
Network Programming in the .NET Framework 1

Network Programming How-to Topics 5

Introducing Pluggable Protocols 7

Requesting Data 10

Creating Internet Requests 12

How to Request a Web Page and Retrieve the Results as a Stream 13

How to Request Data Using the WebRequest Class 14

How to Send Data Using the WebRequest Class 18

How to Retrieve a Protocol-Specific WebResponse that Matches a WebRequest 24

Using Streams on the Network 25

Making Asynchronous Requests 27

Handling Errors 32

Programming Pluggable Protocols 35

How to Register a Custom Protocol Using WebRequest 36

How to Typecast a WebRequest to Access Protocol Specific Properties 37

Deriving from WebRequest 38

Deriving from WebResponse 42

Using Application Protocols 44

HTTP 45

HttpListener 46

How to Access HTTP-Specific Properties 47

Managing Connections 48

Connection Grouping 50

How to Assign User Information to Group Connections 51

TCP-UDP 54

Using TCP Services 55

Using UDP Services 58

Sockets 61

How to Create a Socket 62

Using Client Sockets 63

Using a Synchronous Client Socket 65

Using an Asynchronous Client Socket 67

Listening with Sockets 72

Using a Synchronous Server Socket 74

Using an Asynchronous Server Socket 75

Socket Code Examples 79

Synchronous Client Socket Example 80

Synchronous Server Socket Example 82

Asynchronous Client Socket Example 84

Asynchronous Server Socket Example 88

FTP 91

How to Download Files with FTP 92

How to Upload Files with FTP 94

How to List Directory Contents with FTP 96

Understanding WebRequest Problems and Exceptions 98

Network Programming in the .NET
Framework

The Microsoft .NET Framework provides a layered, extensible, and managed implementation of Internet services that can be

quickly and easily integrated into your applications. Your network applications can build on pluggable protocols to

automatically take advantage of new Internet protocols, or they can use a managed implementation of the Windows socket

interface to work with the network on the socket level.

In This Section

Introducing Pluggable Protocols

Describes how to access an Internet resource without regard to the access protocol that it requires.

Requesting Data

Explains how to use pluggable protocols to upload and download data from Internet resources.

Programming Pluggable Protocols

Explains how to derive protocol-specific classes to implement pluggable protocols.

Using Application Protocols

Describes programming applications that take advantage of network protocols such as TCP, UDP, and HTTP.

Internet Protocol Version 6

Describes the advantages of Internet Protocol version 6 (IPv6) over the current version of the Internet Protocol suite

(IPv4), describes IPv6 addressing, routing and auto-configuration, and how to enable and disable IPv6.

Configuring Internet Applications

Explains how to use the .NET Framework configuration files to configure Internet applications.

Network Tracing in the .NET Framework

Explains how to use network tracing to get information about method invocations and network traffic generated by a

managed application.

Cache Management for Network Applications

Describes how to use caching for applications that use the System.Net.WebClient, System.Net.WebRequest, and

System.Net.HttpWebRequest classes.

Security in Network Programming

Describes how to use standard Internet security and authentication techniques.

Best Practices for System.Net Classes

Provides tips and tricks for getting the most out of your Internet applications.

Accessing the Internet Through a Proxy

Describes how to configure proxies.

NetworkInformation

.NET Framework (current version)

Network Programming in the .NET Framework https://msdn.microsoft.com/en-us/library/4as0wz7t(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 3:05

Describes how to gather information about network events, changes, statistics, and properties and also explains how

to determine whether a remote host is reachable by using the System.Net.NetworkInformation.Ping class.

Changes to the System.Uri namespace in Version 2.0

Describes several changes made to the System.Uri class in Version 2.0 to fixed incorrect behavior, enhance usability,

and enhance security.

International Resource Identifier Support in System.Uri

Describes enhancements to the System.Uri class in Version 3.5, 3.0 SP1, and 2.0 SP1 for International Resource

Identifier (IRI) and Internationalized Domain Name (IDN) support.

Socket Performance Enhancements in Version 3.5

Describes a set of enhancements to the System.Net.Sockets.Socket class in Version 3.5, 3.0 SP1, and 2.0 SP1 that

provide an alternative asynchronous pattern that can be used by specialized high-performance socket applications.

Peer Name Resolution Protocol

Describes support added in Version 3.5 to support the Peer Name Resolution Protocol (PNRP), a serverless and

dynamic name registration and name resolution protocol. These new features are supported by the

System.Net.PeerToPeer namespace.

Peer-to-Peer Collaboration

Describes support added in Version 3.5 to support the Peer-to-Peer Collaboration that builds on PNRP. These new

features are supported by the System.Net.PeerToPeer.Collaboration namespace.

Changes to NTLM authentication for HttpWebRequest in Version 3.5 SP1

Describes security changes made in Version 3.5 SP1 that affect how integrated Windows authentication is handled by

the System.Net.HttpWebRequest, System.Net.HttpListener, System.Net.Security.NegotiateStream, and related classes

in the System.Net namespace.

Integrated Windows Authentication with Extended Protection

Describes enhancements for extended protection that affect how integrated Windows authentication is handled by

the System.Net.HttpWebRequest, System.Net.HttpListener, System.Net.Mail.SmtpClient,

System.Net.Security.SslStream, System.Net.Security.NegotiateStream, and related classes in the System.Net and

related namespaces.

NAT Traversal using IPv6 and Teredo

Describes enhancements added to the System.Net, System.Net.NetworkInformation, and System.Net.Sockets

namespaces to support NAT traversal using IPv6 and Teredo.

Network Isolation for Windows Store Apps

Describes the impact of network isolation when classes in the System.Net, System.Net.Http, and

System.Net.Http.Headers namespaces are used in Windows 8.x Store apps.

Network Programming Samples

Links to downloadable network programming samples that use classes in the System.Net, System.Net.Cache,

System.Net.Configuration, System.Net.Mail, System.Net.Mime, System.Net.NetworkInformation,

System.Net.PeerToPeer, System.Net.Security, System.Net.Sockets namespaces.

Reference

System.Net

Provides a simple programming interface for many of the protocols used on networks today. The

Network Programming in the .NET Framework https://msdn.microsoft.com/en-us/library/4as0wz7t(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 3:05

System.Net.WebRequest and System.Net.WebResponse classes in this namespace are the basis for pluggable

protocols.

System.Net.Cache

Defines the types and enumerations used to define cache policies for resources obtained using the

System.Net.WebRequest and System.Net.HttpWebRequest classes.

System.Net.Configuration

Classes that applications use to programmatically access and update configuration settings for the System.Net

namespaces.

System.Net.Http

Classes that provides a programming interface for modern HTTP applications.

System.Net.Http.Headers

Provides support for collections of HTTP headers used by the System.Net.Http namespace

System.Net.Mail

Classes to compose and send mail using the SMTP protocol.

System.Net.Mime

Defines types that are used to represent Multipurpose Internet Mail Exchange (MIME) headers used by classes in the

System.Net.Mail namespace.

System.Net.NetworkInformation

Classes to programmatically gather information about network events, changes, statistics, and properties.

System.Net.PeerToPeer

Provides a managed implementation of the Peer Name Resolution Protocol (PNRP) for developers.

System.Net.PeerToPeer.Collaboration

Provides a managed implementation of the Peer-to-Peer Collaboration interface for developers.

System.Net.Security

Classes to provide network streams for secure communications between hosts.

System.Net.Sockets

Provides a managed implementation of the Windows Sockets (Winsock) interface for developers who need to help

control access to the network.

System.Net.WebSockets

Provides a managed implementation of the WebSocket interface for developers.

System.Uri

Provides an object representation of a uniform resource identifier (URI) and easy access to the parts of the URI.

System.Security.Authentication.ExtendedProtection

Provides support for authentication using extended protection for applications.

System.Security.Authentication.ExtendedProtection.Configuration

Provides support for configuration of authentication using extended protection for applications.

See Also

Network Programming in the .NET Framework https://msdn.microsoft.com/en-us/library/4as0wz7t(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 3:05

Network Programming How-to Topics

Network Programming Samples

Networking Samples for .NET on MSDN Code Gallery

HttpClient Sample

© 2016 Microsoft

Network Programming in the .NET Framework https://msdn.microsoft.com/en-us/library/4as0wz7t(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 3:05

Network Programming How-to Topics

The following list includes links to the How-to topics found in the conceptual documentation for network programming.

Requesting Data:

How to: Request a Web Page and Retrieve the Results as a Stream

How to: Request Data Using the WebRequest Class

How to: Send Data Using the WebRequest Class

How to: Retrieve a Protocol-Specific WebResponse that Matches a WebRequest

Pluggable and Application Protocols:

How to: Register a Custom Protocol Using WebRequest

How to: Typecast a WebRequest to Access Protocol Specific Properties

How to: Access HTTP-Specific Properties

How to: Assign User Information to Group Connections

How to: Create a Socket

How to: Download Files with FTP

How to: Upload Files with FTP

How to: List Directory Contents with FTP

Internet Protocol Version 6:

How to: Modify the Computer Configuration File to Enable IPv6 Support

Network Tracing:

How to: Configure Network Tracing

Configuring Caching:

How to: Set a Location-Based Cache Policy for an Application

.NET Framework (current version)

Network Programming How-to Topics https://msdn.microsoft.com/en-us/library/ms172307(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:06

How to: Set the Default Time-Based Cache Policy for an Application

How to: Customize a Time-Based Cache Policy

How to: Set Cache Policy for a Request

Using Proxies:

How to: Enable a WebRequest to Use a Proxy to Communicate With the Internet

How to: Override a Global Proxy Selection

Network Information:

How to: Detect Network Availability and Address Changes

How to: Get Interface and Protocol Information

How to: Ping a Host

See Also

Network Programming in the .NET Framework

Network Programming Samples

Networking Samples for .NET on MSDN Code Gallery

© 2016 Microsoft

Network Programming How-to Topics https://msdn.microsoft.com/en-us/library/ms172307(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:06

Introducing Pluggable Protocols

The Microsoft .NET Framework provides a layered, extensible, and managed implementation of Internet services that can be

integrated quickly and easily into your applications. The Internet access classes in the System.Net and System.Net.Sockets

namespaces can be used to implement both Web-based and Internet-based applications.

Internet Applications
Internet applications can be classified broadly into two kinds: client applications that request information and server

applications that respond to information requests from clients. The classic Internet client-server application is the World

Wide Web, where people use browsers to access documents and other data stored on Web servers worldwide.

Applications are not limited to just one of these roles; for instance, the familiar middle-tier application server responds to

requests from clients by requesting data from another server, in which case it is acting as both a server and a client.

The client application makes a request by identifying the requested Internet resource and the communication protocol to

use for the request and response. If necessary, the client also provides any additional data required to complete the

request, such as proxy location or authentication information (user name, password, and so on). Once the request is

formed, the request can be sent to the server.

Identifying Resources
The .NET Framework uses a Uniform Resource Identifier (URI) to identify the requested Internet resource and

communication protocol. The URI consists of at least three, and possibly four, fragments: the scheme identifier, which

identifies the communications protocol for the request and response; the server identifier, which consists of either a

Domain Name System (DNS) host name or a TCP address that uniquely identifies the server on the Internet; the path

identifier, which locates the requested information on the server; and an optional query string, which passes information

from the client to the server. For example, the URI "http://www.contoso.com/whatsnew.aspx?date=today" consists of the

scheme identifier "http", the server identifier "www.contoso.com", the path "/whatsnew.aspx", and the query string

"?date=today".

After the server has received the request and processed the response, it returns the response to the client application. The

response includes supplemental information, such as the type of the content (raw text or XML data, for example).

Requests and Responses in the .NET Framework
The .NET Framework uses specific classes to provide the three pieces of information required to access Internet resources

through a request/response model: the Uri class, which contains the URI of the Internet resource you are seeking; the

WebRequest class, which contains a request for the resource; and the WebResponse class, which provides a container for

the incoming response.

Client applications create WebRequest instances by passing the URI of the network resource to the Create method. This

.NET Framework (current version)

Introducing Pluggable Protocols https://msdn.microsoft.com/en-us/library/kk8d8dz9(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:06

static method creates a WebRequest for a specific protocol, such as HTTP. The WebRequest that is returned provides

access to properties that control both the request to the server and access to the data stream that is sent when the

request is made. The GetResponse method on the WebRequest sends the request from the client application to the

server identified in the URI. In cases in which the response might be delayed, the request can be made asynchronously

using the BeginGetResponse method on the WebRequest, and the response can be returned at a later time using the

EndGetResponse method.

The GetResponse and EndGetResponse methods return a WebResponse that provides access to the data returned by

the server. Because this data is provided to the requesting application as a stream by the GetResponseStream method, it

can be used in an application anywhere data streams are used.

The WebRequest and WebResponse classes are the basis of pluggable protocols — an implementation of network

services that enables you to develop applications that use Internet resources without worrying about the specific details

of the protocol that each resource uses. Descendant classes of WebRequest are registered with the WebRequest class to

manage the details of making the actual connections to Internet resources.

As an example, the HttpWebRequest class manages the details of connecting to an Internet resource using HTTP. By

default, when the WebRequest.Create method encounters a URI that begins with "http:" or "https:" (the protocol

identifiers for HTTP and secure HTTP), the WebRequest that is returned can be used as is, or it can be typecast to

HttpWebRequest to access protocol-specific properties. In most cases, the WebRequest provides all the necessary

information for making a request.

Any protocol that can be represented as a request/response transaction can be used in a WebRequest. You can derive

protocol-specific classes from WebRequest and WebResponse and then register them for use by the application with

the static WebRequest.RegisterPrefix method.

When client authorization for Internet requests is required, the Credentials property of the WebRequest supplies the

necessary credentials. These credentials can be a simple name/password pair for basic HTTP or digest authentication, or a

name/password/domain set for NTLM or Kerberos authentication. One set of credentials can be stored in a

NetworkCredentials instance, or multiple sets can be stored simultaneously in a CredentialCache instance. The

CredentialCache uses the URI of the request and the authentication scheme that the server supports to determine which

credentials to send to the server.

