This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Building a
Custom Database-Driven Site Map Provider

Introduction

ASP.NET 2.0’s site map feature enables a page developer to define a web application’s site map in some persistent
medium, such as in an XML file. Once defined, the site map data can be accessed programmatically through the
siteMap class in the System.Web namespace or through a variety of navigation Web controls, such as the
SiteMapPath, Menu, and TreeView controls. The site map system uses the provider model so that different site
map serialization implementations can be created and plugged into a web application. The default site map
provider that ships with ASP.NET 2.0 persists site map structure in an XML file. Back in the Master Pages and Site
Navigation tutorial we created a file named web . sitemap that contained this structure and have been updating its
XML with each new tutorial section.

The default XML-based site map provider works well if the site map’s structure is fairly static, such as for these
tutorials. In many scenarios, however, a more dynamic site map is needed. Consider the site map shown in Figure
1, where each category and product appear as sections in the website’s structure. With this site map, visiting the
web page corresponding to the root node might list all of the categories, whereas visiting a particular category’s
web page would list that category’s products and viewing a particular product’s web page would show that

product’s details.
All Categores

Baverages Condimants Confections [B B]
‘ o ‘ =i . /‘\ /‘\
| B B | E BB

Figure 1: The Categories and Products Makeup the Site Map’s Structure

While this category- and product-based structure could be hard-coded into the web. sitemap file, the file would
need to be updated each time a category or product was added, removed, or renamed. Consequently, the site map
maintenance would be greatly simplified if its structure was retrieved from the database or, ideally, from the
Business Logic Layer of the application’s architecture. That way, as products and categories were added, renamed,
or deleted, the site map would automatically update to reflect these changes.

Since ASP.NET 2.0’s site map serialization is built atop the provider model, we can create our own custom site

map provider that grabs its data from an alternate data store, such as the database or architecture. In this tutorial
we’ll build a custom provider that retrieves its data from the BLL. Let’s get started!

1 of 26

Note: The custom site map provider created in this tutorial is tightly coupled to the application’s architecture
and data model. Jeff Prosise’s Storing Site Maps in SQL Server and The SQL Site Map Provider You’ve
Been Waiting For articles examine a generalized approach to storing site map data in SQL Server.

Step 1: Creating the Custom Site Map Provider Web Pages

Before we start creating a custom site map provider, let’s first add the ASP.NET pages we’ll need for this tutorial.
Start by adding a new folder named siteMapProvider. Next, add the following ASP.NET pages to that folder,

making sure to associate each page with the Site.master master page:
e Default.aspx
e ProductsByCategory.aspx

e ProductDetails.aspx

Also add a CustomProviders subfolder to the 2pp Code folder.

2 of 26

Solution Ex |:||||r|-'r - I_:'I IH SPMET_Dak.. « 1 X

= -j [8a] & B3 3
._= : O ASPMET_Data_Tutorial_b2Z_ CSh
= .ﬁ.pp_Cn:nde
®- 3 BLL
=R el
E-_'_j Custn:nmPrn:widers]
=1 o g o718
. App_Data
= App_Themes
| BasicReporting
| BinaryData
[Brochures
[Caching
[CustamButtons
[CustomButtonsDatalistRepeater
[CustarmFarmatking
| DatalistRepeaterBasics
[DakalistRepeaterFikering
[EditDelzteDatalist
[EditInsertDelete
[EnhancedGridiigwm
[Filtering
[PagingandSarting
|] PagingSortingDatalistR.epeaker
,_‘,.? SiteMapPraovider
,__] Default, aspx
,j PraduckDetails, aspax
i}]PdeuctsEyCategnry asp
__,i SqlDakasource
[UserConkrals
,j Default, aspo
4] Global.asax
] Site.master
Af sbyles.css
= Web.Config
2] web.sitemap

e] o | O o = O A O = o O o

[

1]

- E--F-E

E-E

[+

[+

\Eysoluti... |8 Prop, .. |[SESery.., |BRClass...

Figure 2: Add the ASP.NET Pages for the Site Map Provider-Related Tutorials

Since there is only one tutorial for this section, we don’t need Default.aspx to list the section’s tutorials. Instead,
Default.aspx will display the categories in a GridView control. We’ll tackle this in Step 2.

Next, update web . sitemap to include a reference to the Default.aspx page. Specifically, add the following
markup after the “Caching” <siteMapNode>:

<siteMapNode
title="Customizing the Site Map" url="~/SiteMapProvider/Default.aspx"

description="Learn how to create a custom provider that retrieves the site map
from the Northwind database." />

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on the left

3 0f 26

now includes an item for the sole site map provider tutorial.

‘2 Home - Micrus:[i|@ E]|E|@

File Edit Wiew Favorites

¢ >IN NE R
 iudcress | €] hupiffocahost; v | [Go

b

F
Customizing the Site

i*_g Local inkranet

Figure 3: The Site Map Now Includes an Entry for the Site Map Provider Tutorial

This tutorial’s main focus is to illustrate creating a custom site map provider and configuring a web application to
use that provider. In particular, we’ll build a provider that returns a site map that includes a root node along with a
node for each category and product, as depicted in Figure 1. In general, each node in the site map may specify a
URL. For our site map, the root node’s URL will be ~/SiteMapProvider/Default.aspx, which will list all of the
categories in the database. Each category node in the site map will have a URL that points to
~/SiteMapProvider/ProductsByCategory.aspx?CategoryID=categoryID, which will list all of the products in
the specified categoryID. Finally, each product site map node will point to
~/SiteMapProvider/ProductDetails.aspx?ProductID=product1b, which will display the specific product’s
details.

To start we need to create the Default.aspx, ProductsByCategory.aspx, and ProductDetails.aspx pages.
These pages are completed in Steps 2, 3, and 4, respectively. Since the thrust of this tutorial is on site map
providers, and since past tutorials have covered creating these sorts of multi-page master/detail reports, we will
hurry through Steps 2 through 4. If you need a refresher on creating master/detail reports that span multiple pages,
refer back to the Master/Detail Filtering Across Two Pages tutorial.

Step 2: Displaying a List of Categories

Open the Default.aspx page in the siteMapProvider folder and drag a GridView from the Toolbox onto the
Designer, setting its ID to Categories. From the GridView’s smart tag, bind it to a new ObjectDataSource named
CategoriesDataSource and configure it so that it retrieves its data using the CategoriesBLL class’s
GetCategories method. Since this GridView just displays the categories and does not provide data modification
capabilities, set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)”.

