a struct that contains references, and the referent type of a pointer must be an

unmanaged_type.

An unmanaged_type is any type that isn't a reference_type or constructed type, and doesn't contain reference_type

or constructed type fields at any level of nesting. In other words, an unmanaged_type is one of the following:

sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double , decimal , or bool .

Any enum_type.

Any pointer_type.

Any user-defined struct_type that is not a constructed type and contains fields of unmanaged_types only.

The intuitive rule for mixing of pointers and references is that referents of references (objects) are permitted to

contain pointers, but referents of pointers are not permitted to contain references.

Some examples of pointer types are given in the table below:



void* Pointer to unknown type

EXA M P L EEXA M P L E DESC RIP T IO NDESC RIP T IO N

int* pi, pj;    // NOT as int *pi, *pj;

For a given implementation, all pointer types must have the same size and representation.

Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the *  is written along with

the underlying type only, not as a prefix punctuator on each pointer name. For example

The value of a pointer having type T*  represents the address of a variable of type T . The pointer indirection

operator *  (Pointer indirection) may be used to access this variable. For example, given a variable P  of type 

int* , the expression *P  denotes the int  variable found at the address contained in P .

Like an object reference, a pointer may be null . Applying the indirection operator to a null  pointer results in

implementation-defined behavior. A pointer with value null  is represented by all-bits-zero.

The void*  type represents a pointer to an unknown type. Because the referent type is unknown, the indirection

operator cannot be applied to a pointer of type void* , nor can any arithmetic be performed on such a pointer.

However, a pointer of type void*  can be cast to any other pointer type (and vice versa).

Pointer types are a separate category of types. Unlike reference types and value types, pointer types do not inherit

from object  and no conversions exist between pointer types and object . In particular, boxing and unboxing

(Boxing and unboxing) are not supported for pointers. However, conversions are permitted between different

pointer types and between pointer types and the integral types. This is described in Pointer conversions.

A pointer_type cannot be used as a type argument (Constructed types), and type inference (Type inference) fails on

generic method calls that would have inferred a type argument to be a pointer type.

A pointer_type may be used as the type of a volatile field (Volatile fields).

Although pointers can be passed as ref  or out  parameters, doing so can cause undefined behavior, since the

pointer may well be set to point to a local variable which no longer exists when the called method returns, or the

fixed object to which it used to point, is no longer fixed. For example:



     

using System;

class Test
{
    static int value = 20;

    unsafe static void F(out int* pi1, ref int* pi2) {
        int i = 10;
        pi1 = &i;

        fixed (int* pj = &value) {
            // ...
            pi2 = pj;
        }
    }

    static void Main() {
        int i = 10;
        unsafe {
            int* px1;
            int* px2 = &i;

            F(out px1, ref px2);

            Console.WriteLine("*px1 = {0}, *px2 = {1}",
                *px1, *px2);    // undefined behavior
        }
    }
}

unsafe static int* Find(int* pi, int size, int value) {
    for (int i = 0; i < size; ++i) {
        if (*pi == value) 
            return pi;
        ++pi;
    }
    return null;
}

Fixed and moveable variables

A method can return a value of some type, and that type can be a pointer. For example, when given a pointer to a

contiguous sequence of int s, that sequence's element count, and some other int  value, the following method

returns the address of that value in that sequence, if a match occurs; otherwise it returns null :

In an unsafe context, several constructs are available for operating on pointers:

The *  operator may be used to perform pointer indirection (Pointer indirection).

The ->  operator may be used to access a member of a struct through a pointer (Pointer member access).

The []  operator may be used to index a pointer (Pointer element access).

The &  operator may be used to obtain the address of a variable (The address-of operator).

The ++  and --  operators may be used to increment and decrement pointers (Pointer increment and

decrement).

The +  and -  operators may be used to perform pointer arithmetic (Pointer arithmetic).

The == , != , < , > , <= , and =>  operators may be used to compare pointers (Pointer comparison).

The stackalloc  operator may be used to allocate memory from the call stack (Fixed size buffers).

The fixed  statement may be used to temporarily fix a variable so its address can be obtained (The fixed

statement).



   Pointer conversions

The address-of operator (The address-of operator) and the fixed  statement (The fixed statement) divide variables

into two categories: Fixed var iablesFixed var iables  and moveable var iablesmoveable var iables .

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector. (Examples of

fixed variables include local variables, value parameters, and variables created by dereferencing pointers.) On the

other hand, moveable variables reside in storage locations that are subject to relocation or disposal by the garbage

collector. (Examples of moveable variables include fields in objects and elements of arrays.)

The &  operator (The address-of operator) permits the address of a fixed variable to be obtained without

restrictions. However, because a moveable variable is subject to relocation or disposal by the garbage collector, the

address of a moveable variable can only be obtained using a fixed  statement (The fixed statement), and that

address remains valid only for the duration of that fixed  statement.

In precise terms, a fixed variable is one of the following:

A variable resulting from a simple_name (Simple names) that refers to a local variable or a value parameter,

unless the variable is captured by an anonymous function.

A variable resulting from a member_access (Member access) of the form V.I , where V  is a fixed variable of a

struct_type.

A variable resulting from a pointer_indirection_expression (Pointer indirection) of the form *P , a

pointer_member_access (Pointer member access) of the form P->I , or a pointer_element_access (Pointer

element access) of the form P[E] .

All other variables are classified as moveable variables.

Note that a static field is classified as a moveable variable. Also note that a ref  or out  parameter is classified as a

moveable variable, even if the argument given for the parameter is a fixed variable. Finally, note that a variable

produced by dereferencing a pointer is always classified as a fixed variable.

In an unsafe context, the set of available implicit conversions (Implicit conversions) is extended to include the

following implicit pointer conversions:

From any pointer_type to the type void* .

From the null  literal to any pointer_type.

Additionally, in an unsafe context, the set of available explicit conversions (Explicit conversions) is extended to

include the following explicit pointer conversions:

From any pointer_type to any other pointer_type.

From sbyte , byte , short , ushort , int , uint , long , or ulong  to any pointer_type.

From any pointer_type to sbyte , byte , short , ushort , int , uint , long , or ulong .

Finally, in an unsafe context, the set of standard implicit conversions (Standard implicit conversions) includes the

following pointer conversion:

From any pointer_type to the type void* .

Conversions between two pointer types never change the actual pointer value. In other words, a conversion from

one pointer type to another has no effect on the underlying address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the pointed-to

type, the behavior is undefined if the result is dereferenced. In general, the concept "correctly aligned" is transitive:

if a pointer to type A  is correctly aligned for a pointer to type B , which, in turn, is correctly aligned for a pointer to

type C , then a pointer to type A  is correctly aligned for a pointer to type C .



char c = 'A';
char* pc = &c;
void* pv = pc;
int* pi = (int*)pv;
int i = *pi;         // undefined
*pi = 123456;        // undefined

using System;

class Test
{
    unsafe static void Main() {
      double d = 123.456e23;
        unsafe {
           byte* pb = (byte*)&d;
            for (int i = 0; i < sizeof(double); ++i)
               Console.Write("{0:X2} ", *pb++);
            Console.WriteLine();
        }
    }
}

Pointer arraysPointer arrays

Consider the following case in which a variable having one type is accessed via a pointer to a different type:

When a pointer type is converted to a pointer to byte, the result points to the lowest addressed byte of the variable.

Successive increments of the result, up to the size of the variable, yield pointers to the remaining bytes of that

variable. For example, the following method displays each of the eight bytes in a double as a hexadecimal value:

Of course, the output produced depends on endianness.

Mappings between pointers and integers are implementation-defined. However, on 32* and 64-bit CPU

architectures with a linear address space, conversions of pointers to or from integral types typically behave exactly

like conversions of uint  or ulong  values, respectively, to or from those integral types.

In an unsafe context, arrays of pointers can be constructed. Only some of the conversions that apply to other array

types are allowed on pointer arrays:

The implicit reference conversion (Implicit reference conversions) from any array_type to System.Array  and the

interfaces it implements also applies to pointer arrays. However, any attempt to access the array elements

through System.Array  or the interfaces it implements will result in an exception at run-time, as pointer types

are not convertible to object .

The implicit and explicit reference conversions (Implicit reference conversions, Explicit reference conversions)

from a single-dimensional array type S[]  to System.Collections.Generic.IList<T>  and its generic base

interfaces never apply to pointer arrays, since pointer types cannot be used as type arguments, and there are no

conversions from pointer types to non-pointer types.