Simple Requests with WebClient
For applications that need to make simple requests for Internet resources, the WebClient class provides common

methods for uploading data to or downloading data from an Internet server. WebClient relies on the WebRequest class

to provide access to Internet resources; therefore, the WebClient class can use any registered pluggable protocol.

For applications that cannot use the request/response model, or for applications that need to listen on the network as

well as send requests, the System.Net.Sockets namespace provides the TCPClient, TCPListener, and UDPClient classes.

These classes handle the details of making connections using different transport protocols and expose the network

connection to the application as a stream.

Developers familiar with the Windows Sockets interface or those who need the control provided by programming at the

socket level will find that the System.Net.Sockets classes meet their needs. The System.Net.Sockets classes are a

transition point from managed to native code within the System.Net classes. In most cases, System.Net.Sockets classes

marshal data into their Windows 32-bit counterparts, as well as handling any necessary security checks.

Introducing Pluggable Protocols https://msdn.microsoft.com/en-us/library/kk8d8dz9(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:06

See Also
Programming Pluggable Protocols

Network Programming in the .NET Framework

Network Programming Samples

Networking Samples for .NET on MSDN Code Gallery

© 2016 Microsoft

Introducing Pluggable Protocols https://msdn.microsoft.com/en-us/library/kk8d8dz9(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:06

Requesting Data

Developing applications that run in the distributed operating environment of today's Internet requires an efficient,

easy-to-use method for retrieving data from resources of all types. Pluggable protocols let you develop applications that

use a single interface to retrieve data from multiple Internet protocols.

Uploading and Downloading Data from an Internet Server
For simple request and response transactions, the WebClient class provides the easiest method for uploading data to or

downloading data from an Internet server. WebClient provides methods for uploading and downloading files, sending

and receiving streams, and sending a data buffer to the server and receiving a response. WebClient uses the WebRequest

and WebResponse classes to make the actual connections to the Internet resource, so any registered pluggable protocol

is available for use.

Client applications that need to make more complex transactions request data from servers using the WebRequest class

and its descendants. WebRequest encapsulates the details of connecting to the server, sending the request, and receiving

the response. WebRequest is an abstract class that defines a set of properties and methods that are available to all

applications that use pluggable protocols. Descendants of WebRequest, such as HttpWebRequest, implement the

properties and methods defined by WebRequest in a way that is consistent with the underlying protocol.

The WebRequest class creates protocol-specific instances of WebRequest descendants, using the value of the URI

passed to its Create method to determine the specific derived-class instance to create. Applications indicate which

WebRequest descendant should be used to handle a request by registering the descendant's constructor with the

WebRequest.RegisterPrefix method.

A request is made to the Internet resource by calling the GetResponse method on the WebRequest. The GetResponse

method constructs the protocol-specific request from the properties of the WebRequest, makes the TCP or UDP socket

connection to the server, and sends the request. For requests that send data to the server, such as HTTP Post or FTP Put

requests, the WebRequest.GetRequestStream method provides a network stream in which to send the data.

The GetResponse method returns a protocol-specific WebResponse that matches the WebRequest.

The WebResponse class is also an abstract class that defines properties and methods that are available to all applications

that use pluggable protocols. WebResponse descendants implement these properties and methods for the underlying

protocol. The HttpWebResponse class, for example, implements the WebResponse class for HTTP.

The data returned by the server is presented to the application in the stream returned by the

WebResponse.GetResponseStream method. You can use this stream like any other, as shown in the following example.

.NET Framework (current version)

Dim sr As StreamReader

sr = New StreamReader(resp.GetResponseStream(), Encoding.ASCII)

VB

Requesting Data https://msdn.microsoft.com/en-us/library/1t38832a(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:07

See Also
Network Programming in the .NET Framework

How to: Request a Web Page and Retrieve the Results as a Stream

How to: Retrieve a Protocol-Specific WebResponse that Matches a WebRequest

© 2016 Microsoft

Requesting Data https://msdn.microsoft.com/en-us/library/1t38832a(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:07

Creating Internet Requests

Applications create WebRequest instances through the WebRequest.Create method. This is a static method that creates a

class derived from WebRequest based on the URI scheme passed to it.

Web, File and FTP Requests
The .NET Framework provides the HttpWebRequest class, which is derived from WebRequest, to handle HTTP and HTTPS

requests. In most cases, the WebRequest class provides all the properties you need to make a request; however, if

necessary, you can cast WebRequest objects created by the WebRequest.Create method to the HttpWebRequest type

to access the HTTP-specific properties of the request. Similarly, the HttpWebResponse object handles the responses

from HTTP and HTTPS requests. To access the HTTP-specific properties of the HttpWebResponse object, you need to

cast WebResponse objects to the HttpWebResponse type.

The .NET Framework also provides the FileWebRequest and FileWebResponse classes to handle requests for resources

that use the "file:" URI scheme. Likewise, the FtpWebRequest and FtpWebResponse classes are provided to handle

requests for resources that use the "ftp:" scheme. If your request is for a resource that uses any of these schemes, you can

use the WebRequest.Create method to obtain an object with which to make your request.

To handle requests that use other application-level protocols, you need to implement protocol-specific classes derived

from WebRequest and WebResponse. For more information, see Programming Pluggable Protocols.

See Also
How to: Request Data Using the WebRequest Class

Requesting Data

© 2016 Microsoft

.NET Framework (current version)

Creating Internet Requests https://msdn.microsoft.com/en-us/library/69b8ttkf(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:08

How to: Request a Web Page and Retrieve
the Results as a Stream

This example shows how to request a Web page and retrieve the results in a stream.

Compiling the Code
This example requires:

References to the System.IO and System.Net namespaces.

See Also
Requesting Data

© 2016 Microsoft

.NET Framework (current version)

Dim myClient As WebClient = New WebClient()

Dim response As Stream = myClient.OpenRead("http://www.contoso.com/index.htm")

' The stream data is used here.

response.Close()

VB

How to: Request a Web Page and Retrieve the Results as a Stream https://msdn.microsoft.com/en-us/library/bay1b5dh(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:08

How to: Request Data Using the WebRequest
Class

The following procedure describes the steps used to request a resource from a server, for example, a Web page or file. The

resource must be identified by a URI.

To request data from a host server

Create a WebRequest instance by calling Create with the URI of the resource.

Note

The .NET Framework provides protocol-specific classes derived from WebRequest and WebResponse for URIs

that begin with "http:", "https:'', "ftp:", and "file:". To access resources using other protocols, you must implement

protocol-specific classes that derive from WebRequest and WebResponse. For more information, see

Programming Pluggable Protocols .

1.

Set any property values that you need in the WebRequest. For example, to enable authentication, set the

Credentials property to an instance of the NetworkCredential class.

In most cases, the WebRequest class is sufficient to receive data. However, if you need to set protocol-specific

2.

.NET Framework (current version)

WebRequest request = WebRequest.Create("http://www.contoso.com/");

Dim request as WebRequest = WebRequest.Create("http://www.contoso.com/")

request.Credentials = CredentialCache.DefaultCredentials;

request.Credentials = CredentialCache.DefaultCredentials

C#

VB

C#

VB

How to: Request Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/456dfw4f(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 3:08

properties, you must cast the WebRequest to the protocol-specific type. For example, to access the HTTP-specific

properties of HttpWebRequest, cast the WebRequest to an HttpWebRequest reference. The following code

example shows how to set the HTTP-specific UserAgent property.

To send the request to the server, call GetResponse. The actual type of the returned WebResponse object is

determined by the scheme of the requested URI.

Note

After you are finished with a WebResponse object, you must close it by calling the Close method. Alternatively, if

you have gotten the response stream from the response object, you can close the stream by calling the

Stream.Close method. If you do not close either the response or the stream, your application can run out of

connections to the server and become unable to process additional requests.

3.

You can access the properties of the WebResponse or cast the WebResponse to a protocol-specific instance to read

protocol-specific properties. For example, to access the HTTP-specific properties of HttpWebResponse, cast the

WebResponse to a HttpWebResponse reference. The following code example shows how to display the status

information sent with a response.

4.

((HttpWebRequest)request).UserAgent = ".NET Framework Example Client";

Ctype(request,HttpWebRequest).UserAgent = ".NET Framework Example Client"

WebResponse response = request.GetResponse();

Dim response As WebResponse = request.GetResponse()

Console.WriteLine (((HttpWebResponse)response).StatusDescription);

Console.WriteLine(CType(response,HttpWebResponse).StatusDescription)

C#

VB

C#

VB

C#

VB

How to: Request Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/456dfw4f(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 3:08

To get the stream containing response data sent by the server, use the GetResponseStream method of the

WebResponse.

5.

After reading the data from the response, you must either close the response stream using the Stream.Close method

or close the response using the WebResponse.Close method. It is not necessary to call the Close method on both

the response stream and the WebResponse, but doing so is not harmful. WebResponse.Close calls Stream.Close

when closing the response.

6.

Stream dataStream = response.GetResponseStream ();

Dim dataStream As Stream = response.GetResponseStream()

response.Close();

response.Close()

Imports System

Imports System.IO

Imports System.Net

Imports System.Text

Namespace Examples.System.Net

Public Class WebRequestGetExample

Public Shared Sub Main()

' Create a request for the URL.

Dim request As WebRequest = _

 WebRequest.Create("http://www.contoso.com/default.html")

' If required by the server, set the credentials.

 request.Credentials = CredentialCache.DefaultCredentials

' Get the response.

Dim response As WebResponse = request.GetResponse()

' Display the status.

 Console.WriteLine(CType(response,HttpWebResponse).StatusDescription)

' Get the stream containing content returned by the server.

Dim dataStream As Stream = response.GetResponseStream()

' Open the stream using a StreamReader for easy access.

Dim reader As New StreamReader(dataStream)

C#

VB

C#

VB

VB

How to: Request Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/456dfw4f(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 3:08

See Also
Creating Internet Requests

Using Streams on the Network

Accessing the Internet Through a Proxy

Requesting Data

How to: Send Data Using the WebRequest Class

© 2016 Microsoft

' Read the content.

Dim responseFromServer As String = reader.ReadToEnd()

' Display the content.

 Console.WriteLine(responseFromServer)

' Clean up the streams and the response.

 reader.Close()

 response.Close()

End Sub

End Class

End Namespace

How to: Request Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/456dfw4f(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 3:08

How to: Send Data Using the WebRequest
Class

The following procedure describes the steps used to send data to a server. This procedure is commonly used to post data to

a Web page.

To send data to a host server

Create a WebRequest instance by calling Create with the URI of the resource that accepts data, for example, a script

or ASP.NET page.

Note

The .NET Framework provides protocol-specific classes derived from WebRequest and WebResponse for URIs

that begin with "http:", "https:'', "ftp:", and "file:". To access resources using other protocols, you must implement

protocol-specific classes that derive from WebRequest and WebResponse. For more information, see

Programming Pluggable Protocols .

1.

Set any property values that you need in the WebRequest. For example, to enable authentication, set the

Credentials property to an instance of the NetworkCredential class.

2.

.NET Framework (current version)

WebRequest request = WebRequest.Create("http://www.contoso.com/");

Dim request as WebRequest = WebRequest.Create("http://www.contoso.com/")

request.Credentials = CredentialCache.DefaultCredentials;

request.Credentials = CredentialCache.DefaultCredentials

C#

VB

C#

VB

How to: Send Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/debx8sh9(d=printer,v=vs.110).aspx

1 of 6 05.09.2016 3:09

In most cases, the WebRequest instance itself is sufficient to send data. However, if you need to set protocol-specific

properties, you must cast the WebRequest to the protocol-specific type. For example, to access the HTTP-specific

properties of HttpWebRequest, cast the WebRequest to an HttpWebRequest reference. The following code

example shows how to set the HTTP-specific UserAgent property.

Specify a protocol method that permits data to be sent with a request, such as the HTTP POST method.3.

Set the ContentLength property.4.

Set the ContentType property to an appropriate value.5.

((HttpWebRequest)request).UserAgent = ".NET Framework Example Client";

Ctype(request,HttpWebRequest).UserAgent = ".NET Framework Example Client"

request.Method = "POST";

request.Method = "POST"

request.ContentLength = byteArray.Length;

request.ContentLength = byteArray.Length

request.ContentType = "application/x‐www‐form‐urlencoded";

request.ContentType = "application/x‐www‐form‐urlencoded"

C#

VB

C#

VB

C#

VB

C#

VB

How to: Send Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/debx8sh9(d=printer,v=vs.110).aspx

2 of 6 05.09.2016 3:09

Get the stream that holds request data by calling the GetRequestStream method.6.

Write the data to the Stream object returned by this method.7.

Close the request stream by calling the Stream.Close method.8.

Send the request to the server by calling GetResponse. This method returns an object containing the server's

response. The returned WebResponse object's type is determined by the scheme of the request's URI.

Note

9.

Stream dataStream = request.GetRequestStream ();

Stream dataStream = request.GetRequestStream ()

dataStream.Write (byteArray, 0, byteArray.Length);

dataStream.Write (byteArray, 0, byteArray.Length)

dataStream.Close ();

dataStream.Close ()

WebResponse response = request.GetResponse();

Dim response As WebResponse = request.GetResponse()

C#

VB

C#

VB

C#

VB

C#

VB

How to: Send Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/debx8sh9(d=printer,v=vs.110).aspx

3 of 6 05.09.2016 3:09

After you are finished with a WebResponse object, you must close it by calling the Close method. Alternatively, if

you have gotten the response stream from the response object, you can close the stream by calling the

Stream.Close method. If you do not close the response or the stream, your application can run out of connections

to the server and become unable to process additional requests.