4 of 26

Configure Data Source - CategoriesDataSource |E”E| |E E|

j Define Data Methods
=
SELECT | UPDATE | INSERT | DELETE |

Chaoss & mathod of the business object that rakurms daks bo sssociate with the SELECT aperation, The
method can return a DatasSet, DataReader, or stronghy-typed collection,

Exarnple; GatProducts(Int32 categoryld), returns a Datasst,

Chanse a method:
| GetCategories(), retums CategoriesDataTable W |

Genlateqories), retums CategoriesDataTable
GetCategoriesAndiumberOFProducts(), returns CategoriesDataT sble
GetCategoryByCatagory ID(INt32 categoryID), returns CategoriesDataT able
GetlstegoryWithBnaryDataByCategory ID{INt32 cabegoryID), reburns CategoriesDataT able

o> | (o) (ot]

Figure 4: Configure the ObjectDataSource to Return Categories Using the GetCategories Method

50f26

Configure Data Source - CategoriesDataSource

Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |
i
Chaoss & mathad of the business object to associate with the UPDATE operation. The method should
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.

Chansz & method:

1
|
I
Examplas: UpdateProduch{Product p), or UpdateProduck(Int32 productiD, String name, Double price) |
| (Mane) i |

LipdateCateqory(String categoryMame, String description, String brachurePath, Bvte[] picture, Int32 categoryID!
[LpdateC ategory(String categoryName, String description, String brochurePath, Int32 categoryID), returns Boole
r W

o> | (o) (ot]

Figure 5: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE Tabs to “(None)”

After completing the Configure Data Source wizard, Visual Studio will add a BoundField for categoryID,
CategoryName, Description, NumberOfProducts, and BrochurePath. Edit the GridView so that it only contains
the CategoryName and Description BoundFields and update the categoryName BoundField’s HeaderText
property to “Category”.

Next, add a HyperLinkField and position it so that it’s the left-most field. Set the bataNavigateUrlFields

property to CategoryID and the DataNavigateUrlFormatString property to
~/SiteMapProvider/ProductsByCategory.aspx?CategoryID={0}. Set the Text property to “View Products”.

6 of 26

Fields

Available Fields: HyperLinkField properties:
ﬂ Pickure S |
[£] BrochurePath i
== Yiew Products |
‘ ehavior
i3] ImageField Insertyisible True
2] ButtonFisld l Mavigatellrl
[+ CommandField v | showHeader True
SortExpression
(C=) |lnm
e Wisible True
AIHyperLinkField i & = o = ;
= DatakavigatelrFigl CategoryID
IS4 caEBaney I DatatlavigateUrlFor ~/SiteMapP id 1
& Description atalavigatelrlFar iteMapProvider. L |

Text
The text used for the hyperlink,
[

L S
[] Auto-generate fields Convert this field into a TemplateField

Refresh Schema [O] [Cancel

Figure 6: Add a HyperLinkField to the categories GridView

After creating the ObjectDataSource and customizing the GridView’s fields, the two controls’ declarative markup
will look like the following:

<asp:GridView ID="Categories" runat="server" AutoGenerateColumns="False"
DataKeyNames="CategoryID" DataSourceID="CategoriesDataSource"
EnableViewState="False">
<Columns>
<asp:HyperLinkField DataNavigateUrlFields="CategoryID"
DataNavigateUrlFormatString=
"~/SiteMapProvider/ProductsByCategory.aspx?CategoryID={0}"
Text="View Products" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
SortExpression="CategoryName" />
<asp:BoundField DataField="Description" HeaderText="Description"
SortExpression="Description" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"

OldValuesParameterFormatString="original {0}" SelectMethod="GetCategories"
TypeName="CategoriesBLL"></asp:0bjectDataSource>

Figure 7 shows Default.aspx when viewed through a browser. Clicking a category’s “View Products” link takes
you to ProductsByCategory.aspx?CategoryID=categoryID, which we will build in Step 3.

7 of 26

E Lintitled Page - Microsadl Internel Explores r?"ir.al r: rE' :’E
Bl B Mew Fpoiter Took Help

(3 Bk = W @ S O oseerch JcFoeokes 8% 0- G W] v [S -
Agoyers -G_"lrr:_'l'rwﬂnlt:i-l-'ﬂun‘i-'l'I_I:In_r.mu_ﬂ.‘ oS aptrosicer Misfauk, sy b ‘GD
Working with Data Tutorials Hame > Customizing the Site Map

Categories

Eabegory [rescription
Wiew Prodicis Beverages Soft drnks, coffees, teas, beers, and akes

iew Products Condiments - Sweel and savary sauces, relishes, spresds, and seasoniogs
Wiew Froducts Confections Desserts, candies, and swest breads

‘Wew Products Dairy Products Cheeses

Wiew Froducts Grams/Cereals Breads, arackers, pasta, and ceras

Wiew Froducts Meat/Fouitry Prepared meats

Wiew Prodiicts Prodiice Dried frulk and bean curd
Filter by Drop-Dos Wies Froducts Seafocd S=awesd &nd fish
List wWiew Froducks Veggies ummy vegatables!
Masber-Detake- Wiew ProgUcts Test Category This |s a testl
Details -
&l % Lol intranst

Figure 7: Each Category is Listed Along with a “View Products” Link

Step 3: Listing the Selected Category’s Products

Open the ProductsByCategory.aspx page and add a GridView, naming it ProductsByCategory. From its smart
tag, bind the GridView to a new ObjectDataSource named ProductsByCategoryDataSource. Configure the
ObjectDataSource to use the ProductsBLL class’s GetProductsByCategoryID (categoryID) method and set the
drop-down lists to “(None)” in the UPDATE, INSERT, and DELETE tabs.

8 0f 26

Configure Data Source - ProducisByCategoryDataSource

j Define Data Methods
=
SELECT | UpDATE i INSERT DELETEj

Chaoss & method of the business objeck that returms daks bo sssociate with the SELECT aperstion, The
method can return a DataSet, DataReader, or stronghy-typed collection,

Exarnpbe; GatProducts(Int32 categoryld), returns a Datasst,

Chaose a method:

| GetProductsEByCategoryID{INt32 categoryID), reburns Bro w

GetProductByProductID{Ing3Z productID), returns ProducksDataTable
GetProducts), returns ProductsDataTable
GetProductsAsP agedDat aSourcalInk 32 ¢
GetProducksByC ateqory Il Int32 categoryID), reburns ProducksDataTable
GetProductsBySupplierIDiInt32 supplisr1D), returns ProductsDakaTable
GetProductsPaged{Int32 startRowindex, Ink32 maximumRows), returns ProductsDataTable
GetProductsPagedandSortedi String sortExpression, Int3Z startRowlnds:, Int32 maximurmPows), retums Product
GetProductsSorkedAsPagedDataSource!String sortExpression, Int32 pagelndex, Ink3Z pageSize), returns Paged!

agedDataSource

[= Previous J[__ﬂ‘e:t . I f Cancel

Figure 8: Use the ProductsBLL Class’s GetProductsByCategoryID (categoryID) Method

The final step in the Configure Data Source wizard prompts for a parameter source for categoryID. Since this
information is passed through the querystring field categoryIb, select QueryString from the drop-down list and
enter “CategorylD” in the QueryStringField textbox as shown in Figure 9. Click Finish to complete the wizard.