The explicit reference conversion (Explicit reference conversions) from System.Array  and the interfaces it

implements to any array_type applies to pointer arrays.

The explicit reference conversions (Explicit reference conversions) from System.Collections.Generic.IList<S>

and its base interfaces to a single-dimensional array type T[]  never applies to pointer arrays, since pointer

types cannot be used as type arguments, and there are no conversions from pointer types to non-pointer types.

These restrictions mean that the expansion for the foreach  statement over arrays described in The foreach

statement cannot be applied to pointer arrays. Instead, a foreach statement of the form



          

foreach (V v in x) embedded_statement

{
    T[,,...,] a = x;
    for (int i0 = a.GetLowerBound(0); i0 <= a.GetUpperBound(0); i0++)
    for (int i1 = a.GetLowerBound(1); i1 <= a.GetUpperBound(1); i1++)
    ...
    for (int iN = a.GetLowerBound(N); iN <= a.GetUpperBound(N); iN++) {
        V v = (V)a.GetValue(i0,i1,...,iN);
        embedded_statement
    }
}

Pointers in expressions

primary_no_array_creation_expression_unsafe
    : pointer_member_access
    | pointer_element_access
    | sizeof_expression
    ;

unary_expression_unsafe
    : pointer_indirection_expression
    | addressof_expression
    ;

Pointer indirectionPointer indirection

pointer_indirection_expression
    : '*' unary_expression
    ;

where the type of x  is an array type of the form T[,,...,] , N  is the number of dimensions minus 1 and T  or 

V  is a pointer type, is expanded using nested for-loops as follows:

The variables a , i0 , i1 , ..., iN  are not visible to or accessible to x  or the embedded_statement or any other

source code of the program. The variable v  is read-only in the embedded statement. If there is not an explicit

conversion (Pointer conversions) from T  (the element type) to V , an error is produced and no further steps are

taken. If x  has the value null , a System.NullReferenceException  is thrown at run-time.

In an unsafe context, an expression may yield a result of a pointer type, but outside an unsafe context it is a

compile-time error for an expression to be of a pointer type. In precise terms, outside an unsafe context a compile-

time error occurs if any simple_name (Simple names), member_access (Member access), invocation_expression

(Invocation expressions), or element_access (Element access) is of a pointer type.

In an unsafe context, the primary_no_array_creation_expression (Primary expressions) and unary_expression

(Unary operators) productions permit the following additional constructs:

These constructs are described in the following sections. The precedence and associativity of the unsafe operators

is implied by the grammar.

A pointer_indirection_expression consists of an asterisk ( * ) followed by a unary_expression.

The unary *  operator denotes pointer indirection and is used to obtain the variable to which a pointer points. The

result of evaluating *P , where P  is an expression of a pointer type T* , is a variable of type T . It is a compile-

time error to apply the unary *  operator to an expression of type void*  or to an expression that isn't of a pointer



        Pointer member accessPointer member access

pointer_member_access
    : primary_expression '->' identifier
    ;

using System;

struct Point
{
    public int x;
    public int y;

    public override string ToString() {
        return "(" + x + "," + y + ")";
    }
}

class Test
{
    static void Main() {
        Point point;
        unsafe {
            Point* p = &point;
            p->x = 10;
            p->y = 20;
            Console.WriteLine(p->ToString());
        }
    }
}

type.

The effect of applying the unary *  operator to a null  pointer is implementation-defined. In particular, there is no

guarantee that this operation throws a System.NullReferenceException .

If an invalid value has been assigned to the pointer, the behavior of the unary *  operator is undefined. Among the

invalid values for dereferencing a pointer by the unary *  operator are an address inappropriately aligned for the

type pointed to (see example in Pointer conversions), and the address of a variable after the end of its lifetime.

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form *P  is

considered initially assigned (Initially assigned variables).

A pointer_member_access consists of a primary_expression, followed by a " -> " token, followed by an identifier

and an optional type_argument_list.

In a pointer member access of the form P->I , P  must be an expression of a pointer type other than void* , and 

I  must denote an accessible member of the type to which P  points.

A pointer member access of the form P->I  is evaluated exactly as (*P).I . For a description of the pointer

indirection operator ( * ), see Pointer indirection. For a description of the member access operator ( . ), see

Member access.

In the example

the ->  operator is used to access fields and invoke a method of a struct through a pointer. Because the operation 

P->I  is precisely equivalent to (*P).I , the Main  method could equally well have been written:



    

      

class Test
{
    static void Main() {
        Point point;
        unsafe {
            Point* p = &point;
            (*p).x = 10;
            (*p).y = 20;
            Console.WriteLine((*p).ToString());
        }
    }
}

Pointer element accessPointer element access

pointer_element_access
    : primary_no_array_creation_expression '[' expression ']'
    ;

class Test
{
    static void Main() {
        unsafe {
            char* p = stackalloc char[256];
            for (int i = 0; i < 256; i++) p[i] = (char)i;
        }
    }
}

class Test
{
    static void Main() {
        unsafe {
            char* p = stackalloc char[256];
            for (int i = 0; i < 256; i++) *(p + i) = (char)i;
        }
    }
}

The address-of operatorThe address-of operator

A pointer_element_access consists of a primary_no_array_creation_expression followed by an expression enclosed

in " [ " and " ] ".

In a pointer element access of the form P[E] , P  must be an expression of a pointer type other than void* , and 

E  must be an expression that can be implicitly converted to int , uint , long , or ulong .

A pointer element access of the form P[E]  is evaluated exactly as *(P + E) . For a description of the pointer

indirection operator ( * ), see Pointer indirection. For a description of the pointer addition operator ( + ), see Pointer

arithmetic.

In the example

a pointer element access is used to initialize the character buffer in a for  loop. Because the operation P[E]  is

precisely equivalent to *(P + E) , the example could equally well have been written:

The pointer element access operator does not check for out-of-bounds errors and the behavior when accessing an

out-of-bounds element is undefined. This is the same as C and C++.



  

addressof_expression
    : '&' unary_expression
    ;

using System;

class Test
{
    static void Main() {
        int i;
        unsafe {
            int* p = &i;
            *p = 123;
        }
        Console.WriteLine(i);
    }
}

Pointer increment and decrementPointer increment and decrement

T* operator ++(T* x);
T* operator --(T* x);

An addressof_expression consists of an ampersand ( & ) followed by a unary_expression.

Given an expression E  which is of a type T  and is classified as a fixed variable (Fixed and moveable variables), the

construct &E  computes the address of the variable given by E . The type of the result is T*  and is classified as a

value. A compile-time error occurs if E  is not classified as a variable, if E  is classified as a read-only local variable,

or if E  denotes a moveable variable. In the last case, a fixed statement (The fixed statement) can be used to

temporarily "fix" the variable before obtaining its address. As stated in Member access, outside an instance

constructor or static constructor for a struct or class that defines a readonly  field, that field is considered a value,

not a variable. As such, its address cannot be taken. Similarly, the address of a constant cannot be taken.

The &  operator does not require its argument to be definitely assigned, but following an &  operation, the

variable to which the operator is applied is considered definitely assigned in the execution path in which the

operation occurs. It is the responsibility of the programmer to ensure that correct initialization of the variable

actually does take place in this situation.

In the example

i  is considered definitely assigned following the &i  operation used to initialize p . The assignment to *p  in

effect initializes i , but the inclusion of this initialization is the responsibility of the programmer, and no compile-

time error would occur if the assignment was removed.

The rules of definite assignment for the &  operator exist such that redundant initialization of local variables can be

avoided. For example, many external APIs take a pointer to a structure which is filled in by the API. Calls to such

APIs typically pass the address of a local struct variable, and without the rule, redundant initialization of the struct

variable would be required.

In an unsafe context, the ++  and --  operators (Postfix increment and decrement operators and Prefix increment

and decrement operators) can be applied to pointer variables of all types except void* . Thus, for every pointer

type T* , the following operators are implicitly defined:

The operators produce the same results as x + 1  and x - 1 , respectively (Pointer arithmetic). In other words, for

a pointer variable of type T* , the ++  operator adds sizeof(T)  to the address contained in the variable, and the 

--  operator subtracts sizeof(T)  from the address contained in the variable.