You can access the properties of the WebResponse or cast the WebResponse to a protocol-specific instance to read

protocol-specific properties. For example, to access the HTTP-specific properties of HttpWebResponse, cast the

WebResponse to an HttpWebResponse reference.

10.

To get the stream containing response data sent by the server, call the GetResponseStream method of the

WebResponse.

11.

After reading the data from the response, you must either close the response stream using the Stream.Close method

or close the response using the WebResponse.Close method. It is not necessary to call the Close method on both

the response stream and the WebResponse, but doing so is not harmful.

12.

Console.WriteLine (((HttpWebResponse)response).StatusDescription);

Console.WriteLine(CType(response, HttpWebResponse).StatusDescription)

Stream data = response.GetResponseStream;

Dim data As Stream = response.GetResponseStream

response.Close();

response.Close()

Imports System

Imports System.IO

C#

VB

C#

VB

C#

VB

VB

How to: Send Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/debx8sh9(d=printer,v=vs.110).aspx

4 of 6 05.09.2016 3:09

See Also

Creating Internet Requests

Using Streams on the Network

Accessing the Internet Through a Proxy

Requesting Data

Imports System.Net

Imports System.Text

Namespace Examples.System.Net

Public Class WebRequestPostExample

Public Shared Sub Main()

' Create a request using a URL that can receive a post.

Dim request As WebRequest = WebRequest.Create("http://www.contoso.com

/PostAccepter.aspx ")

' Set the Method property of the request to POST.

 request.Method = "POST"

' Create POST data and convert it to a byte array.

Dim postData As String = "This is a test that posts this string to a Web

server."

Dim byteArray As Byte() = Encoding.UTF8.GetBytes(postData)

' Set the ContentType property of the WebRequest.

 request.ContentType = "application/x‐www‐form‐urlencoded"

' Set the ContentLength property of the WebRequest.

 request.ContentLength = byteArray.Length

' Get the request stream.

Dim dataStream As Stream = request.GetRequestStream()

' Write the data to the request stream.

 dataStream.Write(byteArray, 0, byteArray.Length)

' Close the Stream object.

 dataStream.Close()

' Get the response.

Dim response As WebResponse = request.GetResponse()

' Display the status.

 Console.WriteLine(CType(response, HttpWebResponse).StatusDescription)

' Get the stream containing content returned by the server.

 dataStream = response.GetResponseStream()

' Open the stream using a StreamReader for easy access.

Dim reader As New StreamReader(dataStream)

' Read the content.

Dim responseFromServer As String = reader.ReadToEnd()

' Display the content.

 Console.WriteLine(responseFromServer)

' Clean up the streams.

 reader.Close()

 dataStream.Close()

 response.Close()

End Sub

End Class

End Namespace

How to: Send Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/debx8sh9(d=printer,v=vs.110).aspx

5 of 6 05.09.2016 3:09

How to: Request Data Using the WebRequest Class

© 2016 Microsoft

How to: Send Data Using the WebRequest Class https://msdn.microsoft.com/en-us/library/debx8sh9(d=printer,v=vs.110).aspx

6 of 6 05.09.2016 3:09

How to: Retrieve a Protocol-Specific
WebResponse that Matches a WebRequest

This example shows how to retrieve a protocol-specific WebResponse that matches a WebRequest.

Compiling the Code
This example requires:

References to the System.Net namespace.

See Also
Requesting Data

© 2016 Microsoft

.NET Framework (current version)

Dim req As WebRequest = WebRequest.Create("http://www.contoso.com")

Dim resp As WebResponse = req.GetResponse()

VB

How to: Retrieve a Protocol-Specific WebResponse that Matches a Web... https://msdn.microsoft.com/en-us/library/cazafxa7(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:09

Using Streams on the Network

Network resources are represented in the .NET Framework as streams. By treating streams generically, the .NET Framework

offers the following capabilities:

A common way to send and receive Web data. Whatever the actual contents of the file — HTML, XML, or anything

else — your application will use Stream.Write and Stream.Read to send and receive data.

Compatibility with streams across the .NET Framework. Streams are used throughout the .NET Framework, which has

a rich infrastructure for handling them. For example, you can modify an application that reads XML data from a

FileStream to read data from a NetworkStream instead by changing only the few lines of code that initialize the

stream. The major differences between the NetworkStream class and other streams are that NetworkStream is not

seekable, the CanSeek property always returns false, and the Seek and Position methods throw a

NotSupportedException.

Processing of data as it arrives. Streams provide access to data as it arrives from the network, rather than forcing your

application to wait for an entire data set to be downloaded.

The System.Net.Sockets namespace contains a NetworkStream class that implements the Stream class specifically for use

with network resources. Classes in the System.Net.Sockets namespace use the NetworkStream class to represent streams.

To send data to the network using the returned stream, call GetRequestStream on your WebRequest. The WebRequest will

send request headers to the server; then you can send data to the network resource by calling the BeginWrite, EndWrite, or

Write method on the returned stream. Some protocols, such as HTTP, may require you to set protocol-specific properties

before sending data. The following code example shows how to set HTTP-specific properties for sending data. It assumes

that the variable sendData contains the data to send and that the variable sendLength is the number of bytes of data to

send.

To receive data from the network, call GetResponseStream on your WebResponse. You can then read data from the network

resource by calling the BeginRead, EndRead, or Read method on the returned stream.

.NET Framework (current version)

Dim request As HttpWebRequest = _

CType(WebRequest.Create("http://www.contoso.com/"), HttpWebRequest)

request.Method = "POST"

request.ContentLength = sendLength

Try

Dim sendStream As Stream = request.GetRequestStream()

 sendStream.Write(sendData, 0, sendLength)

 sendStream.Close()

Catch

' Handle errors . . .

End Try

VB

Using Streams on the Network https://msdn.microsoft.com/en-us/library/yet8z89t(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:10

When using streams from network resources, keep in mind the following points:

The CanSeek property always returns false since the NetworkStream class cannot change position in the stream.

The Seek and Position methods throw a NotSupportedException.

When you use WebRequest and WebResponse, stream instances created by calling GetResponseStream are

read-only and stream instances created by calling GetRequestStream are write-only.

Use the StreamReader class to make encoding easier. The following code example uses a StreamReader to read an

ASCII-encoded stream from a WebResponse (the example does not show creating the request).

The call to GetResponse can block if network resources are not available. You should consider using an

asynchronous request with the BeginGetResponse and EndGetResponse methods.

The call to GetRequestStream can block while the connection to the server is created. You should consider using an

asynchronous request for the stream with the BeginGetRequestStream and EndGetRequestStream methods.

See Also

How to: Request Data Using the WebRequest Class

Requesting Data

© 2016 Microsoft

' Create a response object.

Dim response As WebResponse = request.GetResponse()

' Get a readable stream from the server.

Dim sr As _

New StreamReader(response.GetResponseStream(), Encoding.ASCII)

' Use the stream. Remember when you are through with the stream to close it.

sr.Close()

VB

Using Streams on the Network https://msdn.microsoft.com/en-us/library/yet8z89t(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:10

Making Asynchronous Requests

The System.Net classes use the .NET Framework's standard asynchronous programming model for asynchronous access to

Internet resources. The BeginGetResponse and EndGetResponse methods of the WebRequest class start and complete

asynchronous requests for an Internet resource.

Note

Using synchronous calls in asynchronous callback methods can result in severe performance penalties. Internet requests

made with WebRequest and its descendants must use Stream.BeginRead to read the stream returned by the

WebResponse.GetResponseStream method.

The following sample code demonstrates how to use asynchronous calls with the WebRequest class. The sample is a console

program that takes a URI from the command line, requests the resource at the URI, and then prints data to the console as it

is received from the Internet.

The program defines two classes for its own use, the RequestState class, which passes data across asynchronous calls, and

the ClientGetAsync class, which implements the asynchronous request to an Internet resource.

The RequestState class preserves the state of the request across calls to the asynchronous methods that service the request.

It contains WebRequest and Stream instances that contain the current request to the resource and the stream received in

response, a buffer that contains the data currently received from the Internet resource, and a StringBuilder that contains the

complete response. A RequestStateis passed as the state parameter when the AsyncCallback method is registered with

WebRequest.BeginGetResponse.

The ClientGetAsync class implements an asynchronous request to an Internet resource and writes the resulting response to

the console. It contains the methods and properties described in the following list.

The allDone property contains an instance of the ManualResetEvent class that signals the completion of the request.

The Main() method reads the command line and begins the request for the specified Internet resource. It creates the

WebRequest wreq and the RequestState rs, calls BeginGetResponse to begin processing the request, and then

calls the allDone.WaitOne()method so that the application will not exit until the callback is complete. After the

response is read from the Internet resource, Main() writes it to the console and the application ends.

The showusage() method writes an example command line on the console. It is called by Main() when no URI is

provided on the command line.

The RespCallBack() method implements the asynchronous callback method for the Internet request. It creates the

WebResponse instance containing the response from the Internet resource, gets the response stream, and then starts

reading the data from the stream asynchronously.

The ReadCallBack() method implements the asynchronous callback method for reading the response stream. It

transfers data received from the Internet resource into the ResponseData property of the RequestState instance,

.NET Framework (current version)

Making Asynchronous Requests https://msdn.microsoft.com/en-us/library/86wf6409(d=printer,v=vs.110).aspx

1 of 5 05.09.2016 3:10

then starts another asynchronous read of the response stream until no more data is returned. Once all the data has

been read, ReadCallBack() closes the response stream and calls the allDone.Set() method to indicate that the

entire response is present in ResponseData.

Note

It is critical that all network streams are closed. If you do not close each request and response stream, your

application will run out of connections to the server and be unable to process additional requests.

Imports System

Imports System.Net

Imports System.Threading

Imports System.Text

Imports System.IO

' The RequestState class passes data across async calls.

Public Class RequestState

Public RequestData As New StringBuilder("")

Public BufferRead(1024) As Byte

Public Request As HttpWebRequest

Public ResponseStream As Stream

' Create Decoder for appropriate encoding type.

Public StreamDecode As Decoder = Encoding.UTF8.GetDecoder()

Public Sub New

 Request = Nothing

 ResponseStream = Nothing

End Sub

End Class

' ClientGetAsync issues the async request.

Class ClientGetAsync

Shared allDone As New ManualResetEvent(False)

Const BUFFER_SIZE As Integer = 1024

Shared Sub Main()

Dim Args As String() = Environment.GetCommandLineArgs()

If Args.Length < 2 Then

 ShowUsage()

Return

End If

' Get the URI from the command line.

Dim HttpSite As Uri = New Uri(Args(1))

' Create the request object.

VB

Making Asynchronous Requests https://msdn.microsoft.com/en-us/library/86wf6409(d=printer,v=vs.110).aspx

2 of 5 05.09.2016 3:10

Dim wreq As HttpWebRequest = _

CType(WebRequest.Create(HttpSite), HttpWebRequest)

' Create the state object.

Dim rs As RequestState = New RequestState()

' Put the request into the state so it can be passed around.

 rs.Request = wreq

' Issue the async request.

Dim r As IAsyncResult = _

CType(wreq.BeginGetResponse(_

New AsyncCallback(AddressOf RespCallback), rs), IAsyncResult)

' Wait until the ManualResetEvent is set so that the application

' does not exit until after the callback is called.

 allDone.WaitOne()

End Sub

Shared Sub ShowUsage()

 Console.WriteLine("Attempts to GET a URI")

 Console.WriteLine()

 Console.WriteLine("Usage:")

 Console.WriteLine("ClientGetAsync URI")

 Console.WriteLine("Examples:")

 Console.WriteLine("ClientGetAsync http://www.contoso.com/")

End Sub

Shared Sub RespCallback(ar As IAsyncResult)

' Get the RequestState object from the async result.

Dim rs As RequestState = CType(ar.AsyncState, RequestState)

' Get the HttpWebRequest from RequestState.

Dim req As HttpWebRequest= rs.Request

' Call EndGetResponse, which returns the HttpWebResponse object

' that came from the request issued above.

Dim resp As HttpWebResponse = _

CType(req.EndGetResponse(ar), HttpWebResponse)

' Start reading data from the respons stream.

Dim ResponseStream As Stream = resp.GetResponseStream()

' Store the reponse stream in RequestState to read

' the stream asynchronously.

 rs.ResponseStream = ResponseStream

' Pass rs.BufferRead to BeginRead. Read data into rs.BufferRead.

Dim iarRead As IAsyncResult = _

 ResponseStream.BeginRead(rs.BufferRead, 0, BUFFER_SIZE, _

New AsyncCallback(AddressOf ReadCallBack), rs)

End Sub

Shared Sub ReadCallBack(asyncResult As IAsyncResult)

Making Asynchronous Requests https://msdn.microsoft.com/en-us/library/86wf6409(d=printer,v=vs.110).aspx

3 of 5 05.09.2016 3:10

See Also

Requesting Data

' Get the RequestState object from the AsyncResult.

Dim rs As RequestState = CType(asyncResult.AsyncState, RequestState)

' Retrieve the ResponseStream that was set in RespCallback.

Dim responseStream As Stream = rs.ResponseStream

' Read rs.BufferRead to verify that it contains data.

Dim read As Integer = responseStream.EndRead(asyncResult)

If read > 0 Then

' Prepare a Char array buffer for converting to Unicode.

Dim charBuffer(1024) As Char

' Convert byte stream to Char array and then String.

' len contains the number of characters converted to Unicode.

Dim len As Integer = _

 rs.StreamDecode.GetChars(rs.BufferRead, 0, read, charBuffer, 0)

Dim str As String = new String(charBuffer, 0, len)

' Append the recently read data to the RequestData stringbuilder

' object contained in RequestState.

 rs.RequestData.Append(_

 Encoding.ASCII.GetString(rs.BufferRead, 0, read))

' Continue reading data until responseStream.EndRead

' returns –1.