9 of 26

Configure Data Source - ProducisByCategoryDataSource

!1 Define Parameters

The wizard has detected one or more parameters in your SELECT method. Faor each parameter in the SELECT
method, choose & source For the parameter's value,

Parameters: Parameter source:

Blame Walhe CueryString w

|

[

| ™ |
| cakegorylD Fequest, QueryStringl”... ‘ CueryStringFieid:

|CategorylD|
Def aulkVahue:
i

Showve advanced properkies

[Method signature:
i zetProductsByCatenory ID(Int 32 categoryID), returns ProductsDatalable |

e | (o) (o]

Figure 9: Use the categoryID Querystring Field for the categorylD Parameter

After completing the wizard, Visual Studio will add corresponding BoundFields and a CheckBoxField to the
GridView for the product data fields. Remove all but the ProductName, UnitPrice, and SupplierName
BoundFields. Customize these three BoundFields’ HeaderText properties to read “Product”, “Price”, and
“Supplier”, respectively. Format the unitprice BoundField as a currency.

Next, add a HyperLinkField and move it to the left-most position. Set its Text property to “View Details”, its

DataNavigateUrlFields property to ProductID, and its DataNavigateUrlFormatString property to
~/SiteMapProvider/ProductDetails.aspx?ProductID={0}.

10 of 26

Fields

Available Fields: HyperLinkField properties:
=-(7) CheckBoxField |
=i | Discontinued T == _ _
Yiew Detalls] |
5] ImageField B Behavior
] ButtonField InsertVisible True
-] CommandField B Mavigatelr!
&ﬂ TemplateField v ShowHeader True
ST SortExpression
'ml Target

Selected fields: Wisible True

El Dat
A |HyperLinkField 1 b a] A= ProHuctID (]
(;; ___J 1akahlavigatelrFis
e ==LV eS8 g ll=)] Froduc 1

= price DatatlavigateUrlFor ~/SiteMapProvider
E Suppliertame

" |

)] =

DataMavigateUrlFields

The fields bound to the MavigateUr| property of
the hypetlink.

[] Auto-generate fields Convert this field into a TemplateField

Refresh Schema [O] [Cancel

Figure 10: Add a “View Details” HyperLinkField that Points to ProductDetails.aspx

After making these customizations, the GridView and ObjectDataSource’s declarative markup should resemble the
following:

<asp:GridView ID="ProductsByCategory" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ProductsByCategoryDataSource"
EnableViewState="False">
<Columns>
<asp:HyperLinkField DataNavigateUrlFields="ProductID"
DataNavigateUrlFormatString=
"~/SiteMapProvider/ProductDetails.aspx?ProductID={0}"
Text="View Details" />
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price" HtmlEncode="False"
SortExpression="UnitPrice" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
ReadOnly="True" SortExpression="SupplierName" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsByCategoryDataSource" runat="server"
OldValuesParameterFormatString="original {O0}"
SelectMethod="GetProductsByCategoryID" TypeName="ProductsBLL">
<SelectParameters>
<asp:QueryStringParameter Name="categoryID"

11 0of 26

QueryStringField="CategoryID" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

Return to viewing Default.aspx through a browser and click on the “View Products” link for Beverages. This
will take you to ProductsByCategory.aspx?CategoryID=1, displaying the names, prices, and suppliers of the
products in the Northwind database that belong to the Beverages category (see Figure 11). Feel free to further
enhance this page to include a link to return users to the category listing page (Default.aspx) and a DetailsView
or FormView control that displays the selected category’s name and description.

1 Untitled Pape - Micresalt Infernet Explarer
Bl Lk Yewr Fyrodles Took Heb

@B L BE

Qback - o [F | S seah f Pavorkes 5 LR €& » I 5h

ez] nitp: o it SOOSTASPNET Diaba_Tuboridl 63 OS5 sMapdroritis Prechut sftCalanory o 1 atagory D=1

l\rlGu

Working with Data Tutorials

Hiomne

Products by Category

Basic Reporting
Sirmipss Display

Ereclarative
Parmieters

Product Price
$1%.95 Ex0c Liquids
$12.00 Exotbe Uguids

wWiaw Datalts Chel Tea
Wizw Ctals Chang

Wiaw Details Guarana Fantastica $4.50 Refregoos americanas LT
Settrig Parsmeter Wil [ratails Sasquatch e $14.00 Bagfoat Brawerias
walues Whew Detais Stesheye Stout F18,00 Bagroct Breweries
e [etalls Chartrause varte $18.00 Aux joyeux ecclésiastquas
Wiew [etalls Ipoh Coffes $45. 00 Laka Trading

Filtar by Grop=0own
Lisk

Waw Details L aughing Lumberjack Lager $14.00 Begfook Braweries

Wiew Detalls Sutback Lager

Masker-Detallz-
Degals

MasterDetal Across
Twd PAgas.

Datsile of Salacted

‘e Detalls Phionbrag Klosterbier

Wiew Detals Lakialikibsn

Wiew [etails fome Ted

Wiew Dretais ocme Colfes

Whew [Mtals Aome Ted

15,00 Paviova, Ld

47.75 PFlutzer LebensmittelgroBmarkts &G
$18.00 Karkki Oy

$19.95 Exobc Uquids

$24. 95 Exol Lquids

F15.00Ma Masan

B

% Locad inbranet
=

] vore

Figure 11: The Beverages’ Names, Prices, and Suppliers are Displayed

Step 4: Showing a Product’s Details

The final page, Productbetails.aspx, displays the selected products details. Open Productbetails.aspx and
drag a DetailsView from the Toolbox onto the Designer. Set the DetailsView’s ID property to ProductInfo and
clear out its Height and width property values. From its smart tag, bind the DetailsView to a new
ObjectDataSource named ProductDataSource, configuring the ObjectDataSource to pull its data from the
ProductsBLL class’s GetProductByProductID (product1D) method. As with the previous web pages created in
Steps 2 and 3, set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)”.