      Pointer arithmeticPointer arithmetic

T* operator +(T* x, int y);
T* operator +(T* x, uint y);
T* operator +(T* x, long y);
T* operator +(T* x, ulong y);

T* operator +(int x, T* y);
T* operator +(uint x, T* y);
T* operator +(long x, T* y);
T* operator +(ulong x, T* y);

T* operator -(T* x, int y);
T* operator -(T* x, uint y);
T* operator -(T* x, long y);
T* operator -(T* x, ulong y);

long operator -(T* x, T* y);

using System;

class Test
{
    static void Main() {
        unsafe {
            int* values = stackalloc int[20];
            int* p = &values[1];
            int* q = &values[15];
            Console.WriteLine("p - q = {0}", p - q);
            Console.WriteLine("q - p = {0}", q - p);
        }
    }
}

p - q = -14
q - p = 14

If a pointer increment or decrement operation overflows the domain of the pointer type, the result is

implementation-defined, but no exceptions are produced.

In an unsafe context, the +  and -  operators (Addition operator and Subtraction operator) can be applied to

values of all pointer types except void* . Thus, for every pointer type T* , the following operators are implicitly

defined:

Given an expression P  of a pointer type T*  and an expression N  of type int , uint , long , or ulong , the

expressions P + N  and N + P  compute the pointer value of type T*  that results from adding N * sizeof(T)  to

the address given by P . Likewise, the expression P - N  computes the pointer value of type T*  that results from

subtracting N * sizeof(T)  from the address given by P .

Given two expressions, P  and Q , of a pointer type T* , the expression P - Q  computes the difference between

the addresses given by P  and Q  and then divides that difference by sizeof(T) . The type of the result is always 

long . In effect, P - Q  is computed as ((long)(P) - (long)(Q)) / sizeof(T) .

For example:

which produces the output:

If a pointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an

implementation-defined fashion, but no exceptions are produced.



  Pointer comparisonPointer comparison

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);
bool operator <(void* x, void* y);
bool operator >(void* x, void* y);
bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);

The sizeof operatorThe sizeof operator

sizeof_expression
    : 'sizeof' '(' unmanaged_type ')'
    ;

EXP RESSIO NEXP RESSIO N RESULTRESULT

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(bool) 1

In an unsafe context, the == , != , < , > , <= , and =>  operators (Relational and type-testing operators) can be

applied to values of all pointer types. The pointer comparison operators are:

Because an implicit conversion exists from any pointer type to the void*  type, operands of any pointer type can be

compared using these operators. The comparison operators compare the addresses given by the two operands as

if they were unsigned integers.

The sizeof  operator returns the number of bytes occupied by a variable of a given type. The type specified as an

operand to sizeof  must be an unmanaged_type (Pointer types).

The result of the sizeof  operator is a value of type int . For certain predefined types, the sizeof  operator yields

a constant value as shown in the table below.



     The fixed statement

fixed_statement
    : 'fixed' '(' pointer_type fixed_pointer_declarators ')' embedded_statement
    ;

fixed_pointer_declarators
    : fixed_pointer_declarator (','  fixed_pointer_declarator)*
    ;

fixed_pointer_declarator
    : identifier '=' fixed_pointer_initializer
    ;

fixed_pointer_initializer
    : '&' variable_reference
    | expression
    ;

For all other types, the result of the sizeof  operator is implementation-defined and is classified as a value, not a

constant.

The order in which members are packed into a struct is unspecified.

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and at the end

of the struct. The contents of the bits used as padding are indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes in a variable of that type,

including any padding.

In an unsafe context, the embedded_statement (Statements) production permits an additional construct, the fixed

statement, which is used to "fix" a moveable variable such that its address remains constant for the duration of the

statement.

Each fixed_pointer_declarator declares a local variable of the given pointer_type and initializes that local variable

with the address computed by the corresponding fixed_pointer_initializer. A local variable declared in a fixed

statement is accessible in any fixed_pointer_initializers occurring to the right of that variable's declaration, and in

the embedded_statement of the fixed  statement. A local variable declared by a fixed  statement is considered

read-only. A compile-time error occurs if the embedded statement attempts to modify this local variable (via

assignment or the ++  and --  operators) or pass it as a ref  or out  parameter.

A fixed_pointer_initializer can be one of the following:

The token " & " followed by a variable_reference (Precise rules for determining definite assignment) to a

moveable variable (Fixed and moveable variables) of an unmanaged type T , provided the type T*  is implicitly

convertible to the pointer type given in the fixed  statement. In this case, the initializer computes the address of

the given variable, and the variable is guaranteed to remain at a fixed address for the duration of the fixed

statement.

An expression of an array_type with elements of an unmanaged type T , provided the type T*  is implicitly

convertible to the pointer type given in the fixed  statement. In this case, the initializer computes the address of

the first element in the array, and the entire array is guaranteed to remain at a fixed address for the duration of

the fixed  statement. If the array expression is null or if the array has zero elements, the initializer computes an

address equal to zero.

An expression of type string , provided the type char*  is implicitly convertible to the pointer type given in the 

fixed  statement. In this case, the initializer computes the address of the first character in the string, and the

entire string is guaranteed to remain at a fixed address for the duration of the fixed  statement. The behavior of

the fixed  statement is implementation-defined if the string expression is null.



class Test
{
    static int x;
    int y;

    unsafe static void F(int* p) {
        *p = 1;
    }

    static void Main() {
        Test t = new Test();
        int[] a = new int[10];
        unsafe {
            fixed (int* p = &x) F(p);
            fixed (int* p = &t.y) F(p);
            fixed (int* p = &a[0]) F(p);
            fixed (int* p = a) F(p);
        }
    }
}

A simple_name or member_access that references a fixed size buffer member of a moveable variable, provided

the type of the fixed size buffer member is implicitly convertible to the pointer type given in the fixed

statement. In this case, the initializer computes a pointer to the first element of the fixed size buffer (Fixed size

buffers in expressions), and the fixed size buffer is guaranteed to remain at a fixed address for the duration of

the fixed  statement.

For each address computed by a fixed_pointer_initializer the fixed  statement ensures that the variable referenced

by the address is not subject to relocation or disposal by the garbage collector for the duration of the fixed

statement. For example, if the address computed by a fixed_pointer_initializer references a field of an object or an

element of an array instance, the fixed  statement guarantees that the containing object instance is not relocated

or disposed of during the lifetime of the statement.

It is the programmer's responsibility to ensure that pointers created by fixed  statements do not survive beyond

execution of those statements. For example, when pointers created by fixed  statements are passed to external

APIs, it is the programmer's responsibility to ensure that the APIs retain no memory of these pointers.

Fixed objects may cause fragmentation of the heap (because they can't be moved). For that reason, objects should

be fixed only when absolutely necessary and then only for the shortest amount of time possible.

The example

demonstrates several uses of the fixed  statement. The first statement fixes and obtains the address of a static

field, the second statement fixes and obtains the address of an instance field, and the third statement fixes and

obtains the address of an array element. In each case it would have been an error to use the regular &  operator

since the variables are all classified as moveable variables.

The fourth fixed  statement in the example above produces a similar result to the third.

This example of the fixed  statement uses string :



class Test
{
    static string name = "xx";

    unsafe static void F(char* p) {
        for (int i = 0; p[i] != '\0'; ++i)
            Console.WriteLine(p[i]);
    }

    static void Main() {
        unsafe {
            fixed (char* p = name) F(p);
            fixed (char* p = "xx") F(p);
        }
    }
}

using System;

class Test
{
    static void Main() {
        int[,,] a = new int[2,3,4];
        unsafe {
            fixed (int* p = a) {
                for (int i = 0; i < a.Length; ++i)    // treat as linear
                    p[i] = i;
            }
        }

        for (int i = 0; i < 2; ++i)
            for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 4; ++k)
                    Console.Write("[{0},{1},{2}] = {3,2} ", i, j, k, a[i,j,k]);
                Console.WriteLine();
            }
    }
}

[0,0,0] =  0 [0,0,1] =  1 [0,0,2] =  2 [0,0,3] =  3
[0,1,0] =  4 [0,1,1] =  5 [0,1,2] =  6 [0,1,3] =  7
[0,2,0] =  8 [0,2,1] =  9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23

In an unsafe context array elements of single-dimensional arrays are stored in increasing index order, starting with

index 0  and ending with index Length - 1 . For multi-dimensional arrays, array elements are stored such that the

indices of the rightmost dimension are increased first, then the next left dimension, and so on to the left. Within a 

fixed  statement that obtains a pointer p  to an array instance a , the pointer values ranging from p  to 

p + a.Length - 1  represent addresses of the elements in the array. Likewise, the variables ranging from p[0]  to 

p[a.Length - 1]  represent the actual array elements. Given the way in which arrays are stored, we can treat an

array of any dimension as though it were linear.