Dim ar As IAsyncResult = _

 responseStream.BeginRead(rs.BufferRead, 0, BUFFER_SIZE, _

New AsyncCallback(AddressOf ReadCallBack), rs)

Else

If rs.RequestData.Length > 1 Then

' Display data to the console.

Dim strContent As String

 strContent = rs.RequestData.ToString()

 Console.WriteLine(strContent)

End If

' Close down the response stream.

 responseStream.Close()

' Set the ManualResetEvent so the main thread can exit.

 allDone.Set()

End If

Return

End Sub

End Class

Making Asynchronous Requests https://msdn.microsoft.com/en-us/library/86wf6409(d=printer,v=vs.110).aspx

4 of 5 05.09.2016 3:10

© 2016 Microsoft

Making Asynchronous Requests https://msdn.microsoft.com/en-us/library/86wf6409(d=printer,v=vs.110).aspx

5 of 5 05.09.2016 3:10

Handling Errors

The WebRequest and WebResponse classes throw both system exceptions (such as ArgumentException) and Web-specific

exceptions (which are WebExceptions thrown by the GetResponse method).

Each WebException includes a Status property that contains a value from the WebExceptionStatus enumeration. You can

examine the Status property to determine the error that occurred and take the proper steps to resolve the error.

The following table describes the possible values for the Status property.

Status Description

ConnectFailure The remote service could not be contacted at the transport level.

ConnectionClosed The connection was closed prematurely.

KeepAliveFailure The server closed a connection made with the Keep-alive header set.

NameResolutionFailure The name service could not resolve the host name.

ProtocolError The response received from the server was complete but indicated an error at the

protocol level.

ReceiveFailure A complete response was not received from the remote server.

RequestCanceled The request was canceled.

SecureChannelFailure An error occurred in a secure channel link.

SendFailure A complete request could not be sent to the remote server.

ServerProtocolViolation The server response was not a valid HTTP response.

Success No error was encountered.

Timeout No response was received within the time-out set for the request.

TrustFailure A server certificate could not be validated.

MessageLengthLimitExceeded A message was received that exceeded the specified limit when sending a request or

receiving a response from the server.

Pending An internal asynchronous request is pending.

.NET Framework (current version)

Handling Errors https://msdn.microsoft.com/en-us/library/es54hw8e(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:11

PipelineFailure This value supports the .NET Framework infrastructure and is not intended to be used

directly in your code.

ProxyNameResolutionFailure The name resolver service could not resolve the proxy host name.

UnknownError An exception of unknown type has occurred.

When the Status property is WebExceptionStatus.ProtocolError, a WebResponse that contains the response from the

server is available. You can examine this response to determine the actual source of the protocol error.

The following example shows how to catch a WebException.

Try

' Create a request instance.

Dim myRequest As WebRequest = WebRequest.Create("http://www.contoso.com")

' Get the response.

Dim myResponse As WebResponse = myRequest.GetResponse()

'Get a readable stream from the server.

Dim sr As Stream = myResponse.GetResponseStream()

Dim i As Integer

'Read from the stream and write any data to the console.

 bytesread = sr.Read(myBuffer, 0, length)

While bytesread > 0

For i = 0 To bytesread ‐ 1

 Console.Write("{0}", myBuffer(i))

Next i

 Console.WriteLine()

 bytesread = sr.Read(myBuffer, 0, length)

End While

 sr.Close()

 myResponse.Close()

Catch webExcp As WebException

' If you reach this point, an exception has been caught.

 Console.WriteLine("A WebException has been caught.")

' Write out the WebException message.

 Console.WriteLine(webExcp.ToString())

' Get the WebException status code.

Dim status As WebExceptionStatus = webExcp.Status

' If status is WebExceptionStatus.ProtocolError,

' there has been a protocol error and a WebResponse

' should exist. Display the protocol error.

If status = WebExceptionStatus.ProtocolError Then

 Console.Write("The server returned protocol error ")

' Get HttpWebResponse so that you can check the HTTP status code.

Dim httpResponse As HttpWebResponse = _

CType(webExcp.Response, HttpWebResponse)

 Console.WriteLine(CInt(httpResponse.StatusCode).ToString() & _

" ‐ " & httpResponse.StatusCode.ToString())

End If

VB

Handling Errors https://msdn.microsoft.com/en-us/library/es54hw8e(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:11

Applications that use the Socket class throw SocketExceptions when errors occur on the Windows socket. The TCPClient,

TCPListener, and UDPClient classes are built on top of the Socket class and throw SocketExceptions as well.

When a SocketException is thrown, the SocketException class sets the ErrorCode property to the last operating system

socket error that occurred. For more information about socket error codes, see the Winsock 2.0 API error code

documentation in MSDN.

See Also

Exception Handling Fundamentals

Requesting Data

© 2016 Microsoft

Catch e As Exception

' Code to catch other exceptions goes here.

End Try

Handling Errors https://msdn.microsoft.com/en-us/library/es54hw8e(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:11

Programming Pluggable Protocols

The abstract WebRequest and WebResponse classes provide the base for pluggable protocols. By deriving protocol-specific

classes from WebRequest and WebResponse, an application can request data from an Internet resource and read the

response without specifying the protocol being used.

Before you can create a protocol-specific WebRequest, you must register its Create method. Use the static

RegisterPrefix(String, IWebRequestCreate) method of WebRequest to register a WebRequest descendant to handle a set of

requests to a particular Internet scheme, to a scheme and server, or to a scheme, server, and path.

In most cases you will be able to send and receive data using the methods and properties of the WebRequest class.

However, if you need to access protocol-specific properties, you can typecast a WebRequest to a specific derived-class

instance.

To take advantage of pluggable protocols, your WebRequest descendants must provide a default request-and-response

transaction that does not require protocol-specific properties to be set. For example, the HttpWebRequest class, which

implements the WebRequest class for HTTP, provides a GET request by default and returns an HttpWebResponse that

contains the stream returned from the Web server.

See Also

Deriving from WebRequest

Deriving from WebResponse

Network Programming in the .NET Framework

How to: Typecast a WebRequest to Access Protocol Specific Properties

© 2016 Microsoft

.NET Framework (current version)

Programming Pluggable Protocols https://msdn.microsoft.com/en-us/library/1f6c88af(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:12

How to: Register a Custom Protocol Using
WebRequest

This example shows how to register a protocol specific class that is defined elsewhere. In this example,

CustomWebRequestCreator is the user-implemented object that implements the Create method that returns the

CustomWebRequest object. The code example assumes that you have written the CustomWebRequest code that implements

the custom protocol.

Compiling the Code
This example requires:

References to the System.Net namespace.

See Also
Programming Pluggable Protocols

© 2016 Microsoft

.NET Framework (current version)

WebRequest.RegisterPrefix("custom", New CustomWebRequestCreator())

Dim req As WebRequest = WebRequest.Create("custom://customHost.contoso.com/")

VB

How to: Register a Custom Protocol Using WebRequest https://msdn.microsoft.com/en-us/library/s77718ec(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:12

How to: Typecast a WebRequest to Access
Protocol Specific Properties

This example shows how to typecast a WebRequest so that you can access protocol specific properties.

See Also

Programming Pluggable Protocols

© 2016 Microsoft

.NET Framework (current version)

Dim httpreq As HttpWebRequest = _

CType(WebRequest.Create("http://www.contoso.com/"), HttpWebRequest)

VB

How to: Typecast a WebRequest to Access Protocol Specific Properties https://msdn.microsoft.com/en-us/library/982f37xc(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:13

Deriving from WebRequest

The WebRequest class is an abstract base class that provides the basic methods and properties for creating a protocol-

specific request handler that fits the .NET Framework pluggable protocol model. Applications that use the WebRequest

class can request data using any supported protocol without needing to specify the protocol used.

Two criteria must be met in order for a protocol-specific class to be used as a pluggable protocol: The class must implement

the IWebRequestCreate interface, and it must register with the WebRequest.RegisterPrefix method. The class must override

all the abstract methods and properties of WebRequest to provide the pluggable interface.

WebRequest instances are intended for one-time use; if you want to make another request, create a new WebRequest.

WebRequest supports the ISerializable interface to enable developers to serialize a template WebRequest and then

reconstruct the template for additional requests.

IWebRequest Create Method
The Create method is responsible for initializing a new instance of the protocol-specific class. When a new WebRequest is

created, the WebRequest.Create method matches the requested URI with the URI prefixes registered with the

RegisterPrefix method. The Create method of the proper protocol-specific descendant must return an initialized

instance of the descendant capable of performing a standard request/response transaction for the protocol without

needing any protocol-specific fields modified.

ConnectionGroupName Property
The ConnectionGroupName property is used to name a group of connections to a resource so that multiple requests can

be made over a single connection. To implement connection-sharing, you must use a protocol-specific method of

pooling and assigning connections. For example, the provided ServicePointManager class implements connection sharing

for the HttpWebRequest class. The ServicePointManager class creates a ServicePoint that provides a connection to a

specific server for each connection group.

ContentLength Property
The ContentLength property specifies the number of bytes of data that will be sent to the server when uploading data.

Typically the Method property must be set to indicate that an upload is taking place when the ContentLength property

is set to a value greater than zero.

ContentType Property
The ContentType property provides any special information that your protocol requires you to send to the server to

.NET Framework (current version)

Deriving from WebRequest https://msdn.microsoft.com/en-us/library/3tf230ta(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 3:13

identify the type of content that you are sending. Typically this is the MIME content type of any data uploaded.

Credentials Property
The Credentials property contains information needed to authenticate the request with the server. You must implement

the details of the authentication process for your protocol. The AuthenticationManager class is responsible for

authenticating requests and providing an authentication token. The class that provides the credentials used by your

protocol must implement the ICredentials interface.

Headers Property
The Headers property contains an arbitrary collection of name/value pairs of metadata associated with the request. Any

metadata needed by the protocol that can be expressed as a name/value pair can be included in the Headers property.

Typically this information must be set before calling the GetRequestStream or GetResponse methods; once the request

has been made, the metadata is considered read-only.

You are not required to use the Headers property to use header metadata. Protocol-specific metadata can be exposed as

properties; for example, the HttpWebRequest.UserAgent property exposes the User-Agent HTTP header. When you

expose header metadata as a property, you should not allow the same property to be set using the Headers property.

Method Property
The Method property contains the verb or action that the request is asking the server to perform. The default for the

Method property must enable a standard request/response action without requiring any protocol-specific properties to

be set. For example, the HttpWebResponse method defaults to GET, which requests a resource from a Web server and

returns the response.

Typically the ContentLength property must be set to a value greater than zero when the Method property is set to a

verb or action that indicates that an upload is taking place.

PreAuthenticate Property
Applications set the PreAuthenticate property to indicate that authentication information should be sent with the initial

request rather than waiting for an authentication challenge. The PreAuthenticate property is only meaningful if the

protocol supports authentication credentials sent with the initial request.

Proxy Property
The Proxy property contains an IWebProxy interface that is used to access the requested resource. The Proxy property is

meaningful only if your protocol supports proxied requests. You must set the default proxy if one is required by your

protocol.

In some environments, such as behind a corporate firewall, your protocol might be required to use a proxy. In that case,

Deriving from WebRequest https://msdn.microsoft.com/en-us/library/3tf230ta(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 3:13

you must implement the IWebProxy interface to create a proxy class that will work for your protocol.

RequestUri Property
The RequestUri property contains the URI that was passed to the WebRequest.Create method. It is read-only and cannot

be changed once the WebRequest has been created. If your protocol supports redirection, the response can come from a

resource identified by a different URI. If you need to provide access to the URI that responded, you must provide an

additional property containing that URI.

Timeout Property
The Timeout property contains the length of time, in milliseconds, to wait before the request times out and throws an

exception. Timeout applies only to synchronous requests made with the GetResponse method; asynchronous requests

must use the Abort method to cancel a pending request.

Setting the Timeout property is meaningful only if the protocol-specific class implements a time-out process.

Abort Method
The Abort method cancels a pending asynchronous request to a server. After the request has been canceled, calling

GetResponse, BeginGetResponse, EndGetResponse, GetRequestStream, BeginGetRequestStream, or

EndGetRequestStream will throw a WebException with the Status property set to RequestCanceled.

BeginGetRequestStream and EndGetRequestStream Methods
The BeginGetRequestStream method starts an asynchronous request for the stream that is used to upload data to the

server. The EndGetRequestStream method completes the asynchronous request and returns the requested stream. These

methods implement the GetRequestStream method using the standard .NET Framework asynchronous pattern.

BeginGetResponse and EndGetResponse Methods
The BeginGetResponse method starts an asynchronous request to a server. The EndGetResponse method completes the

asynchronous request and returns the requested response. These methods implement the GetResponse method using

the standard .NET Framework asynchronous pattern.

GetRequestStream Method
The GetRequestStream method returns a stream that is used to write data to the requested server. The stream returned

should be a write-only stream that does not seek; it is intended as a one-way stream of data that is written to the server.

The stream returns false for the CanRead and CanSeek properties and true for the CanWrite property.

Deriving from WebRequest https://msdn.microsoft.com/en-us/library/3tf230ta(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 3:13

The GetRequestStream method typically opens a connection to the server and, before returning the stream, sends

header information that indicates that data is being sent to the server. Because GetRequestStream begins the request,

setting any Header properties or the ContentLength property is typically not allowed after calling GetRequestStream.

GetResponse Method
The GetResponse method returns a protocol-specific descendant of the WebResponse class that represents the response

from the server. Unless the request has already been initiated by the GetRequestStream method, the GetResponse

method creates a connection to the resource identified by RequestUri, sends header information indicating the type of

request being made, and then receives the response from the resource.

Once the GetResponse method is called, all properties should be considered read-only. WebRequest instances are

intended for one-time use; if you want to make another request, you should create a new WebRequest.

The GetResponse method is responsible for creating an appropriate WebResponse descendant to contain the incoming

response.