12 of 26

Configure Data Source - ProductDataSource |E”E| EE|

J Define Data Methods

SELECT | UPDATE | INSERT | DELETE |

Chaces & methad of the business object that rekurns daks bo sssociate with the SELECT aperation, The
method can return a DatasSet, DataReader, or strongly-typed collection, |

Exarnphe! GatProducts(Int32 categoryld), returns a DataSst,

Chonse & method:
| GetProductByProductID(In32 productIDy), reburns Produc

GetProductByProduckID{Ing 32 oroductiD, reburns ProductsDataTable
GetProducts), returns ProductsDataTable
GetProductsasPagedDataSource(Int32 pagelndes, Int3Z2 pageSize), returns PagedDataSource

GetProductsEyC ategoryID{INE32 categoryID), returns ProductsDataTable

GetProductsBySupplierIDiInt32 supplierlD), returns ProductsDakaTable

GetProductsPaged{Int32 startRowindex, Ink32 maximumRows), returns ProductsDataTable
GetProductsPagedandSortediSkring sortExpression, Int32 startRowlnds:, Int32 maximumPows), retums Product
GetProducksSorkedAsPagedDataSourceString sortExpression, Int32 pagelndex, Ink32 pageSize), returns Paged!

L < Previous j l__m_m > J Cancel

Figure 12: Configure the ObjectDataSource to Use the GetProductByProductID (productID) Method

The last step of the Configure Data Source wizard prompts for the source of the productID parameter. Since this
data comes through the querystring field Product1b, set the drop-down list to QueryString and the
QueryStringField textbox to “ProductID”. Finally, click the Finish button to complete the wizard.

13 of 26

Configure Data Source - ProduciDataSource

1] Define Parameters
="

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
method, chooss a source For the paramster's value,

Parameters: Parameter source:

| Mame Value . | QueryString v

productID Request, QueryString(™... QueryStringField:

|

DesF aulkty abuis:

Showe advanced properkies

Method sigrature:
| GetProductByProductiDnInt32 productID), returns ProducksDataTable

Coms]| o> | (oo (connt]

Figure 13: Configure the productID Parameter to Pull its Value from the ProductID Querystring Field

After completing the Configure Data Source wizard, Visual Studio will create corresponding BoundFields and a
CheckBoxField in the DetailsView for the product data fields. Remove the ProductID, SupplierID, and
categoryID BoundFields and configure the remaining fields as you see fit. After a handful of aesthetic
configurations, my DetailsView and ObjectDataSource’s declarative markup looked like the following:

<asp:DetailsView ID="ProductInfo" runat="server" AutoGenerateRows="False"
DataKeyNames="ProductID" DataSourcelID="ProductDataSource"
EnableViewState="False">
<Fields>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
ReadOnly="True" SortExpression="SupplierName" />
<asp:BoundField DataField="QuantityPerUnit" HeaderText="Qty/Unit"
SortExpression="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price" HtmlEncode="False"
SortExpression="UnitPrice" />
<asp:BoundField DataField="UnitsInStock" HeaderText="Units In Stock"
SortExpression="UnitsInStock" />
<asp:BoundField DataField="UnitsOnOrder" HeaderText="Units On Order"
SortExpression="UnitsOnOrder" />
<asp:BoundField DataField="ReorderLevel" HeaderText="Reorder Level"

14 of 26

SortExpression="ReorderLevel" />
<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
SortExpression="Discontinued" />
</Fields>
</asp:DetailsView>

<asp:0bjectDataSource ID="ProductDataSource" runat="server"
OldValuesParameterFormatString="original {O0}"
SelectMethod="GetProductByProductID" TypeName="ProductsBLL">
<SelectParameters>

<asp:QueryStringParameter Name="productID"
QueryStringField="ProductID" Type="Int32" />

</SelectParameters>

</asp:0bjectDataSource>

To test this page, return to Default.aspx and click on “View Products” for the Beverages category. From the
listing of beverage products, click on the “View Details” link for Chai Tea. This will take you to
ProductDetails.aspx?ProductID=1, which shows a Chai Tea’s details (see Figure 14).

2 Untitled Page - Microsoft Internet Explorer
Help

Flle Edt ‘iew Favorkes Tools

QO Back * & ¥ & o P search Favorites 8 (= ‘o (W] - [»

| Address é#_} hitp: fflocalhost: 4935/ ASPNET_Data_Tutorial_62_C5/SteMapProviderProductDetals.asp ¥ | [Go

Product Details

Product Chal Tea
Category Beverages
Supplier [SEECEENER

Qty /Unit 10 boxes x 20 bags
$19,95

eporting

Simple Display

Dedlarative
Parameters

Setting Parameter
alues

Filtering Reports

Filter by Drop-Down Discontinued
List

Master-Details- w
% Local intranst

Figure 14: Chai Tea’s Supplier, Category, Price, and Other Information is Displayed

Step 5: Understanding the Inner Workings of a Site Map Provider

The site map is represented in the web server’s memory as a collection of SiteMapNode instances that form a
hierarchy. There must be exactly one root, all non-root nodes must have exactly one parent node, and all nodes

15 of 26

may have an arbitrary number of children. Each siteMapNode object represents a section in the website’s structure;
these sections commonly have a corresponding web page. Consequently, the SiteMapNode class has properties like
Title, Url, and Description, which provide information for the section the SiteMapNode represents. There is
also a Key property that uniquely identifies each siteMapNode in the hierarchy, as well as properties used to
establish this hierarchy — ChildNodes, ParentNode, NextSibling, PreviousSibling, and so forth.

Figure 15 shows the general site map structure from Figure 1, but with the implementation details sketched out in
finer detail.

Tile = Buvarages”™
| Ul = “ProducisByCategory aspsx ? CalegoryiDe1®

Tite="Condimanis™
i = "ProducisByCategory aspy YalegonyiD=1"

All Categories
Ky = “rool”
Tiths = Al Categones”
L = "Dafnul L asps
Emm
Ky = "Catagon 1™ ‘ Condiments
¥ ¥ Homy = "Caegory-2” U

Chal Tas
Py = "Product 17
Tithe = "Chal Taa™
U = "ProductDetalls aspx T ProduciD=1"

Ghang
Kay = “Product: 2°
Tila = "Chang’
U = "ProguctDetsls sapy P ProduciQ=3"

Figure 15: Each siteMapNode has Properties Like Title, Url, Key, and So On

The site map is accessible through the SiteMap class in the System.Web namespace. This class’s RootNode
property returns the site map’s root SiteMapNode instance; CurrentNode returns the SiteMapNode whose Url
property matches the URL of the currently requested page. This class is used internally by ASP.NET 2.0’s
navigation Web controls.