For example:

which produces the output:

In the example



 

class Test
{
    unsafe static void Fill(int* p, int count, int value) {
        for (; count != 0; count--) *p++ = value;
    }

    static void Main() {
        int[] a = new int[100];
        unsafe {
            fixed (int* p = a) Fill(p, 100, -1);
        }
    }
}

unsafe struct Font
{
    public int size;
    public fixed char name[32];
}

class Test
{
    unsafe static void PutString(string s, char* buffer, int bufSize) {
        int len = s.Length;
        if (len > bufSize) len = bufSize;
        for (int i = 0; i < len; i++) buffer[i] = s[i];
        for (int i = len; i < bufSize; i++) buffer[i] = (char)0;
    }

    Font f;

    unsafe static void Main()
    {
        Test test = new Test();
        test.f.size = 10;
        fixed (char* p = test.f.name) {
            PutString("Times New Roman", p, 32);
        }
    }
}

Fixed size buffers

a fixed  statement is used to fix an array so its address can be passed to a method that takes a pointer.

In the example:

a fixed statement is used to fix a fixed size buffer of a struct so its address can be used as a pointer.

A char*  value produced by fixing a string instance always points to a null-terminated string. Within a fixed

statement that obtains a pointer p  to a string instance s , the pointer values ranging from p  to 

p + s.Length - 1  represent addresses of the characters in the string, and the pointer value p + s.Length  always

points to a null character (the character with value '\0' ).

Modifying objects of managed type through fixed pointers can results in undefined behavior. For example, because

strings are immutable, it is the programmer's responsibility to ensure that the characters referenced by a pointer to

a fixed string are not modified.

The automatic null-termination of strings is particularly convenient when calling external APIs that expect "C-style"

strings. Note, however, that a string instance is permitted to contain null characters. If such null characters are

present, the string will appear truncated when treated as a null-terminated char* .



Fixed size buffer declarationsFixed size buffer declarations

struct_member_declaration_unsafe
    : fixed_size_buffer_declaration
    ;

fixed_size_buffer_declaration
    : attributes? fixed_size_buffer_modifier* 'fixed' buffer_element_type fixed_size_buffer_declarator+ ';'
    ;

fixed_size_buffer_modifier
    : 'new'
    | 'public'
    | 'protected'
    | 'internal'
    | 'private'
    | 'unsafe'
    ;

buffer_element_type
    : type
    ;

fixed_size_buffer_declarator
    : identifier '[' constant_expression ']'
    ;

unsafe struct A
{
   public fixed int x[5], y[10], z[100];
}

Fixed size buffers are used to declare "C style" in-line arrays as members of structs, and are primarily useful for

interfacing with unmanaged APIs.

A fixed size bufferfixed size buffer  is a member that represents storage for a fixed length buffer of variables of a given type. A

fixed size buffer declaration introduces one or more fixed size buffers of a given element type. Fixed size buffers are

only permitted in struct declarations and can only occur in unsafe contexts (Unsafe contexts).

A fixed size buffer declaration may include a set of attributes (Attributes), a new  modifier (Modifiers), a valid

combination of the four access modifiers (Type parameters and constraints) and an unsafe  modifier (Unsafe

contexts). The attributes and modifiers apply to all of the members declared by the fixed size buffer declaration. It is

an error for the same modifier to appear multiple times in a fixed size buffer declaration.

A fixed size buffer declaration is not permitted to include the static  modifier.

The buffer element type of a fixed size buffer declaration specifies the element type of the buffer(s) introduced by

the declaration. The buffer element type must be one of the predefined types sbyte , byte , short , ushort , int , 

uint , long , ulong , char , float , double , or bool .

The buffer element type is followed by a list of fixed size buffer declarators, each of which introduces a new

member. A fixed size buffer declarator consists of an identifier that names the member, followed by a constant

expression enclosed in [  and ]  tokens. The constant expression denotes the number of elements in the member

introduced by that fixed size buffer declarator. The type of the constant expression must be implicitly convertible to

type int , and the value must be a non-zero positive integer.

The elements of a fixed size buffer are guaranteed to be laid out sequentially in memory.

A fixed size buffer declaration that declares multiple fixed size buffers is equivalent to multiple declarations of a

single fixed size buffer declaration with the same attributes, and element types. For example



  

unsafe struct A
{
   public fixed int x[5];
   public fixed int y[10];
   public fixed int z[100];
}

Fixed size buffers in expressionsFixed size buffers in expressions

unsafe struct Font
{
    public int size;
    public fixed char name[32];
}

class Test
{
    unsafe static void PutString(string s, char* buffer, int bufSize) {
        int len = s.Length;
        if (len > bufSize) len = bufSize;
        for (int i = 0; i < len; i++) buffer[i] = s[i];
        for (int i = len; i < bufSize; i++) buffer[i] = (char)0;
    }

    unsafe static void Main()
    {
        Font f;
        f.size = 10;
        PutString("Times New Roman", f.name, 32);
    }
}

Definite assignment checkingDefinite assignment checking

is equivalent to

Member lookup (Operators) of a fixed size buffer member proceeds exactly like member lookup of a field.

A fixed size buffer can be referenced in an expression using a simple_name (Type inference) or a member_access

(Compile-time checking of dynamic overload resolution).

When a fixed size buffer member is referenced as a simple name, the effect is the same as a member access of the

form this.I , where I  is the fixed size buffer member.

In a member access of the form E.I , if E  is of a struct type and a member lookup of I  in that struct type

identifies a fixed size member, then E.I  is evaluated an classified as follows:

If the expression E.I  does not occur in an unsafe context, a compile-time error occurs.

If E  is classified as a value, a compile-time error occurs.

Otherwise, if E  is a moveable variable (Fixed and moveable variables) and the expression E.I  is not a

fixed_pointer_initializer (The fixed statement), a compile-time error occurs.

Otherwise, E  references a fixed variable and the result of the expression is a pointer to the first element of the

fixed size buffer member I  in E . The result is of type S* , where S  is the element type of I , and is classified

as a value.

The subsequent elements of the fixed size buffer can be accessed using pointer operations from the first element.

Unlike access to arrays, access to the elements of a fixed size buffer is an unsafe operation and is not range

checked.

The following example declares and uses a struct with a fixed size buffer member.



Stack allocation

local_variable_initializer_unsafe
    : stackalloc_initializer
    ;

stackalloc_initializer
    : 'stackalloc' unmanaged_type '[' expression ']'
    ;

Fixed size buffers are not subject to definite assignment checking (Definite assignment), and fixed size buffer

members are ignored for purposes of definite assignment checking of struct type variables.

When the outermost containing struct variable of a fixed size buffer member is a static variable, an instance

variable of a class instance, or an array element, the elements of the fixed size buffer are automatically initialized to

their default values (Default values). In all other cases, the initial content of a fixed size buffer is undefined.

In an unsafe context, a local variable declaration (Local variable declarations) may include a stack allocation

initializer which allocates memory from the call stack.

The unmanaged_type indicates the type of the items that will be stored in the newly allocated location, and the

expression indicates the number of these items. Taken together, these specify the required allocation size. Since the

size of a stack allocation cannot be negative, it is a compile-time error to specify the number of items as a

constant_expression that evaluates to a negative value.

A stack allocation initializer of the form stackalloc T[E]  requires T  to be an unmanaged type (Pointer types) and 

E  to be an expression of type int . The construct allocates E * sizeof(T)  bytes from the call stack and returns a

pointer, of type T* , to the newly allocated block. If E  is a negative value, then the behavior is undefined. If E  is

zero, then no allocation is made, and the pointer returned is implementation-defined. If there is not enough

memory available to allocate a block of the given size, a System.StackOverflowException  is thrown.

The content of the newly allocated memory is undefined.

Stack allocation initializers are not permitted in catch  or finally  blocks (The try statement).

There is no way to explicitly free memory allocated using stackalloc . All stack allocated memory blocks created

during the execution of a function member are automatically discarded when that function member returns. This

corresponds to the alloca  function, an extension commonly found in C and C++ implementations.