See Also
WebRequest

HttpWebRequest

FileWebRequest

Programming Pluggable Protocols

Deriving from WebResponse

© 2016 Microsoft

Deriving from WebRequest https://msdn.microsoft.com/en-us/library/3tf230ta(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 3:13

Deriving from WebResponse

The WebResponse class is an abstract base class that provides the basic methods and properties for creating a protocol-

specific response that fits the .NET Framework pluggable protocol model. Applications that use the WebRequest class to

request data from resources receive the responses in a WebResponse. Protocol-specific WebResponse descendants must

implement the abstract members of the WebResponse class.

The associated WebRequest class must create WebResponse descendants. For example, HttpWebResponse instances are

created only as the result of calling HttpWebRequest.GetResponse or HttpWebRequest.EndGetResponse. Each

WebResponse contains the result of a request to a resource and is not intended to be reused.

ContentLength Property
The ContentLength property indicates the number of bytes of data that are available from the stream returned by the

GetResponseStream method. The ContentLength property does not indicate the number of bytes of header or metadata

information returned by the server; it indicates only the number of bytes of data in the requested resource itself.

ContentType Property
The ContentType property provides any special information that your protocol requires you to send to the client to

identify the type of content being sent by the server. Typically this is the MIME content type of any data returned.

Headers Property
The Headers property contains an arbitrary collection of name/value pairs of metadata associated with the response. Any

metadata needed by the protocol that can be expressed as a name/value pair can be included in the Headers property.

You are not required to use the Headers property to use header metadata. Protocol-specific metadata can be exposed as

properties; for example, the HttpWebResponse.LastModified property exposes the Last-Modified HTTP header. When

you expose header metadata as a property, you should not allow the same property to be set using the Headers

property.

ResponseUri Property
The ResponseUri property contains the URI of the resource that actually provided the response. For protocols that do not

support redirection, ResponseUri will be the same as the RequestUri property of the WebRequest that created the

response. If the protocol supports redirecting the request, ResponseUri will contain the URI of the response.

.NET Framework (current version)

Deriving from WebResponse https://msdn.microsoft.com/en-us/library/8wtkc6c1(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:13

Close Method
The Close method closes any connections made by the request and response and cleans up resources used by the

response. The Close method closes any stream instances used by the response, but it does not throw an exception if the

response stream was previously closed by a call to the Stream.Close method.

GetResponseStream Method
The GetResponseStream method returns a stream containing the response from the requested resource. The response

stream contains only the data returned by the resource; any header or metadata included in the response should be

stripped from the response and exposed to the application through protocol-specific properties or the Headers

property.

The stream instance returned by the GetResponseStream method is owned by the application and can be closed without

closing the WebResponse. By convention, calling the WebResponse.Close method also closes the stream returned by

GetResponse.

See Also
WebResponse

HttpWebResponse

FileWebResponse

Programming Pluggable Protocols

Deriving from WebRequest

© 2016 Microsoft

Deriving from WebResponse https://msdn.microsoft.com/en-us/library/8wtkc6c1(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:13

Using Application Protocols

The .NET Framework supports commonly used Internet application protocols. This section includes information on using the

HTTP, TCP, and UDP protocols, as well as information on using the Windows Sockets interface to implement custom

protocols.

See Also

Network Programming in the .NET Framework

Network Programming Samples

Networking Samples for .NET on MSDN Code Gallery

© 2016 Microsoft

.NET Framework (current version)

Using Application Protocols https://msdn.microsoft.com/en-us/library/d3s1ybx2(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:14

HTTP

The .NET Framework provides comprehensive support for the HTTP protocol, which makes up the majority of all Internet

traffic, with theHttpWebRequest and HttpWebResponse classes. These classes, derived from WebRequest and WebResponse,

are returned by default whenever the static method WebRequest.Create encounters a URI beginning with "http" or "https".

In most cases, the WebRequest and WebResponse classes provide all that is necessary to make the request, but if you need

access to the HTTP-specific features exposed as properties, you can typecast these classes to HttpWebRequest or

HttpWebResponse.

HttpWebRequest and HttpWebResponse encapsulate a standard HTTP request-and-response transaction and provide

access to common HTTP headers. These classes also support most HTTP 1.1 features, including pipelining, sending and

receiving data in chunks, authentication, preauthentication, encryption, proxy support, server certificate validation, and

connection management. Custom headers and headers not provided through properties can be stored in and accessed

through the Headers property.

HttpWebRequest is the default class used by WebRequest and does not need to be registered before you can pass a URI

to the WebRequest.Create method.

You can make your application follow HTTP redirects automatically by setting the AllowAutoRedirect property to true (the

default). The application will redirect requests, and the ResponseURI property of HttpWebResponse will contain the actual

Web resource that responded to the request. If you set AllowAutoRedirect to false, your application must be able to

handle redirects as HTTP protocol errors.

Applications receive HTTP protocol errors by catching a WebException with the Status set to

WebExceptionStatus.ProtocolError. The Response property contains the WebResponse sent by the server and indicates the

actual HTTP error encountered.

See Also

Accessing the Internet Through a Proxy

Using Application Protocols

How to: Access HTTP-Specific Properties

© 2016 Microsoft

.NET Framework (current version)

HTTP https://msdn.microsoft.com/en-us/library/3t7swy4z(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:15

HttpListener

The HttpListener class provides a programmatically controlled HTTP protocol listener. The listener is active for the lifetime of

the HttpListener object and runs within your application.

HTTP.SYS

The HttpListener class is built on top of HTTP.sys, which is the kernel mode listener that handles all HTTP traffic for

Windows. HTTP.sys provides connection management, bandwidth throttling, and Web server logging. Use the

HttpCfg.exe tool to add SSL certificates. For more information, see the documentation on the HttpCfg.exe tool in the

Server documentation.

See Also

HttpListener

HttpWebRequest

HttpWebResponse

HTTP Server

Security Enhancements in Internet Information

HttpListener ASPX Host Application Sample

HttpListener Technology Sample

Network Programming Samples

© 2016 Microsoft

.NET Framework (current version)

HttpListener https://msdn.microsoft.com/en-us/library/ms229710(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:15

How to: Access HTTP-Specific Properties

This sample shows how to turn off the HTTP Keep-alive behavior and get the protocol version number from the Web server.

Compiling the Code
This example requires:

References to the System.Net namespace.

See Also
Accessing the Internet Through a Proxy

Using Application Protocols

HTTP

© 2016 Microsoft

.NET Framework (current version)

Dim HttpWReq As HttpWebRequest= _

CType(WebRequest.Create("http://www.contoso.com"), HttpWebRequest)

' Turn off connection keep‐alives.

HttpWReq.KeepAlive = False

Dim HttpWResp As HttpWebResponse = _

CType(HttpWReq.GetResponse(), HttpWebResponse)

' Get the HTTP protocol version number returned by the server.

Dim ver As String = HttpWResp.ProtocolVersion.ToString()

HttpWResp.Close()

VB

How to: Access HTTP-Specific Properties https://msdn.microsoft.com/en-us/library/943b446t(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:16

Managing Connections

Applications that use HTTP to connect to data resources can use the .NET Framework's ServicePoint and

ServicePointManager classes to manage connections to the Internet and to help them achieve optimum scale and

performance.

The ServicePoint class provides an application with an endpoint to which the application can connect to access Internet

resources. Each ServicePoint contains information that helps optimize connections with an Internet server by sharing

optimization information between connections to improve performance.

Each ServicePoint is identified by a Uniform Resource Identifier (URI) and is categorized according to the scheme identifier

and host fragments of the URI. For example, the same ServicePoint instance would provide requests to the URIs

http://www.contoso.com/index.htm and http://www.contoso.com/news.htm?date=today since they have the same scheme

identifier (http) and host fragments (www.contoso.com). If the application already has a persistent connection to the server

www.contoso.com, it uses that connection to retrieve both requests, avoiding the need to create two connections.

ServicePointManager is a static class that manages the creation and destruction of ServicePoint instances. The

ServicePointManager creates a ServicePoint when the application requests an Internet resource that is not in the

collection of existing ServicePoint instances. ServicePoint instances are destroyed when they have exceeded their

maximum idle time or when the number of existing ServicePoint instances exceeds the maximum number of ServicePoint

instances for the application. You can control both the default maximum idle time and the maximum number of

ServicePoint instances by setting the MaxServicePointIdleTime and MaxServicePoints properties on the

ServicePointManager.

The number of connections between a client and server can have a dramatic impact on application throughput. By default,

an application using the HttpWebRequest class uses a maximum of two persistent connections to a given server, but you can

set the maximum number of connections on a per-application basis.

Note

The HTTP/1.1 specification limits the number of connections from an application to two connections per server.

The optimum number of connections depends on the actual conditions in which the application runs. Increasing the number

of connections available to the application may not affect application performance. To determine the impact of more

connections, run performance tests while varying the number of connections. You can change the number of connections

that an application uses by changing the static DefaultConnectionLimit property on the ServicePointManager class at

application initialization, as shown in the following code sample.

Changing the ServicePointManager.DefaultConnectionLimit property does not affect previously initialized ServicePoint

.NET Framework (current version)

' Set the maximum number of connections per server to 4.

ServicePointManager.DefaultConnectionLimit = 4

VB

Managing Connections https://msdn.microsoft.com/en-us/library/7af54za5(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:16

instances. The following code demonstrates changing the connection limit on an existing ServicePoint for the server

http://www.contoso.com to the value stored in newLimit.

See Also

Connection Grouping

Using Application Protocols

© 2016 Microsoft

Dim uri As New Uri("http://www.contoso.com/")

Dim sp As ServicePoint = ServicePointManager.FindServicePoint(uri)

sp.ConnectionLimit = newLimit

VB

Managing Connections https://msdn.microsoft.com/en-us/library/7af54za5(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:16

Connection Grouping

Connection grouping associates specific requests within a single application to a defined connection pool. This can be

required by a middle-tier application that connects to a back-end server on behalf of a user and uses an authentication

protocol that supports delegation, such as Kerberos, or by a middle-tier application that supplies its own credentials, as in

the example below. For example, suppose a user, Joe, visits an internal Web site that displays his payroll information. After

authenticating Joe, the middle-tier application server uses Joe's credentials to connect to the back-end server to retrieve his

payroll information. Next, Susan visits the site and requests her payroll information. Because the middle-tier application has

already made a connection using Joe's credentials, the back-end server responds with Joe's information. However, if the

application assigns each request sent to the back-end server to a connection group formed from the user name, then each

user belongs to a separate connection pool and cannot accidentally share authentication information with another user.

To assign a request to a specific connection group, you must assign a name to the ConnectionGroupName property of your

WebRequest before making the request.

See Also

Managing Connections

How to: Assign User Information to Group Connections

© 2016 Microsoft

.NET Framework (current version)

Connection Grouping https://msdn.microsoft.com/en-us/library/9y44063y(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:17

How to: Assign User Information to Group
Connections

7ce550d6-8f7c-4ea7-add8-5bc27a7b51be#tskhowtoassignuserinformationtogroupconnectionsanchor1

The following example demonstrates how to assign user information to group connections, assuming that the application

sets the variables UserName, SecurelyStoredPassword, and Domain before this section of code is called and that UserName

is unique.

To assign user information to a group connection

Create a connection group name.1.

Create a request for a specific URL. For example, the following code creates a request for the URL

http://www.contoso.com.

2.

Set the credentials and Connection GroupName for the Web request, and call GetResponse to retrieve a3.

.NET Framework (current version)

SHA1Managed Sha1 = new SHA1Managed();

Byte[] updHash = Sha1.ComputeHash(Encoding.UTF8.GetBytes(UserName +

SecurelyStoredPassword + Domain));

String secureGroupName = Encoding.Default.GetString(updHash);

Dim Sha1 As New SHA1Managed()

Dim updHash As [Byte]() = Sha1.ComputeHash(Encoding.UTF8.GetBytes((UserName +

SecurelyStoredPassword + Domain)))

Dim secureGroupName As [String] = Encoding.Default.GetString(updHash)

WebRequest myWebRequest=WebRequest.Create("http://www.contoso.com");

Dim myWebRequest As WebRequest = WebRequest.Create("http://www.contoso.com")

C#

VB

C#

VB

How to: Assign User Information to Group Connections https://msdn.microsoft.com/en-us/library/c3xkc3cc(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:17

WebResponse object.

Close the response stream after using the WebRespose object.4.

Example

myWebRequest.Credentials = new NetworkCredential(UserName, SecurelyStoredPassword,

Domain);

myWebRequest.ConnectionGroupName = secureGroupName;

WebResponse myWebResponse=myWebRequest.GetResponse();

myWebRequest.Credentials = New NetworkCredential(UserName, SecurelyStoredPassword,

Domain)

myWebRequest.ConnectionGroupName = secureGroupName

Dim myWebResponse As WebResponse = myWebRequest.GetResponse()

MyWebResponse.Close();

MyWebResponse.Close()

' Create a secure group name.

Dim Sha1 As New SHA1Managed()

Dim updHash As [Byte]() = Sha1.ComputeHash(Encoding.UTF8.GetBytes((UserName +

SecurelyStoredPassword + Domain)))

Dim secureGroupName As [String] = Encoding.Default.GetString(updHash)

' Create a request for a specific URL.

Dim myWebRequest As WebRequest = WebRequest.Create("http://www.contoso.com")

myWebRequest.Credentials = New NetworkCredential(UserName, SecurelyStoredPassword, Domain)

myWebRequest.ConnectionGroupName = secureGroupName

Dim myWebResponse As WebResponse = myWebRequest.GetResponse()

C#

VB

C#

VB

VB

How to: Assign User Information to Group Connections https://msdn.microsoft.com/en-us/library/c3xkc3cc(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:17

See Also
Managing Connections

Connection Grouping

© 2016 Microsoft

' Insert the code that uses myWebResponse.