When the siteMap class’s properties are accessed, it must serialize the site map structure from some persistent
medium into memory. However, the site map serialization logic is not hard coded into the SiteMap class. Instead,
at runtime the siteMap class determines which site map provider to use for serialization. By default, the
xmlsiteMapProvider class is used, which reads the site map’s structure from a properly-formatted XML file.
However, with a little bit of work we can create our own custom site map provider.

All site map providers must be derived from the SiteMapprovider class, which includes the essential methods and
properties needed for site map providers, but omits many of the implementation details. A second class,
StaticSiteMapProvider, extends the SiteMapProvider class and contains a more robust implementation of the
needed functionality. Internally, the StaticSiteMapProvider stores the SiteMapNode instances of the site map in
a Hashtable and pl‘OVideS methods like AddNode (child, parent), RemoveNode (siteMapNode), and Clear ()
that add and remove SiteMapNodes to the internal Hashtable. XmlSiteMapProvider is derived from
StaticSiteMapProvider.

When creating a custom site map provider that extends StaticSiteMapProvider, there are two abstract methods
that must be overridden: BuildsiteMap and GetRootNodeCore, BuildSiteMap, as its name implies, is responsible
for loading the site map structure from persistent storage and constructing it in memory. GetRootNodeCore returns
the root node in the site map.

Before a web application can use a site map provider it must be registered in the application’s configuration. By
default, the xm1siteMapProvider class is registered using the name AspNetXmlSiteMapProvider. To register

16 of 26

additional site map providers, add the following markup to wWeb.config:

<configuration>
<system.web>

<siteMap defaultProvider="defaultProviderName">
<providers>
<add name="name" type="type" />
</providers>
</siteMap>
</system.web>
</configuration>

The name value assigns a human-readable name to the provider while #ype specifies the fully-qualified type name
of the site map provider. We’ll explore concrete values for the name and type values in Step 7, after we’ve created
our custom site map provider.

The site map provider class is instantiated the first time it is accessed from the siteMap class and remains in
memory for the lifetime of the web application. Since there is only one instance of the site map provider that may
be invoked from multiple, concurrent web site visitors, it is imperative that the provider’s methods be thread-safe.

For performance and scalability reasons, it’s important that we cache the in-memory site map structure and return
this cached structure rather than recreating it every time the BuildsiteMap method is invoked. BuildSiteMap may
be called several times per page request per user, depending on the navigation controls in use on the page and the
depth of the site map structure. In any case, if we do not cache the site map structure in BuildSiteMap then each
time it is invoked we would need to re-retrieve the product and category information from the architecture (which
would result in a query to the database). As we discussed in the previous caching tutorials, cached data can become
stale. To combat this, we can use either time- or SQL cache dependency-based expiries.

Note: A site map provider may optionally override the Initialize method. Initialize is invoked when
the site map provider is first instantiated and is passed any custom attributes assigned to the provider in
Web.config in the <add> element like: <add name="name" type="type" customAttribute="value" />
It is useful if you want to allow a page developer to specify various site map provider-related settings
without having to modify the provider’s code. For example, if we were reading the category and products
data directly from the database as opposed to through the architecture, we’d likely want to let the page
developer specify the database connection string through web . config rather than using a hard coded value in
the provider’s code. The custom site map provider we’ll build in Step 6 does not override this Initialize
method. For an example of using the Initialize method, refer to Jeff Prosise’s Storing Site Maps in SQL
Server article.

Step 6: Creating the Custom Site Map Provider

To create a custom site map provider that builds the site map from the categories and products in the Northwind
database, we need to create a class that extends staticSiteMapProvider. In Step 1 I asked you to add a
CustomProviders folder in the App Code folder - add a new class to this folder named
NorthwindSiteMapProvider. Add the following code to the NorthwindSiteMapProvider class:

Imports System.Web
Imports System.Web.Caching

Public Class NorthwindSiteMapProvider
Inherits StaticSiteMapProvider

17 of 26

Private ReadOnly siteMapLock As New Object ()
Private root As SiteMapNode = Nothing
Public Const CacheDependencyKey As String = "NorthwindSiteMapProviderCacheDependency"

Public Overrides Function BuildSiteMap () As System.Web.SiteMapNode
' Use a lock to make this method thread-safe
SyncLock siteMapLock
' First, see 1f we already have constructed the
' rootNode. If so, return it...
If root IsNot Nothing Then
Return root
End If

' We need to build the site map!

' Clear out the current site map structure
MyBase.Clear ()

' Get the categories and products information from the database
Dim productsAPI As New ProductsBLL ()
Dim products As Northwind.ProductsDataTable = productsAPI.GetProducts ()

' Create the root SiteMapNode
root = New SiteMapNode (

Me, "root", "~/SiteMapProvider/Default.aspx", "All Categories")
AddNode (root)

' Create SiteMapNodes for the categories and products
For Each product As Northwind.ProductsRow In products
' Add a new category SiteMapNode, if needed
Dim categoryKey, categoryName As String
Dim createUrlForCategoryNode As Boolean = True
If product.IsCategoryIDNull () Then
categoryKey = "Category:None"
categoryName = "None"
createUrlForCategoryNode = False
Else
categoryKey = String.Concat ("Category:", product.CategoryID)
categoryName = product.CategoryName
End If

Dim categoryNode As SiteMapNode = FindSiteMapNodeFromKey (categoryKey)

' Add the category SiteMapNode if it does not exist
If categoryNode Is Nothing Then
Dim productsByCategoryUrl As String = String.Empty
If createUrlForCategoryNode Then
productsByCategoryUrl =
"~/SiteMapProvider/ProductsByCategory.aspx?CategoryID=" &
product.CategoryID
End If

categoryNode = New SiteMapNode
(Me, categoryKey, productsByCategoryUrl, categoryName)
AddNode (categoryNode, root)
End If

18 of 26

' Add the product SiteMapNode

Dim productUrl As String = _
"~/SiteMapProvider/ProductDetails.aspx?ProductID=" & _
product.ProductID

Dim productNode As New SiteMapNode
(Me, String.Concat ("Product:", product.ProductID),
productUrl, product.ProductName)

AddNode (productNode, categoryNode)

Next

' Add a "dummy" item to the cache using a SglCacheDependency

' on the Products and Categories tables

Dim productsTableDependency As New
System.Web.Caching.SglCacheDependency ("NorthwindDB", "Products")