In the example



using System;

class Test
{
    static string IntToString(int value) {
        int n = value >= 0? value: -value;
        unsafe {
            char* buffer = stackalloc char[16];
            char* p = buffer + 16;
            do {
                *--p = (char)(n % 10 + '0');
                n /= 10;
            } while (n != 0);
            if (value < 0) *--p = '-';
            return new string(p, 0, (int)(buffer + 16 - p));
        }
    }

    static void Main() {
        Console.WriteLine(IntToString(12345));
        Console.WriteLine(IntToString(-999));
    }
}

Dynamic memory allocation

using System;
using System.Runtime.InteropServices;

public static unsafe class Memory
{
    // Handle for the process heap. This handle is used in all calls to the
    // HeapXXX APIs in the methods below.
    private static readonly IntPtr s_heap = GetProcessHeap();

    // Allocates a memory block of the given size. The allocated memory is
    // automatically initialized to zero.
    public static void* Alloc(int size)
    {
        void* result = HeapAlloc(s_heap, HEAP_ZERO_MEMORY, (UIntPtr)size);
        if (result == null) throw new OutOfMemoryException();
        return result;
    }

    // Copies count bytes from src to dst. The source and destination
    // blocks are permitted to overlap.
    public static void Copy(void* src, void* dst, int count)
    {
        byte* ps = (byte*)src;
        byte* pd = (byte*)dst;
        if (ps > pd)
        {
            for (; count != 0; count--) *pd++ = *ps++;
        }
        else if (ps < pd)
        {

a stackalloc  initializer is used in the IntToString  method to allocate a buffer of 16 characters on the stack. The

buffer is automatically discarded when the method returns.

Except for the stackalloc  operator, C# provides no predefined constructs for managing non-garbage collected

memory. Such services are typically provided by supporting class libraries or imported directly from the

underlying operating system. For example, the Memory  class below illustrates how the heap functions of an

underlying operating system might be accessed from C#:



        {
            for (ps += count, pd += count; count != 0; count--) *--pd = *--ps;
        }
    }

    // Frees a memory block.
    public static void Free(void* block)
    {
        if (!HeapFree(s_heap, 0, block)) throw new InvalidOperationException();
    }

    // Re-allocates a memory block. If the reallocation request is for a
    // larger size, the additional region of memory is automatically
    // initialized to zero.
    public static void* ReAlloc(void* block, int size)
    {
        void* result = HeapReAlloc(s_heap, HEAP_ZERO_MEMORY, block, (UIntPtr)size);
        if (result == null) throw new OutOfMemoryException();
        return result;
    }

    // Returns the size of a memory block.
    public static int SizeOf(void* block)
    {
        int result = (int)HeapSize(s_heap, 0, block);
        if (result == -1) throw new InvalidOperationException();
        return result;
    }

    // Heap API flags
    private const int HEAP_ZERO_MEMORY = 0x00000008;

    // Heap API functions
    [DllImport("kernel32")]
    private static extern IntPtr GetProcessHeap();

    [DllImport("kernel32")]
    private static extern void* HeapAlloc(IntPtr hHeap, int flags, UIntPtr size);

    [DllImport("kernel32")]
    private static extern bool HeapFree(IntPtr hHeap, int flags, void* block);

    [DllImport("kernel32")]
    private static extern void* HeapReAlloc(IntPtr hHeap, int flags, void* block, UIntPtr size);

    [DllImport("kernel32")]
    private static extern UIntPtr HeapSize(IntPtr hHeap, int flags, void* block);
}

An example that uses the Memory  class is given below:



class Test
{
    static unsafe void Main()
    {
        byte* buffer = null;
        try
        {
            const int Size = 256;
            buffer = (byte*)Memory.Alloc(Size);
            for (int i = 0; i < Size; i++) buffer[i] = (byte)i;
            byte[] array = new byte[Size];
            fixed (byte* p = array) Memory.Copy(buffer, p, Size);
            for (int i = 0; i < Size; i++) Console.WriteLine(array[i]);
        }
        finally
        {
            if (buffer != null) Memory.Free(buffer);
        }
    }
}

The example allocates 256 bytes of memory through Memory.Alloc  and initializes the memory block with values

increasing from 0 to 255. It then allocates a 256 element byte array and uses Memory.Copy  to copy the contents of

the memory block into the byte array. Finally, the memory block is freed using Memory.Free  and the contents of the

byte array are output on the console.



Documentation comments
5/29/2020 • 22 minutes to read • Edit Online

Introduction

single_line_doc_comment
    : '///' input_character*
    ;

delimited_doc_comment
    : '/**' delimited_comment_section* asterisk+ '/'
    ;

C# provides a mechanism for programmers to document their code using a special comment syntax that contains

XML text. In source code files, comments having a certain form can be used to direct a tool to produce XML from

those comments and the source code elements, which they precede. Comments using such syntax are called

documentation commentsdocumentation comments . They must immediately precede a user-defined type (such as a class, delegate, or

interface) or a member (such as a field, event, property, or method). The XML generation tool is called the

documentation generatordocumentation generator . (This generator could be, but need not be, the C# compiler itself.) The output

produced by the documentation generator is called the documentation filedocumentation file. A documentation file is used as input

to a documentation viewerdocumentation viewer ; a tool intended to produce some sort of visual display of type information and its

associated documentation.

This specification suggests a set of tags to be used in documentation comments, but use of these tags is not

required, and other tags may be used if desired, as long the rules of well-formed XML are followed.

Comments having a special form can be used to direct a tool to produce XML from those comments and the source

code elements, which they precede. Such comments are single-line comments that start with three slashes ( /// ),

or delimited comments that start with a slash and two stars ( /** ). They must immediately precede a user-defined

type (such as a class, delegate, or interface) or a member (such as a field, event, property, or method) that they

annotate. Attribute sections (Attribute specification) are considered part of declarations, so documentation

comments must precede attributes applied to a type or member.

Syntax:Syntax:

In a single_line_doc_comment, if there is a whitespace character following the ///  characters on each of the

single_line_doc_comments adjacent to the current single_line_doc_comment, then that whitespace character is not

included in the XML output.

In a delimited-doc-comment, if the first non-whitespace character on the second line is an asterisk and the same

pattern of optional whitespace characters and an asterisk character is repeated at the beginning of each of the line

within the delimited-doc-comment, then the characters of the repeated pattern are not included in the XML output.

The pattern may include whitespace characters after, as well as before, the asterisk character.

Example:Example:

https://github.com/dotnet/csharplang/blob/master/spec/documentation-comments.md


 

/// <summary>Class <c>Point</c> models a point in a two-dimensional
/// plane.</summary>
///
public class Point 
{
    /// <summary>method <c>draw</c> renders the point.</summary>
    void draw() {...}
}

Recommended tags

TA GTA G SEC T IO NSEC T IO N P URP O SEP URP O SE

<c> <c> Set text in a code-like font

<code> <code> Set one or more lines of source code or
program output

<example> <example> Indicate an example

<exception> <exception> Identifies the exceptions a method can
throw

<include> <include> Includes XML from an external file

The text within documentation comments must be well formed according to the rules of XML

(https://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated and the documentation file will

contain a comment saying that an error was encountered.

Although developers are free to create their own set of tags, a recommended set is defined in Recommended tags.

Some of the recommended tags have special meanings:

The <param>  tag is used to describe parameters. If such a tag is used, the documentation generator must verify

that the specified parameter exists and that all parameters are described in documentation comments. If such

verification fails, the documentation generator issues a warning.

The cref  attribute can be attached to any tag to provide a reference to a code element. The documentation

generator must verify that this code element exists. If the verification fails, the documentation generator issues a

warning. When looking for a name described in a cref  attribute, the documentation generator must respect

namespace visibility according to using  statements appearing within the source code. For code elements that

are generic, the normal generic syntax (that is, " List<T> ") cannot be used because it produces invalid XML.

Braces can be used instead of brackets (that is, " List{T} "), or the XML escape syntax can be used (that is, "

List&lt;T&gt; ").

The <summary>  tag is intended to be used by a documentation viewer to display additional information about a

type or member.

The <include>  tag includes information from an external XML file.

Note carefully that the documentation file does not provide full information about the type and members (for

example, it does not contain any type information). To get such information about a type or member, the

documentation file must be used in conjunction with reflection on the actual type or member.