MyWebResponse.Close()

How to: Assign User Information to Group Connections https://msdn.microsoft.com/en-us/library/c3xkc3cc(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:17

TCP/UDP

Applications can use Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) services with the TcpClient,

TcpListener, and UdpClient classes. These protocol classes are built on top of the System.Net.Sockets.Socket class and take

care of the details of transferring data.

The protocol classes use the synchronous methods of the Socket class to provide simple and straightforward access to

network services without the overhead of maintaining state information or knowing the details of setting up protocol-

specific sockets. To use asynchronous Socket methods, you can use the asynchronous methods supplied by the

NetworkStream class. To access features of the Socket class not exposed by the protocol classes, you must use the Socket

class.

TcpClient and TcpListener represent the network using the NetworkStream class. You use the GetStream method to

return the network stream, and then call the stream's Read and Write methods. The NetworkStream does not own the

protocol classes' underlying socket, so closing it does not affect the socket.

The UdpClient class uses an array of bytes to hold the UDP datagram. You use the Send method to send the data to the

network and the Receive method to receive an incoming datagram.

See Also

Using TCP Services

Using UDP Services

Using Streams on the Network

Using an Asynchronous Server Socket

Using an Asynchronous Client Socket

Using Application Protocols

© 2016 Microsoft

.NET Framework (current version)

TCP/UDP https://msdn.microsoft.com/en-us/library/c19ex43h(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:18

Using TCP Services

The TcpClient class requests data from an Internet resource using TCP. The methods and properties of TcpClient abstract the

details for creating a Socket for requesting and receiving data using TCP. Because the connection to the remote device is

represented as a stream, data can be read and written with .NET Framework stream-handling techniques.

The TCP protocol establishes a connection with a remote endpoint and then uses that connection to send and receive data

packets. TCP is responsible for ensuring that data packets are sent to the endpoint and assembled in the correct order when

they arrive.

To establish a TCP connection, you must know the address of the network device hosting the service you need and you must

know the TCP port that the service uses to communicate. The Internet Assigned Numbers Authority (Iana) defines port

numbers for common services (see www.iana.org/assignments/port-numbers). Services not on the Iana list can have port

numbers in the range 1,024 to 65,535.

The following example demonstrates setting up a TcpClient to connect to a time server on TCP port 13.

.NET Framework (current version)

Imports System

Imports System.Net.Sockets

Imports System.Text

Public Class TcpTimeClient

Private const portNum As Integer = 13

Private const hostName As String = "host.contoso.com"

' Entry point that delegates to C‐style main Private Function.

Public Overloads Shared Sub Main()

 System.Environment.ExitCode = _

 Main(System.Environment.GetCommandLineArgs())

End Sub

Overloads Public Shared Function Main(args() As [String]) As Integer

Try

Dim client As New TcpClient(hostName, portNum)

Dim ns As NetworkStream = client.GetStream()

Dim bytes(1024) As Byte

Dim bytesRead As Integer = ns.Read(bytes, 0, bytes.Length)

 Console.WriteLine(Encoding.ASCII.GetString(bytes, 0, bytesRead))

Catch e As Exception

 Console.WriteLine(e.ToString())

End Try

VB

Using TCP Services https://msdn.microsoft.com/en-us/library/k8azesy5(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:18

TcpListener is used to monitor a TCP port for incoming requests and then create either a Socket or a TcpClient that

manages the connection to the client. The Start method enables listening, and the Stop method disables listening on the

port. The AcceptTcpClient method accepts incoming connection requests and creates a TcpClient to handle the request,

and the AcceptSocket method accepts incoming connection requests and creates a Socket to handle the request.

The following example demonstrates creating a network time server using a TcpListener to monitor TCP port 13. When an

incoming connection request is accepted, the time server responds with the current date and time from the host server.

 client.Close()

Return 0

End Function 'Main

End Class 'TcpTimeClient

Imports System

Imports System.Net.Sockets

Imports System.Text

Public Class TcpTimeServer

Private const portNum As Integer = 13

' Entry point that delegates to C‐style main Private Function.

Public Overloads Shared Sub Main()

 System.Environment.ExitCode = _

 Main(System.Environment.GetCommandLineArgs())

End Sub

Overloads Public Shared Function Main(args() As [String]) As Integer

Dim done As Boolean = False

Dim listener As New TcpListener(portNum)

 listener.Start()

While Not done

 Console.Write("Waiting for connection...")

Dim client As TcpClient = listener.AcceptTcpClient()

 Console.WriteLine("Connection accepted.")

Dim ns As NetworkStream = client.GetStream()

Dim byteTime As Byte() = _

 Encoding.ASCII.GetBytes(DateTime.Now.ToString())

Try

 ns.Write(byteTime, 0, byteTime.Length)

 ns.Close()

VB

Using TCP Services https://msdn.microsoft.com/en-us/library/k8azesy5(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:18

See Also

TCP/UDP

© 2016 Microsoft

 client.Close()

Catch e As Exception

 Console.WriteLine(e.ToString())

End Try

End While

 listener.Stop()

Return 0

End Function 'Main

End Class 'TcpTimeServer

Using TCP Services https://msdn.microsoft.com/en-us/library/k8azesy5(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:18

Using UDP Services

The UdpClient class communicates with network services using UDP. The properties and methods of the UdpClient class

abstract the details of creating a Socket for requesting and receiving data using UDP.

User Datagram Protocol (UDP) is a simple protocol that makes a best effort to deliver data to a remote host. However,

because the UDP protocol is a connectionless protocol, UDP datagrams sent to the remote endpoint are not guaranteed to

arrive, nor are they guaranteed to arrive in the same sequence in which they are sent. Applications that use UDP must be

prepared to handle missing, duplicate, and out-of-sequence datagrams.

To send a datagram using UDP, you must know the network address of the network device hosting the service you need and

the UDP port number that the service uses to communicate. The Internet Assigned Numbers Authority (Iana) defines port

numbers for common services (see www.iana.org/assignments/port-numbers). Services not on the Iana list can have port

numbers in the range 1,024 to 65,535.

Special network addresses are used to support UDP broadcast messages on IP-based networks. The following discussion

uses the IP version 4 address family used on the Internet as an example.

IP version 4 addresses use 32 bits to specify a network address. For class C addresses using a netmask of 255.255.255.0, these

bits are separated into four octets. When expressed in decimal, the four octets form the familiar dotted-quad notation, such

as 192.168.100.2. The first two octets (192.168 in this example) form the network number, the third octet (100) defines the

subnet, and the final octet (2) is the host identifier.

Setting all the bits of an IP address to one, or 255.255.255.255, forms the limited broadcast address. Sending a UDP

datagram to this address delivers the message to any host on the local network segment. Because routers never forward

messages sent to this address, only hosts on the network segment receive the broadcast message.

Broadcasts can be directed to specific portions of a network by setting all bits of the host identifier. For example, to send a

broadcast to all hosts on the network identified by IP addresses starting with 192.168.1, use the address 192.168.1.255.

The following code example uses a UdpClient to listen for UDP datagrams sent to the directed broadcast address

192.168.1.255 on port 11,000. The client receives a message string and writes the message to the console.

.NET Framework (current version)

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Public Class UDPListener

Private Const listenPort As Integer = 11000

Private Shared Sub StartListener()

Dim done As Boolean = False

Dim listener As New UdpClient(listenPort)

Dim groupEP As New IPEndPoint(IPAddress.Any, listenPort)

Try

VB

Using UDP Services https://msdn.microsoft.com/en-us/library/tst0kwb1(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:19

The following code example uses a UdpClient to send UDP datagrams to the directed broadcast address 192.168.1.255,

using port 11,000. The client sends the message string specified on the command line.

See Also

UdpClient

IPAddress

TCP/UDP

While Not done

 Console.WriteLine("Waiting for broadcast")

Dim bytes As Byte() = listener.Receive(groupEP)

 Console.WriteLine("Received broadcast from {0} :", _

 groupEP.ToString())

 Console.WriteLine(_

 Encoding.ASCII.GetString(bytes, 0, bytes.Length))

 Console.WriteLine()

End While

Catch e As Exception

 Console.WriteLine(e.ToString())

Finally

 listener.Close()

End Try

End Sub 'StartListener

Public Shared Function Main() As Integer

 StartListener()

Return 0

End Function 'Main

End Class 'UDPListener

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Public Class Program

Overloads Public Shared Function Main(args() As [String]) As Integer

Dim s As New Socket(AddressFamily.InterNetwork, SocketType.Dgram,

 ProtocolType.Udp)

Dim broadcast As IPAddress = IPAddress.Parse("192.168.1.255")

Dim sendbuf As Byte() = Encoding.ASCII.GetBytes(args(0))

Dim ep As New IPEndPoint(broadcast, 11000)

 s.SendTo(sendbuf, ep)

 Console.WriteLine("Message sent to the broadcast address")

End Function 'Main

End Class

VB

Using UDP Services https://msdn.microsoft.com/en-us/library/tst0kwb1(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:19

© 2016 Microsoft

Using UDP Services https://msdn.microsoft.com/en-us/library/tst0kwb1(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:19

Sockets

The System.Net.Sockets namespace contains a managed implementation of the Windows Sockets interface. All other

network-access classes in the System.Net namespace are built on top of this implementation of sockets.

The .NET Framework Socket class is a managed-code version of the socket services provided by the Winsock32 API. In most

cases, the Socket class methods simply marshal data into their native Win32 counterparts and handle any necessary security

checks.

The Socket class supports two basic modes, synchronous and asynchronous. In synchronous mode, calls to functions that

perform network operations (such as Send and Receive) wait until the operation completes before returning control to the

calling program. In asynchronous mode, these calls return immediately.

See Also

How to: Create a Socket

TCP/UDP

Using Application Protocols

© 2016 Microsoft

.NET Framework (current version)

Sockets https://msdn.microsoft.com/en-us/library/b6xa24z5(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:19

How to: Create a Socket

Before you can use a socket to communicate with remote devices, the socket must be initialized with protocol and network

address information. The constructor for the Socket class has parameters that specify the address family, socket type, and

protocol type that the socket uses to make connections.

The following example creates a Socket that can be used to communicate on a TCP/IP-based network, such as the Internet.

To use UDP instead of TCP, change the protocol type, as in the following example:

The AddressFamily enumeration specifies the standard address families used by the Socket class to resolve network

addresses (for example, the AddressFamily.InterNetwork member specifies the IP version 4 address family).

The SocketType enumeration specifies the type of socket (for example, the SocketType.Stream member indicates a

standard socket for sending and receiving data with flow control).

The ProtocolType enumeration specifies the network protocol to use when communicating on the Socket (for example,

ProtocolType.Tcp indicates that the socket uses TCP; ProtocolType.Udp indicates that the socket uses UDP).

After a Socket is created, it can either initiate a connection to a remote endpoint or receive connections from remote

devices.

See Also

Using Client Sockets

Listening with Sockets

© 2016 Microsoft

.NET Framework (current version)

Dim s as New Socket(AddressFamily.InterNetwork, _

 SocketType.Stream, ProtocolType.Tcp)

Dim s as New Socket(AddressFamily.InterNetwork, _

 SocketType.Dgram, ProtocolType.Udp)

VB

VB

How to: Create a Socket https://msdn.microsoft.com/en-us/library/1w48w47c(d=printer,v=vs.110)...

1 of 1 05.09.2016 3:20

Using Client Sockets

Before you can initiate a conversation through a Socket, you must create a data pipe between your application and the

remote device. Although other network address families and protocols exist, this example shows how to create a TCP/IP

connection to a remote service.

TCP/IP uses a network address and a service port number to uniquely identify a service. The network address identifies a

specific device on the network; the port number identifies the specific service on that device to connect to. The combination

of network address and service port is called an endpoint, which is represented in the .NET Framework by the EndPoint class.

A descendant of EndPoint is defined for each supported address family; for the IP address family, the class is IPEndPoint.

The Dns class provides domain-name services to applications that use TCP/IP Internet services. The Resolve method queries a

DNS server to map a user-friendly domain name (such as "host.contoso.com") to a numeric Internet address (such as

192.168.1.1). Resolve returns an IPHostEnty that contains a list of addresses and aliases for the requested name. In most

cases, you can use the first address returned in the AddressList array. The following code gets an IPAddress containing the IP

address for the server host.contoso.com.

The Internet Assigned Numbers Authority (Iana) defines port numbers for common services (for more information, see

www.iana.org/assignments/port-numbers). Other services can have registered port numbers in the range 1,024 to 65,535.

The following code combines the IP address for host.contoso.com with a port number to create a remote endpoint for a

connection.

After determining the address of the remote device and choosing a port to use for the connection, the application can

attempt to establish a connection with the remote device. The following example uses an existing IPEndPoint to connect to

a remote device and catches any exceptions that are thrown.

.NET Framework (current version)

Dim ipHostInfo As IPHostEntry = Dns.Resolve("host.contoso.com")

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim ipe As New IPEndPoint(ipAddress, 11000)

Try

 s.Connect(ipe)

Catch ae As ArgumentNullException

 Console.WriteLine("ArgumentNullException : {0}", _

 ae.ToString())

Catch se As SocketException

 Console.WriteLine("SocketException : {0}", se.ToString())

VB

VB

VB

Using Client Sockets https://msdn.microsoft.com/en-us/library/6aes97be(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:20

See Also

Using a Synchronous Client Socket

Using an Asynchronous Client Socket

How to: Create a Socket

Sockets

© 2016 Microsoft

Catch e As Exception

 Console.WriteLine("Unexpected exception : {0}", e.ToString())

End Try

Using Client Sockets https://msdn.microsoft.com/en-us/library/6aes97be(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:20

Using a Synchronous Client Socket

A synchronous client socket suspends the application program while the network operation completes. Synchronous sockets

are not suitable for applications that make heavy use of the network for their operation, but they can enable simple access

to network services for other applications.