Dim categoriesTableDependency As New
System.Web.Caching.SglCacheDependency ("NorthwindDB", "Categories")

' Create an AggregateCacheDependency
Dim aggregateDependencies As New System.Web.Caching.AggregateCacheDependency (
aggregateDependencies.Add (productsTableDependency, categoriesTableDependency)

' Add the item to the cache specifying a callback function
HttpRuntime.Cache.Insert (_
CacheDependencyKey, DateTime.Now, aggregateDependencies,
Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
CacheltemPriority.Normal, AddressOf OnSiteMapChanged)

' Finally, return the root node
Return root
End SyncLock
End Function

Protected Overrides Function GetRootNodeCore () As System.Web.SiteMapNode
Return BuildSiteMap ()
End Function

Protected Sub OnSiteMapChanged
(key As String, value As Object, reason As CacheItemRemovedReason)
SyncLock siteMapLock
If String.Compare (key, CacheDependencyKey) = 0 Then
' Refresh the site map
root = Nothing
End If
End SyncLock
End Sub

Public ReadOnly Property CachedDate() As Nullable (Of DateTime)
Get
Dim value As Object = HttpRuntime.Cache (CacheDependencyKey)
If value Is Nothing OrElse Not TypeOf value Is Nullable (Of DateTime) Then
Return Nothing
Else
Return CType (value, Nullable (Of DateTime))

19 of 26

End If
End Get
End Property
End Class

Let’s start with exploring this class’s BuildsiteMap method, which starts with a 1ock statement. The 1ock
statement only allows one thread at a time to enter, thereby serializing access to its code and preventing two
concurrent threads from stepping on one another’s toes.

The class-level siteMapNode variable root is used to cache the site map structure. When the site map is
constructed for the first time, or for the first time after the underlying data has been modified, root will be
Nothing and the site map structure will be constructed. The site map’s root node is assigned to root during the
construction process so that the next time this method is called, root will not be Nothing. Consequently, so long
as root is not Nothing the site map structure will be returned to the caller without having to recreate it.

If root is Nothing, the site map structure is created from the product and category information. The site map is
built by creating the SiteMapNode instances and then forming the hierarchy through calls to the
StaticSiteMapProvider class’s AddNode method. AddNode performs the internal bookkeeping, storing the
assorted siteMapNode instances in a Hashtable. Before we start constructing the hierarchy, we start by calling the
Cclear method, which clears out the elements from the internal Hashtable. Next, the ProductsBLL class’s
GetProducts method and the resulting ProductsDataTable are stored in local variables.

The site map’s construction begins by creating the root node and assigning it to root. The overload of the
siteMapNode’s constructor used here and throughout this BuildsiteMap is passed the following information:

A reference to the site map provider (Me).

The siteMapNode’s Key. This required value must be unique for each SiteMapNode.

The siteMapNode’s Url. Url is optional, but if provided, each siteMapNode’s Url value must be unique.
The siteMapNode’s Title, which is required.

The AddNode (root) method call adds the siteMapNode root to the site map as the root. Next, each ProductRow
in the ProductsDataTable is enumerated. If there already exists a SiteMapNode for the current product’s
category, it is referenced. Otherwise, a new SiteMapNode for the category is created and added as a child of the
SiteMapNode root through the AddNode (categoryNode, root) method call. After the appropriate category
siteMapNode node has been found or created, a siteMapNode is created for the current product and added as a
child of the category siteMapNode via AddNode (productNode, categoryNode). Note that the category
SiteMapNode’SUrlrﬁopeﬂy\%ﬂueis~/SiteMapProvider/ProductsByCategory.aspx?
CategoryID=categoryID While the product siteMapNode’s Url property is assigned
~/SiteMapNode/ProductDetails.aspx?ProductID=productID.

Note: Those products that have a database NULL value for their CategoryID are grouped under a category
siteMapNode whose Title property is set to “None” and whose Ur1 property is set to an empty string. |
decided to set Url to an empty string since the ProductBLL class’s GetProductsByCategory (categoryID)
method currently lacks the capability to return just those products with a NULL CategoryID value. Also, |
wanted to demonstrate how the navigation controls render a siteMapNode that lacks a value for its Url
property. I encourage you to extend this tutorial so that the “None” siteMapNode’s Url property points to
ProductsByCategory.aspx, yet only displays the products with NULL CategoryID values.

After constructing the site map, an arbitrary object is added to the data cache using a SQL cache dependency on the
Categories and Products tables through an AggregateCacheDependency object. We explored using SQL cache
dependencies in the preceding tutorial, Using SOL Cache Dependencies. The custom site map provider, however,
uses an overload of the data cache’s Insert method that we’ve yet to explore. This overload accepts as its final
input parameter a delegate that is called when the object is removed from the cache. Specifically, we pass in a new

20 of 26

CacheltemRemovedCallback delegate that points to the OnsiteMapChanged method defined further down in the
NorthwindSiteMapProvider class

Note: The in-memory representation of the site map is cached through the class-level variable root. Since
there is only one instance of the custom site map provider class and since that instance is shared among all
threads in the web application, this class variable serves as a cache. The BuildsiteMap method also uses the
data cache, but only as a means to receive notification when the underlying database data in the categories
or Products tables changes. Note that the value put into the data cache is just the current date and time. The
actual site map data is nof put in the data cache.

The BuildsiteMap method completes by returning the root node of the site map.

The remaining methods are fairly straightforward. GetRootNodeCore is responsible for returning the root node.
Since BuildSiteMap returns the root, GetRootNodeCore simply returns BuildSiteMap’s return value. The
onSiteMapChanged method sets root back to Nothing when the cache item is removed. With root set back to
Nothing, the next time BuildsiteMap is invoked, the site map structure will be rebuilt. Lastly, the Cachedbate
property returns the date and time value stored in the data cache, if such a value exists. This property can be used
by a page developer to determine when the site map data was last cached.

Step 7: Registering the NorthwindsSiteMapProvider

In order for our web application to use the NorthwindSiteMapProvider site map provider created in Step 6, we
need to register it in the <siteMap> section of Wweb.config. Specifically, add the following markup within the
<system.web> element in Web.config:

<siteMap defaultProvider="AspNetXmlSiteMapProvider">
<providers>
<add name="Northwind" type="NorthwindSiteMapProvider" />
</providers>
</siteMap>

This markup does two things: first, it indicates that the built-in AspNetxmlSiteMapProvider is the default site
map provider; second, it registers the custom site map provider created in Step 6 with the human-friendly name
“Northwind”.