The documentation generator must accept and process any tag that is valid according to the rules of XML. The

following tags provide commonly used functionality in user documentation. (Of course, other tags are possible.)

https://www.w3.org/TR/REC-xml


    

        

<list> <list> Create a list or table

<para> <para> Permit structure to be added to text

<param> <param> Describe a parameter for a method or
constructor

<paramref> <paramref> Identify that a word is a parameter
name

<permission> <permission> Document the security accessibility of a
member

<remarks> <remarks> Describe additional information about a
type

<returns> <returns> Describe the return value of a method

<see> <see> Specify a link

<seealso> <seealso> Generate a See Also entry

<summary> <summary> Describe a type or a member of a type

<value> <value> Describe a property

<typeparam> Describe a generic type parameter

<typeparamref> Identify that a word is a type parameter
name

TA GTA G SEC T IO NSEC T IO N P URP O SEP URP O SE

<c>

<c>text</c>

/// <summary>Class <c>Point</c> models a point in a two-dimensional
/// plane.</summary>

public class Point 
{
    // ...
}

<code>

This tag provides a mechanism to indicate that a fragment of text within a description should be set in a special font

such as that used for a block of code. For lines of actual code, use <code>  ( <code> ).

Syntax:Syntax:

Example:Example:

This tag is used to set one or more lines of source code or program output in some special font. For small code



  

  

<code>source code or program output</code>

/// <summary>This method changes the point's location by
///    the given x- and y-offsets.
/// <example>For example:
/// <code>
///    Point p = new Point(3,5);
///    p.Translate(-1,3);
/// </code>
/// results in <c>p</c>'s having the value (2,8).
/// </example>
/// </summary>

public void Translate(int xor, int yor) {
    X += xor;
    Y += yor;
}   

<example>

<example>description</example>

<exception>

<exception cref="member">description</exception>

fragments in narrative, use <c>  ( <c> ).

Syntax:Syntax:

Example:Example:

This tag allows example code within a comment, to specify how a method or other library member may be used.

Ordinarily, this would also involve use of the tag <code>  ( <code> ) as well.

Syntax:Syntax:

Example:Example:

See <code>  ( <code> ) for an example.

This tag provides a way to document the exceptions a method can throw.

Syntax:Syntax:

where

member  is the name of a member. The documentation generator checks that the given member exists and

translates member  to the canonical element name in the documentation file.

description  is a description of the circumstances in which the exception is thrown.

Example:Example:



  

public class DataBaseOperations
{
    /// <exception cref="MasterFileFormatCorruptException"></exception>
    /// <exception cref="MasterFileLockedOpenException"></exception>
    public static void ReadRecord(int flag) {
        if (flag == 1)
            throw new MasterFileFormatCorruptException();
        else if (flag == 2)
            throw new MasterFileLockedOpenException();
        // ...
    } 
}

<include>

<include file="filename" path="xpath" />

/// <include file="docs.xml" path='extradoc/class[@name="IntList"]/*' />
public class IntList { ... }

<?xml version="1.0"?>
<extradoc>
  <class name="IntList">
     <summary>
        Contains a list of integers.
     </summary>
  </class>
  <class name="StringList">
     <summary>
        Contains a list of integers.
     </summary>
  </class>
</extradoc>

This tag allows including information from an XML document that is external to the source code file. The external

file must be a well-formed XML document, and an XPath expression is applied to that document to specify what

XML from that document to include. The <include>  tag is then replaced with the selected XML from the external

document.

Syntax:Syntax:

where

filename  is the file name of an external XML file. The file name is interpreted relative to the file that contains the

include tag.

xpath  is an XPath expression that selects some of the XML in the external XML file.

Example:Example:

If the source code contained a declaration like:

and the external file "docs.xml" had the following contents:

then the same documentation is output as if the source code contained:



  

  

/// <summary>
///    Contains a list of integers.
/// </summary>
public class IntList { ... }

<list>

<list type="bullet" | "number" | "table">
   <listheader>
      <term>term</term>
      <description>*description*</description>
   </listheader>
   <item>
      <term>term</term>
      <description>*description*</description>
   </item>
    ...
   <item>
      <term>term</term>
      <description>description</description>
   </item>
</list>

public class MyClass
{
    /// <summary>Here is an example of a bulleted list:
    /// <list type="bullet">
    /// <item>
    /// <description>Item 1.</description>
    /// </item>
    /// <item>
    /// <description>Item 2.</description>
    /// </item>
    /// </list>
    /// </summary>
    public static void Main () {
        // ...
    }
}

<para>

This tag is used to create a list or table of items. It may contain a <listheader>  block to define the heading row of

either a table or definition list. (When defining a table, only an entry for term  in the heading need be supplied.)

Each item in the list is specified with an <item>  block. When creating a definition list, both term  and description

must be specified. However, for a table, bulleted list, or numbered list, only description  need be specified.

Syntax:Syntax:

where

term  is the term to define, whose definition is in description .

description  is either an item in a bullet or numbered list, or the definition of a term .

Example:Example:

This tag is for use inside other tags, such as <summary>  ( <remarks> ) or <returns>  ( <returns> ), and permits

structure to be added to text.

Syntax:Syntax:



  

  

<para>content</para>

/// <summary>This is the entry point of the Point class testing program.
/// <para>This program tests each method and operator, and
/// is intended to be run after any non-trivial maintenance has
/// been performed on the Point class.</para></summary>
public static void Main() {
    // ...
}

<param>

<param name="name">description</param>

/// <summary>This method changes the point's location to
///    the given coordinates.</summary>
/// <param name="xor">the new x-coordinate.</param>
/// <param name="yor">the new y-coordinate.</param>
public void Move(int xor, int yor) {
    X = xor;
    Y = yor;
}

<paramref>

<paramref name="name"/>

where content  is the text of the paragraph.

Example:Example:

This tag is used to describe a parameter for a method, constructor, or indexer.

Syntax:Syntax:

where

name  is the name of the parameter.

description  is a description of the parameter.

Example:Example:

This tag is used to indicate that a word is a parameter. The documentation file can be processed to format this

parameter in some distinct way.

Syntax:Syntax:

where name  is the name of the parameter.

Example:Example:



  

      

    

/// <summary>This constructor initializes the new Point to
///    (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
/// <param name="xor">the new Point's x-coordinate.</param>
/// <param name="yor">the new Point's y-coordinate.</param>

public Point(int xor, int yor) {
    X = xor;
    Y = yor;
}

<permission>

<permission cref="member">description</permission>

/// <permission cref="System.Security.PermissionSet">Everyone can
/// access this method.</permission>

public static void Test() {
    // ...
}

<remarks>

<remarks>description</remarks>

/// <summary>Class <c>Point</c> models a point in a 
/// two-dimensional plane.</summary>
/// <remarks>Uses polar coordinates</remarks>
public class Point 
{
    // ...
}

<returns>

This tag allows the security accessibility of a member to be documented.

Syntax:Syntax:

where

member  is the name of a member. The documentation generator checks that the given code element exists and

translates member to the canonical element name in the documentation file.

description  is a description of the access to the member.

Example:Example:

This tag is used to specify extra information about a type. (Use <summary>  ( <summary> ) to describe the type itself

and the members of a type.)

Syntax:Syntax:

where description  is the text of the remark.

Example:Example:

This tag is used to describe the return value of a method.



    

    

<returns>description</returns>

/// <summary>Report a point's location as a string.</summary>
/// <returns>A string representing a point's location, in the form (x,y),
///    without any leading, trailing, or embedded whitespace.</returns>
public override string ToString() {
    return "(" + X + "," + Y + ")";
}

<see>

<see cref="member"/>

/// <summary>This method changes the point's location to
///    the given coordinates.</summary>
/// <see cref="Translate"/>
public void Move(int xor, int yor) {
    X = xor;
    Y = yor;
}

/// <summary>This method changes the point's location by
///    the given x- and y-offsets.
/// </summary>
/// <see cref="Move"/>
public void Translate(int xor, int yor) {
    X += xor;
    Y += yor;
}

<seealso>

<seealso cref="member"/>

Syntax:Syntax:

where description  is a description of the return value.

Example:Example:

This tag allows a link to be specified within text. Use <seealso>  ( <seealso> ) to indicate text that is to appear in a

See Also section.

Syntax:Syntax:

where member  is the name of a member. The documentation generator checks that the given code element exists

and changes member to the element name in the generated documentation file.

Example:Example:

This tag allows an entry to be generated for the See Also section. Use <see>  ( <see> ) to specify a link from within

text.

Syntax:Syntax:

where member  is the name of a member. The documentation generator checks that the given code element exists

and changes member to the element name in the generated documentation file.