To send data, pass a byte array to one of the Socket class's send-data methods (Send and SendTo). The following example

encodes a string into a byte array buffer using the Encoding.ASCII property and then transmits the buffer to the network

device using the Send method. The Send method returns the number of bytes sent to the network device.

The Send method removes the bytes from the buffer and queues them with the network interface to be sent to the network

device. The network interface might not send the data immediately, but it will send it eventually, as long as the connection is

closed normally with the Shutdown method.

To receive data from a network device, pass a buffer to one of the Socket class's receive-data methods (Receive and

ReceiveFrom). Synchronous sockets will suspend the application until bytes are received from the network or until the socket

is closed. The following example receives data from the network and then displays it on the console. The example assumes

that the data coming from the network is ASCII-encoded text. The Receive method returns the number of bytes received

from the network.

When the socket is no longer needed, you need to release it by calling the Shutdown method and then calling the Close

method. The following example releases a Socket. The SocketShutdown enumeration defines constants that indicate

whether the socket should be closed for sending, for receiving, or for both.

.NET Framework (current version)

Dim msg As Byte() = _

 System.Text.Encoding.ASCII.GetBytes("This is a test.")

Dim bytesSent As Integer = s.Send(msg)

Dim bytes(1024) As Byte

Dim bytesRec = s.Receive(bytes)

Console.WriteLine("Echoed text = {0}", _

 System.Text.Encoding.ASCII.GetString(bytes, 0, bytesRec))

s.Shutdown(SocketShutdown.Both)

s.Close()

VB

VB

VB

Using a Synchronous Client Socket https://msdn.microsoft.com/en-us/library/6xt5x5zw(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:21

See Also

Using an Asynchronous Client Socket

Listening with Sockets

Synchronous Client Socket Example

© 2016 Microsoft

Using a Synchronous Client Socket https://msdn.microsoft.com/en-us/library/6xt5x5zw(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:21

Using an Asynchronous Client Socket

An asynchronous client socket does not suspend the application while waiting for network operations to complete. Instead,

it uses the standard .NET Framework asynchronous programming model to process the network connection on one thread

while the application continues to run on the original thread. Asynchronous sockets are appropriate for applications that

make heavy use of the network or that cannot wait for network operations to complete before continuing.

The Socket class follows the .NET Framework naming pattern for asynchronous methods; for example, the synchronous

Receive method corresponds to the asynchronous BeginReceive and EndReceive methods.

Asynchronous operations require a callback method to return the result of the operation. If your application does not need

to know the result, then no callback method is required. The example code in this section demonstrates using a method to

start connecting to a network device and a callback method to complete the connection, a method to start sending data

and a callback method to complete the send, and a method to start receiving data and a callback method to end receiving

data.

Asynchronous sockets use multiple threads from the system thread pool to process network connections. One thread is

responsible for initiating the sending or receiving of data; other threads complete the connection to the network device and

send or receive the data. In the following examples, instances of the System.Threading.ManualResetEvent class are used to

suspend execution of the main thread and signal when execution can continue.

In the following example, to connect an asynchronous socket to a network device, the Connect method initializes a Socket

and then calls the BeginConnect method, passing a remote endpoint that represents the network device, the connect

callback method, and a state object (the client Socket), which is used to pass state information between asynchronous calls.

The example implements the Connect method to connect the specified Socket to the specified endpoint. It assumes a

global ManualResetEvent named connectDone.

The connect callback method ConnectCallback implements the AsyncCallback delegate. It connects to the remote device

when the remote device is available and then signals the application thread that the connection is complete by setting the

ManualResetEvent connectDone. The following code implements the ConnectCallback method.

.NET Framework (current version)

Public Shared Sub Connect(remoteEP As EndPoint, client As Socket)

 client.BeginConnect(remoteEP, _

AddressOf ConnectCallback, client)

 connectDone.WaitOne()

End Sub 'Connect

Private Shared Sub ConnectCallback(ar As IAsyncResult)

Try

' Retrieve the socket from the state object.

Dim client As Socket = CType(ar.AsyncState, Socket)

VB

VB

Using an Asynchronous Client Socket https://msdn.microsoft.com/en-us/library/bbx2eya8(d=printer,v=vs.110).aspx

1 of 5 05.09.2016 3:21

The example method Send encodes the specified string data in ASCII format and sends it asynchronously to the network

device represented by the specified socket. The following example implements the Send method.

The send callback method SendCallback implements the AsyncCallback delegate. It sends the data when the network

device is ready to receive. The following example shows the implementation of the SendCallback method. It assumes a

global ManualResetEvent named sendDone.

' Complete the connection.

 client.EndConnect(ar)

 Console.WriteLine("Socket connected to {0}", _

 client.RemoteEndPoint.ToString())

' Signal that the connection has been made.

 connectDone.Set()

Catch e As Exception

 Console.WriteLine(e.ToString())

End Try

End Sub 'ConnectCallback

Private Shared Sub Send(client As Socket, data As [String])

' Convert the string data to byte data using ASCII encoding.

Dim byteData As Byte() = Encoding.ASCII.GetBytes(data)

' Begin sending the data to the remote device.

 client.BeginSend(byteData, 0, byteData.Length, SocketFlags.None, _

AddressOf SendCallback, client)

End Sub 'Send

VB

VB

Using an Asynchronous Client Socket https://msdn.microsoft.com/en-us/library/bbx2eya8(d=printer,v=vs.110).aspx

2 of 5 05.09.2016 3:21

Reading data from a client socket requires a state object that passes values between asynchronous calls. The following class

is an example state object for receiving data from a client socket. It contains a field for the client socket, a buffer for the

received data, and a StringBuilder to hold the incoming data string. Placing these fields in the state object allows their values

to be preserved across multiple calls to read data from the client socket.

The example Receive method sets up the state object and then calls the BeginReceive method to read the data from the

client socket asynchronously. The following example implements the Receive method.

Private Shared Sub SendCallback(ar As IAsyncResult)

Try

' Retrieve the socket from the state object.

Dim client As Socket = CType(ar.AsyncState, Socket)

' Complete sending the data to the remote device.

Dim bytesSent As Integer = client.EndSend(ar)

 Console.WriteLine("Sent {0} bytes to server.", bytesSent)

' Signal that all bytes have been sent.

 sendDone.Set()

Catch e As Exception

 Console.WriteLine(e.ToString())

End Try

End Sub 'SendCallback

Public Class StateObject

' Client socket.

Public workSocket As Socket = Nothing

' Size of receive buffer.

Public BufferSize As Integer = 256

' Receive buffer.

Public buffer(256) As Byte

' Received data string.

Public sb As New StringBuilder()

End Class 'StateObject

Private Shared Sub Receive(client As Socket)

Try

' Create the state object.

Dim state As New StateObject()

 state.workSocket = client

' Begin receiving the data from the remote device.

 client.BeginReceive(state.buffer, 0, state.BufferSize, 0, _

AddressOf ReceiveCallback, state)

Catch e As Exception

VB

VB

Using an Asynchronous Client Socket https://msdn.microsoft.com/en-us/library/bbx2eya8(d=printer,v=vs.110).aspx

3 of 5 05.09.2016 3:21

The receive callback method ReceiveCallback implements the AsyncCallback delegate. It receives the data from the

network device and builds a message string. It reads one or more bytes of data from the network into the data buffer and

then calls the BeginReceive method again until the data sent by the client is complete. Once all the data is read from the

client, ReceiveCallback signals the application thread that the data is complete by setting the ManualResetEvent

sendDone.

The following example code implements the ReceiveCallback method. It assumes a global string named response that

holds the received string and a global ManualResetEvent named receiveDone. The server must shut down the client

socket gracefully to end the network session.

See Also

 Console.WriteLine(e.ToString())

End Try

End Sub 'Receive

Private Shared Sub ReceiveCallback(ar As IAsyncResult)

Try

' Retrieve the state object and the client socket

' from the asynchronous state object.

Dim state As StateObject = CType(ar.AsyncState, StateObject)

Dim client As Socket = state.workSocket

' Read data from the remote device.

Dim bytesRead As Integer = client.EndReceive(ar)

If bytesRead > 0 Then

' There might be more data, so store the data received so far.

 state.sb.Append(Encoding.ASCII.GetString(state.buffer, 0, _

 bytesRead))

' Get the rest of the data.

 client.BeginReceive(state.buffer, 0, state.BufferSize, 0, _

AddressOf ReceiveCallback, state)

Else

' All the data has arrived; put it in response.

If state.sb.Length > 1 Then

 response = state.sb.ToString()

End If

' Signal that all bytes have been received.

 receiveDone.Set()

End If

Catch e As Exception

 Console.WriteLine(e.ToString())

End Try

End Sub 'ReceiveCallback

VB

Using an Asynchronous Client Socket https://msdn.microsoft.com/en-us/library/bbx2eya8(d=printer,v=vs.110).aspx

4 of 5 05.09.2016 3:21

Using a Synchronous Client Socket

Listening with Sockets

Asynchronous Client Socket Example

© 2016 Microsoft

Using an Asynchronous Client Socket https://msdn.microsoft.com/en-us/library/bbx2eya8(d=printer,v=vs.110).aspx

5 of 5 05.09.2016 3:21

Listening with Sockets

Listener or server sockets open a port on the network and then wait for a client to connect to that port. Although other

network address families and protocols exist, this example shows how to create remote service for a TCP/IP network.

The unique address of a TCP/IP service is defined by combining the IP address of the host with the port number of the

service to create an endpoint for the service. The Dns class provides methods that return information about the network

addresses supported by the local network device. When the local network device has more than one network address, or if

the local system supports more than one network device, the Dns class returns information about all network addresses, and

the application must choose the proper address for the service. The Internet Assigned Numbers Authority (Iana) defines port

numbers for common services (for more information, see www.iana.org/assignments/port-numbers). Other services can have

registered port numbers in the range 1,024 to 65,535.

The following example creates an IPEndPoint for a server by combining the first IP address returned by Dns for the host

computer with a port number chosen from the registered port numbers range.

After the local endpoint is determined, the Socket must be associated with that endpoint using the Bind method and set to

listen on the endpoint using the Listen method. Bind throws an exception if the specific address and port combination is

already in use. The following example demonstrates associating a Socket with an IPEndPoint.

The Listen method takes a single parameter that specifies how many pending connections to the Socket are allowed before

a server busy error is returned to the connecting client. In this case, up to 100 clients are placed in the connection queue

before a server busy response is returned to client number 101.

See Also

Using a Synchronous Server Socket

Using an Asynchronous Server Socket

Using Client Sockets

How to: Create a Socket

Sockets

.NET Framework (current version)

Dim ipHostInfo As IPHostEntry = Dns.Resolve(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim localEndPoint As New IPEndPoint(ipAddress, 11000)

listener.Bind(localEndPoint)

listener.Listen(100)

VB

VB

Listening with Sockets https://msdn.microsoft.com/en-us/library/dz10xcwh(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:22

© 2016 Microsoft

Listening with Sockets https://msdn.microsoft.com/en-us/library/dz10xcwh(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:22

Using a Synchronous Server Socket

Synchronous server sockets suspend the execution of the application until a connection request is received on the socket.

Synchronous server sockets are not suitable for applications that make heavy use of the network in their operation, but they

can be suitable for simple network applications.

After a Socket is set to listen on an endpoint using the Bind and Listen methods, it is ready to accept incoming connection

requests using the Accept method. The application is suspended until a connection request is received when the Accept

method is called.

When a connection request is received, Accept returns a new Socket instance that is associated with the connecting client.

The following example reads data from the client, displays it on the console, and echoes the data back to the client. The

Socket does not specify any messaging protocol, so the string "<EOF>" marks the end of the message data. It assumes that

a Socket named listener has been initialized and bound to an endpoint.

See Also

Using an Asynchronous Server Socket

Synchronous Server Socket Example

Listening with Sockets

© 2016 Microsoft

.NET Framework (current version)

Console.WriteLine("Waiting for a connection...")

Dim handler As Socket = listener.Accept()

Dim data As String = Nothing

While True

 bytes = New Byte(1024) {}

Dim bytesRec As Integer = handler.Receive(bytes)

 data += Encoding.ASCII.GetString(bytes, 0, bytesRec)

If data.IndexOf("<EOF>") > ‐ 1 Then

Exit While

End If

End While

Console.WriteLine("Text received : {0}", data)

Dim msg As Byte() = Encoding.ASCII.GetBytes(data)

handler.Send(msg)

handler.Shutdown(SocketShutdown.Both)

handler.Close()

VB

Using a Synchronous Server Socket https://msdn.microsoft.com/en-us/library/80z2essb(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:22

Using an Asynchronous Server Socket

Asynchronous server sockets use the .NET Framework asynchronous programming model to process network service

requests. The Socket class follows the standard .NET Framework asynchronous naming pattern; for example, the synchronous

Accept method corresponds to the asynchronous BeginAccept and EndAccept methods.

An asynchronous server socket requires a method to begin accepting connection requests from the network, a callback

method to handle the connection requests and begin receiving data from the network, and a callback method to end

receiving the data. All these methods are discussed further in this section.

In the following example, to begin accepting connection requests from the network, the method StartListening initializes

the Socket and then uses the BeginAccept method to start accepting new connections. The accept callback method is

called when a new connection request is received on the socket. It is responsible for getting the Socket instance that will

handle the connection and handing that Socket off to the thread that will process the request. The accept callback method

implements the AsyncCallback delegate; it returns a void and takes a single parameter of type IAsyncResult. The following

example is the shell of an accept callback method.

The BeginAccept method takes two parameters, an AsyncCallback delegate that points to the accept callback method and

an object that is used to pass state information to the callback method. In the following example, the listening Socket is

passed to the callback method through the state parameter. This example creates an AsyncCallback delegate and starts

accepting connections from the network.