Note: For site map providers located in the application’s App_Code folder, the value of the type attribute is
simply the class name. Alternatively, the custom site map provider could have been created in a separate
Class Library project with the compiled assembly placed in the web application’s /Bin directory. In that
case, the type attribute value would be “Namespace.ClassName, AssemblyName”.

After updating Wweb. config, take a moment to view any page from the tutorials in a browser. Note that the
navigation interface on the left still shows the sections and tutorials defined in Web.sitemap. This is because we
left AspNetxmlSiteMapProvider as the default provider. In order to create a navigation user interface element that
uses the NorthwindSiteMapProvider, we’ll need to explicitly specify that the “Northwind” site map provider
should be used. We’ll see how to accomplish this in Step 8.

Step 8: Displaying Site Map Information Using the Custom Site Map
Provider

With the custom site map provider created and registered in Web.config, we’re ready to add navigation controls to
theDefault.aspx,ProductsByCategory.aspx,andProductDetails.aspxpagesintheSiteMapProvider

21 of 26

folder. Start by opening the Default.aspx page and drag a SiteMapPath from the Toolbox onto the Designer. The
SiteMapPath control is located in the Navigation section of the Toolbox.

2 ASPNET Data Tutorial 62_C5 - Micresoft Visual Studio Q==
Bl Edt Wew ebghe Fuld Debug Fprmat Layot Jools Windew Community Help Adding
i';'-l'__'.'.f.:lhi & Ha & > P:‘.'_‘u.;_'i_'_'"f“*-'*"-'l T s
A Y, = = 1=
S S N A S L B S IR P el e Y. -
Tooko: bt | sibeMapProvider, Default.asps | » ¥ |Properties =0 X
& Standud m % || SiteMapltath1 Systom Web.ULwebt =
+ Data Content - Content] (Custom) e BT [@] #
+ Walidation E- |_| |_ -
- Navigation Categories i 3
I Poinker {IC) Site™apPathl
rer EheHanPath Broassie
Iﬂ-_- | Home = Customizing the Site Mapg I Backolor |
e, BlarderColor 1
A= Trowiier BorderStyle NoSet
Loy
; Categary |Descriptio BorderWidth
:dnpau - o
f EI:,_H e Databound Oatabound B CurrenthodeStyle
5 Products Enabled True
* Puinter B EnableThemng Trus
Databound Databound EnableviowStabe True
. B Fork
ok
LEw Databound Databound ForeColor]
Eroducts Haight
Bl Modedtyde
st Oiatabound Databound ParertlewsisDisal -1
PathDirsctian ReckTalCurrent
L Py
“— patabound Databound Phlhtopérdber >
Products (D)
Ell:lliedDatmurce - CategariesDiataSource ~ | | Programmatic name. of the control,
)
[3 pesin | & soures o\ [camiskemppathsteomapn 3] | | S | Sien., [Meser [T
_"J Erear Lish J Custpir if_rd Raagks |
Ready

Figure 16: Add a SiteMapPath to Default.aspx

The SiteMapPath control displays a breadcrumb, indicating the current page’s location within the site map. We
added a SiteMapPath to the top of the master page back in the Master Pages and Site Navigation tutorial.

Take a moment to view this page through a browser. The SiteMapPath added in Figure 16 uses the default site map

provider, pulling its data from web. sitemap. Therefore, the breadcrumb shows “Home > Customizing the Site
Map”, just like the breadcrumb in the upper-right corner.

22 of 26

[Unibitled Page - Macroioll Internel Explarer

e Bt Mew Froites Tooks Heip

@k = 3 -8 @ e Foseech drFovoter 8| (S B (W] - A
Agress -'B_‘Hrn_'_rrnrnu:wwaw|_nm|_|.mu._n..'_.-: A piapETericdar Kisfal smpc - o
Working with Data Tutorials (Homs > customizing the site Map |

Categories

[“L:"": = Customizng the Gite Mdl.l]

Dreseription
Wiew Froducts Beverages Soft drinks, coffees, teas, beers, and ales
iew Products Condrments Sweel and savory sauces, relshes, spreads, and seasonings

Wiew Froducts Confections Desgerts, candies, and swest breads
Wiew Froducts Dalry Froducts Cheeses

Wiew Pradgicts Sraime/Ceredls Breads, rackers, pasta, and oereal
iiew Frodcks Meat/Poulry Prepared meats

lew Froducts Froduce Dried frult and bean ourd

Wiew Prociucts Seafood Seaweed and fish

Wigw Froducts Veggies rummy wegebablks)

Wew Products Test Categary This I5 & testl

£l

% Locel et

Figure 17: The Breadcrumb Uses the Default Site Map Provider

To have the SiteMapPath added in Figure 16 use the custom site map provider we created in Step 6, set its
SiteMapProvider property to “Northwind”, the name we assigned to the NorthwindSiteMapProvider in
Web . config. Unfortunately, the Designer continues to use the default site map provider, but if you visit the page

through a browser after making this property change you’ll see that the breadcrumb now uses the custom site map
provider.

A Uintitied Page - Micresoflt Internel Exploser

B EH Wew Fyeoites Took Help

Qe = 3 (0 [0 Ssed Jrhwois 8 3 oW - & i
ﬂ_‘lI‘ﬂ.‘.[-.l'.'l\:im:ﬂﬁ'“T‘ETJ@:L‘.IIN_BC_E5_'5*!“-“?1!?\11\:\!1_"[-'.‘*5.':W" . .Gﬂ
Working with Data Tutorials o> Customtung e Ebs e

Categories

4l Categonms

Category Dascription
A Products Beverages Soft drivks, coffees, teag, beers, and ales
Satting Parameter wiew Progucts Conchments - Sweet and savory seuces, refishes, spreads, and seasonings
ahies Wiew Products Confections Desserts, candies, and sweet breads
wiew Procuicts Dairy Products Cheeses

whaw Products GramsCeresis Breads, crackers, pasts, and cereal
whew Products Mealb/Poultry - Prepared meats

whew Products Produce Cried fruit and bean curd
wiew Procucts Seafocd Seaweed and fish

Wi Prociichs Weagies Yiummy wegetables!

e Procicks Test Categary This 5 8 testl

8 Local miranst

Figure 18: The Breadcrumb Now Uses the Custom Site Map Provider NorthwindSiteMapProvider

The SiteMapPath control displays a more functional user interface in the ProductsByCategory.aspx and

23 of 26

ProductDetails.aspx pages. Add a SiteMapPath to these pages, setting the SiteMapProvider property in both
to “Northwind”. From Default.aspx click on the “View Products” link for Beverages, and then on the “View
Details” link for Chai Tea. As Figure 19 shows, the breadcrumb includes the current site map section (“Chai Tea”)
and its ancestors: “Beverages” and “All Categories”.