    

  

/// <summary>This method determines whether two Points have the same
///    location.</summary>
/// <seealso cref="operator=="/>
/// <seealso cref="operator!="/>
public override bool Equals(object o) {
    // ...
}

<summary>

<summary>description</summary>

/// <summary>This constructor initializes the new Point to (0,0).</summary>
public Point() : this(0,0) {
}

<value>

<value>property description</value>

/// <value>Property <c>X</c> represents the point's x-coordinate.</value>
public int X
{
    get { return x; }
    set { x = value; }
}

<typeparam>

<typeparam name="name">description</typeparam>

Example:Example:

This tag can be used to describe a type or a member of a type. Use <remarks>  ( <remarks> ) to describe the type

itself.

Syntax:Syntax:

where description  is a summary of the type or member.

Example:Example:

This tag allows a property to be described.

Syntax:Syntax:

where property description  is a description for the property.

Example:Example:

This tag is used to describe a generic type parameter for a class, struct, interface, delegate, or method.

Syntax:Syntax:

where name  is the name of the type parameter, and description  is its description.

Example:Example:



/// <summary>A generic list class.</summary>
/// <typeparam name="T">The type stored by the list.</typeparam>
public class MyList<T> {
    ...
}

<typeparamref>

<typeparamref name="name"/>

/// <summary>This method fetches data and returns a list of <typeparamref name="T"/>.</summary>
/// <param name="query">query to execute</param>
public List<T> FetchData<T>(string query) {
    ...
}

Processing the documentation file

ID string formatID string format

This tag is used to indicate that a word is a type parameter. The documentation file can be processed to format this

type parameter in some distinct way.

Syntax:Syntax:

where name  is the name of the type parameter.

Example:Example:

The documentation generator generates an ID string for each element in the source code that is tagged with a

documentation comment. This ID string uniquely identifies a source element. A documentation viewer can use an

ID string to identify the corresponding metadata/reflection item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it is a flat list with a generated

ID string for each element.

The documentation generator observes the following rules when it generates the ID strings:

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

E Event

F Field

M Method (including constructors, destructors, and
operators)

N Namespace

P Property (including indexers)

No white space is placed in the string.

The first part of the string identifies the kind of member being documented, via a single character followed

by a colon. The following kinds of members are defined:



ID string examplesID string examples

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information
about the error. For example, the documentation
generator generates error information for links that cannot
be resolved.

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

The second part of the string is the fully qualified name of the element, starting at the root of the

namespace. The name of the element, its enclosing type(s), and namespace are separated by periods. If the

name of the item itself has periods, they are replaced by #(U+0023)  characters. (It is assumed that no

element has this character in its name.)

For methods and properties with arguments, the argument list follows, enclosed in parentheses. For those

without arguments, the parentheses are omitted. The arguments are separated by commas. The encoding of

each argument is the same as a CLI signature, as follows:

Arguments are represented by their documentation name, which is based on their fully qualified name,

modified as follows:

Arguments that represent generic types have an appended `  (backtick) character followed by the

number of type parameters

Arguments having the out  or ref  modifier have an @  following their type name. Arguments

passed by value or via params  have no special notation.

Arguments that are arrays are represented as [lowerbound:size, ... , lowerbound:size]  where

the number of commas is the rank less one, and the lower bounds and size of each dimension, if

known, are represented in decimal. If a lower bound or size is not specified, it is omitted. If the

lower bound and size for a particular dimension are omitted, the :  is omitted as well. Jagged

arrays are represented by one []  per level.

Arguments that have pointer types other than void are represented using a *  following the type

name. A void pointer is represented using a type name of System.Void .

Arguments that refer to generic type parameters defined on types are encoded using the `

(backtick) character followed by the zero-based index of the type parameter.

Arguments that use generic type parameters defined in methods use a double-backtick ``

instead of the `  used for types.

Arguments that refer to constructed generic types are encoded using the generic type, followed by

{ , followed by a comma-separated list of type arguments, followed by } .

The following examples each show a fragment of C# code, along with the ID string produced from each source

element capable of having a documentation comment:

Types are represented using their fully qualified name, augmented with generic information:



enum Color { Red, Blue, Green }

namespace Acme
{
    interface IProcess {...}

    struct ValueType {...}

    class Widget: IProcess
    {
        public class NestedClass {...}
        public interface IMenuItem {...}
        public delegate void Del(int i);
        public enum Direction { North, South, East, West }
    }

    class MyList<T>
    {
        class Helper<U,V> {...}
    }
}

"T:Color"
"T:Acme.IProcess"
"T:Acme.ValueType"
"T:Acme.Widget"
"T:Acme.Widget.NestedClass"
"T:Acme.Widget.IMenuItem"
"T:Acme.Widget.Del"
"T:Acme.Widget.Direction"
"T:Acme.MyList`1"
"T:Acme.MyList`1.Helper`2"

Fields are represented by their fully qualified name:



namespace Acme
{
    struct ValueType
    {
        private int total;
    }

    class Widget: IProcess
    {
        public class NestedClass
        {
            private int value;
        }

        private string message;
        private static Color defaultColor;
        private const double PI = 3.14159;
        protected readonly double monthlyAverage;
        private long[] array1;
        private Widget[,] array2;
        private unsafe int *pCount;
        private unsafe float **ppValues;
    }
}

"F:Acme.ValueType.total"
"F:Acme.Widget.NestedClass.value"
"F:Acme.Widget.message"
"F:Acme.Widget.defaultColor"
"F:Acme.Widget.PI"
"F:Acme.Widget.monthlyAverage"
"F:Acme.Widget.array1"
"F:Acme.Widget.array2"
"F:Acme.Widget.pCount"
"F:Acme.Widget.ppValues"

namespace Acme
{
    class Widget: IProcess
    {
        static Widget() {...}
        public Widget() {...}
        public Widget(string s) {...}
    }
}

"M:Acme.Widget.#cctor"
"M:Acme.Widget.#ctor"
"M:Acme.Widget.#ctor(System.String)"

namespace Acme
{
    class Widget: IProcess
    {
        ~Widget() {...}
    }
}

"M:Acme.Widget.Finalize"

Constructors.

Destructors.



namespace Acme
{
    struct ValueType
    {
        public void M(int i) {...}
    }

    class Widget: IProcess
    {
        public class NestedClass
        {
            public void M(int i) {...}
        }

        public static void M0() {...}
        public void M1(char c, out float f, ref ValueType v) {...}
        public void M2(short[] x1, int[,] x2, long[][] x3) {...}
        public void M3(long[][] x3, Widget[][,,] x4) {...}
        public unsafe void M4(char *pc, Color **pf) {...}
        public unsafe void M5(void *pv, double *[][,] pd) {...}
        public void M6(int i, params object[] args) {...}
    }

    class MyList<T>
    {
        public void Test(T t) { }
    }

    class UseList
    {
        public void Process(MyList<int> list) { }
        public MyList<T> GetValues<T>(T inputValue) { return null; }
    }
}

"M:Acme.ValueType.M(System.Int32)"
"M:Acme.Widget.NestedClass.M(System.Int32)"
"M:Acme.Widget.M0"
"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)"
"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])"
"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])"
"M:Acme.Widget.M4(System.Char*,Color**)"
"M:Acme.Widget.M5(System.Void*,System.Double*[0:,0:][])"
"M:Acme.Widget.M6(System.Int32,System.Object[])"
"M:Acme.MyList`1.Test(`0)"
"M:Acme.UseList.Process(Acme.MyList{System.Int32})"
"M:Acme.UseList.GetValues``(``0)"

Methods.

Properties and indexers.



namespace Acme
{
    class Widget: IProcess
    {
        public int Width { get {...} set {...} }
        public int this[int i] { get {...} set {...} }
        public int this[string s, int i] { get {...} set {...} }
    }
}

"P:Acme.Widget.Width"
"P:Acme.Widget.Item(System.Int32)"
"P:Acme.Widget.Item(System.String,System.Int32)"

namespace Acme
{
    class Widget: IProcess
    {
        public event Del AnEvent;
    }
}

"E:Acme.Widget.AnEvent"

namespace Acme
{
    class Widget: IProcess
    {
        public static Widget operator+(Widget x) {...}
    }
}

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)"

namespace Acme
{
    class Widget: IProcess
    {
        public static Widget operator+(Widget x1, Widget x2) {...}
    }
}

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)"

Events.

Unary operators.

The complete set of unary operator function names used is as follows: op_UnaryPlus , op_UnaryNegation , 

op_LogicalNot , op_OnesComplement , op_Increment , op_Decrement , op_True , and op_False .

Binary operators.