2 Untitled Page - Microsoft Internet Fxplorer
File Edit Tools Help

0B [B)X]

Yiew Favorites

. i »
O Back ~ x |2 o) sewch TrFavoiites £ (A= sn (W] T '
Bl ﬁ_," http://locahost : 4935/ASPNET_Data_Tutorial_62_C5/SteMapProvider /ProductDetails, asp: ¥ | &0
s
Working with Data Tutorials
Product Details
— ; (-f-.il Categories > Beverages > Chai Taa]
Simple Display
Dedarative Chai Tea
Parameters Category [ERICERER
Setting Parameter Supplier Exotic Liquids
Values 10 boxes x 20 bags
S Price B 15.96
Rearing Units In Stock e
Filtter by Drop-Down Units On Orderfy
List Reorder Level Bis
Master-Detalls-
Details
- 1. U
%J Local intranst

Figure 19: The Breadcrumb Now Uses the Custom Site Map Provider NorthwindSiteMapProvider

Other navigation user interface elements can be used in addition to the SiteMapPath, such as the Menu and
TreeView controls. The Default.aspx, ProductsByCategory.aspx, and ProductDetails.aspx pages in the
download for this tutorial, for example, all include Menu controls (see Figure 20). See Examining ASP.NET 2.0’s
Site Navigation Features and the Using Site Navigation Controls section of the ASP.NET 2.0 QuickStarts for a
more in-depth look at the navigation controls and site map system in ASP.NET 2.0.

24 of 26

A Uniiied Page - Macresalt Interned Expliner
i p

B Bl Wiew Fpoddes Do o
3 Back *] g | 5 Seewh Eawieter = i & il
=74 | 4] hitps flocahart: 490E{ASPAET Dscn_Taborl 42 C5/SePlapProrviden Daf mi . s w 0
r
Working with Data Tutorials Hams > Customizing th Stts Map
Categories
wi b Condmants F Diedues P s Podieg B Sesfond ¥ Dary Prodoucts B Comlact icen # Grand S erasi b ana b
Tkura
Al Categones Kerdid
Gattng Farame Sie map cached pn: LEETOT 1:53:02 PM gkt ing
wakins .
\‘li"“dlhwl
¥ Progucis Beverages oft drinks, coffes i
o v k' Merw England Clam Chewdar
Fiter by Oreog-Down wiaw Frogucts Condimants “;"'H'E -J"'U #“'Clr\' Rogedks =ild
List wigw Froglicts Confections Degsarts, candms, o pegesid
A Frodycts Drairy Products C"!‘!‘E’!E Escargots de Bourgogre
\ew ProgucTs Grains/Cereals Broads, crackers, [Aed Kaviar
".l_‘;! W Producls Meat/Poultry Prepsrsd meals
W FrogiUcTs Producs Dried frui ard bean ord
'-A-.*_F‘-'QZI.IJ. 5-¢al'-:r¢d Sagwaad and Nsh
Cetals of Sebpcted aw ProgUcts Wegpes Yy wegekaties!
s E!‘ Produits Tl':$-|. Category Thi & a ==t
e "
] bty ook AT ATRET ke Tiboriel 7T SheFapk 1 " mgmey. mp s o abegor e 8§ ko sl inbranat

Figure 20: The Menu Control Lists Each of the Categories and Products

As mentioned earlier in this tutorial, the site map structure can be accessed programmatically through the siteMap
class. The following code returns the root siteMapNode of the default provider:

Dim root As SiteMapNode = SiteMap.RootNode

Since the AspNetxmlSiteMapProvider is the default provider for our application, the above code would return the
root node defined in web. sitemap. To reference a site map provider other than the default, use the siteMap class’s
providers property like so:

Dim root As SiteMapNode = SiteMap.Providers ("name") .RootNode
Where name is the name of the custom site map provider (“Northwind”, for our web application).

To access a member specific to a site map provider, use SiteMap.Providers["name"] to retrieve the provider
instance and then cast it to the appropriate type. For example, to display the NorthwindSiteMapProvider’s
CachedDate property in an ASP.NET page, use the following code:

Dim customProvider As NorthwindSiteMapProvider = _
TryCast (SiteMap.Providers ("Northwind"), NorthwindSiteMapProvider)
If customProvider IsNot Nothing Then
Dim lastCachedDate As Nullable (Of DateTime) = customProvider.CachedDate

If lastCachedDate.HasValue Then
SiteMapLastCachedDate.Text

"Site map cached on: " & lastCachedDate.Value.ToString()
Else
SiteMaplastCachedDate.Text = "The site map 1s being reconstructed!"
End If
End If

Note: Be sure to test out the SQL cache dependency feature. After visiting the Default.aspx,

25 of 26

ProductsByCategory.aspx, and ProductDetails.aspx pages, go to one of the tutorials in the Editing,
Inserting, and Deleting section and edit the name of a category or product. Then return to one of the pages in
the siteMapProvider folder. Assuming enough time has passed for the polling mechanism to note the
change to the underlying database, the site map should be updated to show the new product or category
name.

Summary

ASP.NET 2.0’s site map features includes a siteMap class, a number of built-in navigation Web controls, and a
default site map provider that expects the site map information persisted to an XML file. In order to use site map
information from some other source — such as from a database, the application’s architecture, or a remote Web
service — we need to create a custom site map provider. This involves creating a class that derives, directly or
indirectly, from the siteMapProvider class.

In this tutorial we saw how to create a custom site map provider that based the site map on the product and
category information culled from the application architecture. Our provider extended the staticSiteMapProvider
class and entailed creating a BuildsiteMap method that retrieved the data, constructed the site map hierarchy, and
cached the resulting structure in a class-level variable. We used a SQL cache dependency with a callback function
to invalidate the cached structure when the underlying categories or Products data is modified.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following resources:

Storing Site Maps in SQL Server and The SQL Site Map Provider You’ve Been Waiting For
A Look at ASP.NET 2.0’s Provider Model
The Provider Toolkit

Examining ASP.NET 2.0’s Site Navigation Features

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Dave Gardner,
Zack Jones, Teresa Murphy, and Bernadette Leigh. Interested in reviewing my upcoming MSDN articles? If so,
drop me a line at mitchell@4GuysFromRolla.com.

26 of 26