The complete set of binary operator function names used is as follows: op_Addition , op_Subtraction , 

op_Multiply , op_Division , op_Modulus , op_BitwiseAnd , op_BitwiseOr , op_ExclusiveOr , op_LeftShift , 

op_RightShift , op_Equality , op_Inequality , op_LessThan , op_LessThanOrEqual , op_GreaterThan , and 

op_GreaterThanOrEqual .

Conversion operators have a trailing " ~ " followed by the return type.



An example
C# source codeC# source code

namespace Graphics
{

/// <summary>Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
public class Point 
{

    /// <summary>Instance variable <c>x</c> represents the point's
    ///    x-coordinate.</summary>
    private int x;

    /// <summary>Instance variable <c>y</c> represents the point's
    ///    y-coordinate.</summary>
    private int y;

    /// <value>Property <c>X</c> represents the point's x-coordinate.</value>
    public int X
    {
        get { return x; }
        set { x = value; }
    }

    /// <value>Property <c>Y</c> represents the point's y-coordinate.</value>
    public int Y
    {
        get { return y; }
        set { y = value; }
    }

    /// <summary>This constructor initializes the new Point to
    ///    (0,0).</summary>
    public Point() : this(0,0) {}

    /// <summary>This constructor initializes the new Point to
    ///    (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
    /// <param><c>xor</c> is the new Point's x-coordinate.</param>
    /// <param><c>yor</c> is the new Point's y-coordinate.</param>
    public Point(int xor, int yor) {
        X = xor;
        Y = yor;
    }

    /// <summary>This method changes the point's location to
    ///    the given coordinates.</summary>
    /// <param><c>xor</c> is the new x-coordinate.</param>
    /// <param><c>yor</c> is the new y-coordinate.</param>
    /// <see cref="Translate"/>

namespace Acme
{
    class Widget: IProcess
    {
        public static explicit operator int(Widget x) {...}
        public static implicit operator long(Widget x) {...}
    }
}

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32"
"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64"

The following example shows the source code of a Point  class:



    /// <see cref="Translate"/>
    public void Move(int xor, int yor) {
        X = xor;
        Y = yor;
    }

    /// <summary>This method changes the point's location by
    ///    the given x- and y-offsets.
    /// <example>For example:
    /// <code>
    ///    Point p = new Point(3,5);
    ///    p.Translate(-1,3);
    /// </code>
    /// results in <c>p</c>'s having the value (2,8).
    /// </example>
    /// </summary>
    /// <param><c>xor</c> is the relative x-offset.</param>
    /// <param><c>yor</c> is the relative y-offset.</param>
    /// <see cref="Move"/>
    public void Translate(int xor, int yor) {
        X += xor;
        Y += yor;
    }

    /// <summary>This method determines whether two Points have the same
    ///    location.</summary>
    /// <param><c>o</c> is the object to be compared to the current object.
    /// </param>
    /// <returns>True if the Points have the same location and they have
    ///    the exact same type; otherwise, false.</returns>
    /// <seealso cref="operator=="/>
    /// <seealso cref="operator!="/>
    public override bool Equals(object o) {
        if (o == null) {
            return false;
        }

        if (this == o) {
            return true;
        }

        if (GetType() == o.GetType()) {
            Point p = (Point)o;
            return (X == p.X) && (Y == p.Y);
        }
        return false;
    }

    /// <summary>Report a point's location as a string.</summary>
    /// <returns>A string representing a point's location, in the form (x,y),
    ///    without any leading, training, or embedded whitespace.</returns>
    public override string ToString() {
        return "(" + X + "," + Y + ")";
    }

    /// <summary>This operator determines whether two Points have the same
    ///    location.</summary>
    /// <param><c>p1</c> is the first Point to be compared.</param>
    /// <param><c>p2</c> is the second Point to be compared.</param>
    /// <returns>True if the Points have the same location and they have
    ///    the exact same type; otherwise, false.</returns>
    /// <seealso cref="Equals"/>
    /// <seealso cref="operator!="/>
    public static bool operator==(Point p1, Point p2) {
        if ((object)p1 == null || (object)p2 == null) {
            return false;
        }

        if (p1.GetType() == p2.GetType()) {



            return (p1.X == p2.X) && (p1.Y == p2.Y);
        }

        return false;
    }

    /// <summary>This operator determines whether two Points have the same
    ///    location.</summary>
    /// <param><c>p1</c> is the first Point to be compared.</param>
    /// <param><c>p2</c> is the second Point to be compared.</param>
    /// <returns>True if the Points do not have the same location and the
    ///    exact same type; otherwise, false.</returns>
    /// <seealso cref="Equals"/>
    /// <seealso cref="operator=="/>
    public static bool operator!=(Point p1, Point p2) {
        return !(p1 == p2);
    }

    /// <summary>This is the entry point of the Point class testing
    /// program.
    /// <para>This program tests each method and operator, and
    /// is intended to be run after any non-trivial maintenance has
    /// been performed on the Point class.</para></summary>
    public static void Main() {
        // class test code goes here
    }
}
}

Resulting XMLResulting XML

<?xml version="1.0"?>
<doc>
    <assembly>
        <name>Point</name>
    </assembly>
    <members>
        <member name="T:Graphics.Point">
            <summary>Class <c>Point</c> models a point in a two-dimensional
            plane.
            </summary>
        </member>

        <member name="F:Graphics.Point.x">
            <summary>Instance variable <c>x</c> represents the point's
            x-coordinate.</summary>
        </member>

        <member name="F:Graphics.Point.y">
            <summary>Instance variable <c>y</c> represents the point's
            y-coordinate.</summary>
        </member>

        <member name="M:Graphics.Point.#ctor">
            <summary>This constructor initializes the new Point to
        (0,0).</summary>
        </member>

        <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
            <summary>This constructor initializes the new Point to
            (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
            <param><c>xor</c> is the new Point's x-coordinate.</param>
            <param><c>yor</c> is the new Point's y-coordinate.</param>
        </member>

Here is the output produced by one documentation generator when given the source code for class Point , shown

above:



        <member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
            <summary>This method changes the point's location to
            the given coordinates.</summary>
            <param><c>xor</c> is the new x-coordinate.</param>
            <param><c>yor</c> is the new y-coordinate.</param>
            <see cref="M:Graphics.Point.Translate(System.Int32,System.Int32)"/>
        </member>

        <member
            name="M:Graphics.Point.Translate(System.Int32,System.Int32)">
            <summary>This method changes the point's location by
            the given x- and y-offsets.
            <example>For example:
            <code>
            Point p = new Point(3,5);
            p.Translate(-1,3);
            </code>
            results in <c>p</c>'s having the value (2,8).
            </example>
            </summary>
            <param><c>xor</c> is the relative x-offset.</param>
            <param><c>yor</c> is the relative y-offset.</param>
            <see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/>
        </member>

        <member name="M:Graphics.Point.Equals(System.Object)">
            <summary>This method determines whether two Points have the same
            location.</summary>
            <param><c>o</c> is the object to be compared to the current
            object.
            </param>
            <returns>True if the Points have the same location and they have
            the exact same type; otherwise, false.</returns>
            <seealso
      cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
            <seealso
      cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
        </member>

        <member name="M:Graphics.Point.ToString">
            <summary>Report a point's location as a string.</summary>
            <returns>A string representing a point's location, in the form
            (x,y),
            without any leading, training, or embedded whitespace.</returns>
        </member>

        <member
       name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
            <summary>This operator determines whether two Points have the
            same
            location.</summary>
            <param><c>p1</c> is the first Point to be compared.</param>
            <param><c>p2</c> is the second Point to be compared.</param>
            <returns>True if the Points have the same location and they have
            the exact same type; otherwise, false.</returns>
            <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
            <seealso
     cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
        </member>

        <member
      name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
            <summary>This operator determines whether two Points have the
            same
            location.</summary>
            <param><c>p1</c> is the first Point to be compared.</param>
            <param><c>p2</c> is the second Point to be compared.</param>
            <returns>True if the Points do not have the same location and



            the
            exact same type; otherwise, false.</returns>
            <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
            <seealso
      cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
        </member>

        <member name="M:Graphics.Point.Main">
            <summary>This is the entry point of the Point class testing
            program.
            <para>This program tests each method and operator, and
            is intended to be run after any non-trivial maintenance has
            been performed on the Point class.</para></summary>
        </member>

        <member name="P:Graphics.Point.X">
            <value>Property <c>X</c> represents the point's
            x-coordinate.</value>
        </member>

        <member name="P:Graphics.Point.Y">
            <value>Property <c>Y</c> represents the point's
            y-coordinate.</value>
        </member>
    </members>
</doc>
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