Asynchronous sockets use threads from the system thread pool to process incoming connections. One thread is responsible

for accepting connections, another thread is used to handle each incoming connection, and another thread is responsible for

receiving data from the connection. These could be the same thread, depending on which thread is assigned by the thread

pool. In the following example, the System.Threading.ManualResetEvent class suspends execution of the main thread and

signals when execution can continue.

The following example shows an asynchronous method that creates an asynchronous TCP/IP socket on the local computer

and begins accepting connections. It assumes that there is a global ManualResetEvent named allDone, that the method is

a member of a class named SocketListener, and that a callback method named acceptCallback is defined.

.NET Framework (current version)

Sub acceptCallback(ar As IAsyncResult)

' Add the callback code here.

End Sub 'acceptCallback

listener.BeginAccept(_

New AsyncCallback(SocketListener.acceptCallback),_

 listener)

VB

VB

VB

Using an Asynchronous Server Socket https://msdn.microsoft.com/en-us/library/5w7b7x5f(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 3:23

The accept callback method (acceptCallback in the preceding example) is responsible for signaling the main application

thread to continue processing, establishing the connection with the client, and starting the asynchronous read of data from

the client. The following example is the first part of an implementation of the acceptCallback method. This section of the

method signals the main application thread to continue processing and establishes the connection to the client. It assumes a

global ManualResetEvent named allDone.

Reading data from a client socket requires a state object that passes values between asynchronous calls. The following

example implements a state object for receiving a string from the remote client. It contains fields for the client socket, a data

buffer for receiving data, and a StringBuilder for creating the data string sent by the client. Placing these fields in the state

object allows their values to be preserved across multiple calls to read data from the client socket.

Public Sub StartListening()

Dim ipHostInfo As IPHostEntry = Dns.Resolve(Dns.GetHostName())

Dim localEP = New IPEndPoint(ipHostInfo.AddressList(0), 11000)

 Console.WriteLine("Local address and port : {0}", localEP.ToString())

Dim listener As New Socket(localEP.Address.AddressFamily, _

 SocketType.Stream, ProtocolType.Tcp)

Try

 listener.Bind(localEP)

 listener.Listen(10)

While True

 allDone.Reset()

 Console.WriteLine("Waiting for a connection...")

 listener.BeginAccept(New _

 AsyncCallback(SocketListener.acceptCallback), _

 listener)

 allDone.WaitOne()

End While

Catch e As Exception

 Console.WriteLine(e.ToString())

End Try

 Console.WriteLine("Closing the listener...")

End Sub 'StartListening

Public Sub acceptCallback(ar As IAsyncResult)

 allDone.Set()

Dim listener As Socket = CType(ar.AsyncState, Socket)

Dim handler As Socket = listener.EndAccept(ar)

' Additional code to read data goes here.

End Sub 'acceptCallback

VB

Using an Asynchronous Server Socket https://msdn.microsoft.com/en-us/library/5w7b7x5f(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 3:23

The section of the acceptCallback method that starts receiving the data from the client socket first initializes an instance

of the StateObject class and then calls the BeginReceive method to start reading the data from the client socket

asynchronously.

The following example shows the complete acceptCallback method. It assumes that there is a global ManualResetEvent

named allDone, that the StateObject class is defined, and that the readCallback method is defined in a class named

SocketListener.

The final method that needs to be implemented for the asynchronous socket server is the read callback method that returns

the data sent by the client. Like the accept callback method, the read callback method is an AsyncCallback delegate. This

method reads one or more bytes from the client socket into the data buffer and then calls the BeginReceive method again

until the data sent by the client is complete. Once the entire message has been read from the client, the string is displayed

on the console and the server socket handling the connection to the client is closed.

The following sample implements the readCallback method. It assumes that the StateObject class is defined.

Public Class StateObject

Public workSocket As Socket = Nothing

Public BufferSize As Integer = 1024

Public buffer(BufferSize) As Byte

Public sb As New StringBuilder()

End Class 'StateObject

Public Shared Sub acceptCallback(ar As IAsyncResult)

' Get the socket that handles the client request.

Dim listener As Socket = CType(ar.AsyncState, Socket)

Dim handler As Socket = listener.EndAccept(ar)

' Signal the main thread to continue.

 allDone.Set()

' Create the state object.

Dim state As New StateObject()

 state.workSocket = handler

 handler.BeginReceive(state.buffer, 0, state.BufferSize, 0, _

AddressOf AsynchronousSocketListener.readCallback, state)

End Sub 'acceptCallback

Public Shared Sub readCallback(ar As IAsyncResult)

Dim state As StateObject = CType(ar.AsyncState, StateObject)

Dim handler As Socket = state.workSocket

' Read data from the client socket.

Dim read As Integer = handler.EndReceive(ar)

VB

VB

VB

Using an Asynchronous Server Socket https://msdn.microsoft.com/en-us/library/5w7b7x5f(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 3:23

See Also

Using a Synchronous Server Socket

Asynchronous Server Socket Example

Managed Threading

Listening with Sockets

© 2016 Microsoft

' Data was read from the client socket.

If read > 0 Then

 state.sb.Append(Encoding.ASCII.GetString(state.buffer, 0, read))

 handler.BeginReceive(state.buffer, 0, state.BufferSize, 0, _

AddressOf readCallback, state)

Else

If state.sb.Length > 1 Then

' All the data has been read from the client;

' display it on the console.

Dim content As String = state.sb.ToString()

 Console.WriteLine("Read {0} bytes from socket." + _

 ControlChars.Cr + " Data : {1}", content.Length, content)

End If

End If

End Sub 'readCallback

Using an Asynchronous Server Socket https://msdn.microsoft.com/en-us/library/5w7b7x5f(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 3:23

Socket Code Examples

The following code examples demonstrate how to use the Socket class as a client to connect to remote network services and

as a server to listen for connections from remote clients.

In This Section

Synchronous Client Socket Example

Shows how to implement a synchronous Socket client that connects to a server and displays the data returned from

the server.

Synchronous Server Socket Example

Shows how to implement a synchronous Socket server that accepts connections from a client and echoes back the

data received from the client.

Asynchronous Client Socket Example

Shows how to implement an asynchronous Socket client that connects to a server and displays the data returned

from the server.

Asynchronous Server Socket Example

Shows how to implement an asynchronous Socket server that accepts connections from a client and echoes back the

data received from the client.

Related Sections

Sockets

Provides basic information about the System.Net.Sockets namespace and the Socket class.

Security in Network Programming

Describes how to use standard Internet security and authentication techniques.

© 2016 Microsoft

.NET Framework (current version)

Socket Code Examples https://msdn.microsoft.com/en-us/library/w89fhyex(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:23

Synchronous Client Socket Example

The following example program creates a client that connects to a server. The client is built with a synchronous socket, so

execution of the client application is suspended until the server returns a response. The application sends a string to the

server and then displays the string returned by the server on the console.

.NET Framework (current version)

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Public Class SynchronousSocketClient

Public Shared Sub Main()

' Data buffer for incoming data.

Dim bytes(1024) As Byte

' Connect to a remote device.

' Establish the remote endpoint for the socket.

' This example uses port 11000 on the local computer.

Dim ipHostInfo As IPHostEntry = Dns.Resolve(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim remoteEP As New IPEndPoint(ipAddress, 11000)

' Create a TCP/IP socket.

Dim sender As New Socket(AddressFamily.InterNetwork, _

 SocketType.Stream, ProtocolType.Tcp)

' Connect the socket to the remote endpoint.

 sender.Connect(remoteEP)

 Console.WriteLine("Socket connected to {0}", _

 sender.RemoteEndPoint.ToString())

' Encode the data string into a byte array.

Dim msg As Byte() = _

 Encoding.ASCII.GetBytes("This is a test<EOF>")

' Send the data through the socket.

Dim bytesSent As Integer = sender.Send(msg)

' Receive the response from the remote device.

Dim bytesRec As Integer = sender.Receive(bytes)

 Console.WriteLine("Echoed test = {0}", _

 Encoding.ASCII.GetString(bytes, 0, bytesRec))

VB

Synchronous Client Socket Example https://msdn.microsoft.com/en-us/library/kb5kfec7(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:23

See Also

Synchronous Server Socket Example

Using a Synchronous Client Socket

Socket Code Examples

© 2016 Microsoft

' Release the socket.

 sender.Shutdown(SocketShutdown.Both)

 sender.Close()

End Sub

End Class 'SynchronousSocketClient

Synchronous Client Socket Example https://msdn.microsoft.com/en-us/library/kb5kfec7(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:23

Synchronous Server Socket Example

The following example program creates a server that receives connection requests from clients. The server is built with a

synchronous socket, so execution of the server application is suspended while it waits for a connection from a client. The

application receives a string from the client, displays the string on the console, and then echoes the string back to the client.

The string from the client must contain the string "<EOF>" to signal the end of the message.

.NET Framework (current version)

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports Microsoft.VisualBasic

Public Class SynchronousSocketListener

' Incoming data from the client.

Public Shared data As String = Nothing

Public Shared Sub Main()

' Data buffer for incoming data.

Dim bytes() As Byte = New [Byte](1024) {}

' Establish the local endpoint for the socket.

' Dns.GetHostName returns the name of the

' host running the application.

Dim ipHostInfo As IPHostEntry = Dns.Resolve(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim localEndPoint As New IPEndPoint(ipAddress, 11000)

' Create a TCP/IP socket.

Dim listener As New Socket(AddressFamily.InterNetwork, _

 SocketType.Stream, ProtocolType.Tcp)

' Bind the socket to the local endpoint and

' listen for incoming connections.

 listener.Bind(localEndPoint)

 listener.Listen(10)

' Start listening for connections.

While True

 Console.WriteLine("Waiting for a connection...")

' Program is suspended while waiting for an incoming connection.

Dim handler As Socket = listener.Accept()

 data = Nothing

VB

Synchronous Server Socket Example https://msdn.microsoft.com/en-us/library/6y0e13d3(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:24

See Also

Synchronous Client Socket Example

Using a Synchronous Server Socket

Socket Code Examples

© 2016 Microsoft

' An incoming connection needs to be processed.

While True

 bytes = New Byte(1024) {}

Dim bytesRec As Integer = handler.Receive(bytes)

 data += Encoding.ASCII.GetString(bytes, 0, bytesRec)

If data.IndexOf("<EOF>") > ‐1 Then

Exit While

End If

End While

' Show the data on the console.

 Console.WriteLine("Text received : {0}", data)

' Echo the data back to the client.

Dim msg As Byte() = Encoding.ASCII.GetBytes(data)

 handler.Send(msg)

 handler.Shutdown(SocketShutdown.Both)

 handler.Close()

End While

End Sub

End Class 'SynchronousSocketListener

Synchronous Server Socket Example https://msdn.microsoft.com/en-us/library/6y0e13d3(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:24

Asynchronous Client Socket Example

The following example program creates a client that connects to a server. The client is built with an asynchronous socket, so

execution of the client application is not suspended while the server returns a response. The application sends a string to the

server and then displays the string returned by the server on the console.

.NET Framework (current version)

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Threading

Imports System.Text

' State object for receiving data from remote device.

Public Class StateObject

' Client socket.

Public workSocket As Socket = Nothing

' Size of receive buffer.

Public Const BufferSize As Integer = 256

' Receive buffer.

Public buffer(BufferSize) As Byte

' Received data string.

Public sb As New StringBuilder

End Class 'StateObject

Public Class AsynchronousClient

' The port number for the remote device.

Private Const port As Integer = 11000

' ManualResetEvent instances signal completion.

Private Shared connectDone As New ManualResetEvent(False)

Private Shared sendDone As New ManualResetEvent(False)

Private Shared receiveDone As New ManualResetEvent(False)

' The response from the remote device.

Private Shared response As String = String.Empty

Public Shared Sub Main()

' Establish the remote endpoint for the socket.

' For this example use local machine.

Dim ipHostInfo As IPHostEntry = Dns.Resolve(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim remoteEP As New IPEndPoint(ipAddress, port)

VB

Asynchronous Client Socket Example https://msdn.microsoft.com/en-us/library/bew39x2a(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 3:24

' Create a TCP/IP socket.

Dim client As New Socket(AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.Tcp)

' Connect to the remote endpoint.

 client.BeginConnect(remoteEP, New AsyncCallback(AddressOf ConnectCallback),

client)

' Wait for connect.

 connectDone.WaitOne()

' Send test data to the remote device.

 Send(client, "This is a test<EOF>")

 sendDone.WaitOne()

' Receive the response from the remote device.

 Receive(client)

 receiveDone.WaitOne()

' Write the response to the console.

 Console.WriteLine("Response received : {0}", response)

' Release the socket.

 client.Shutdown(SocketShutdown.Both)

 client.Close()

End Sub 'Main

Private Shared Sub ConnectCallback(ByVal ar As IAsyncResult)

' Retrieve the socket from the state object.

Dim client As Socket = CType(ar.AsyncState, Socket)

' Complete the connection.

 client.EndConnect(ar)

 Console.WriteLine("Socket connected to {0}", client.RemoteEndPoint.ToString())

' Signal that the connection has been made.

 connectDone.Set()

End Sub 'ConnectCallback

Private Shared Sub Receive(ByVal client As Socket)

' Create the state object.

Dim state As New StateObject

 state.workSocket = client

' Begin receiving the data from the remote device.

 client.BeginReceive(state.buffer, 0, StateObject.BufferSize, 0, New

AsyncCallback(AddressOf ReceiveCallback), state)

End Sub 'Receive

Asynchronous Client Socket Example https://msdn.microsoft.com/en-us/library/bew39x2a(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 3:24

Private Shared Sub ReceiveCallback(ByVal ar As IAsyncResult)

' Retrieve the state object and the client socket

' from the asynchronous state object.

Dim state As StateObject = CType(ar.AsyncState, StateObject)

Dim client As Socket = state.workSocket

' Read data from the remote device.

Dim bytesRead As Integer = client.EndReceive(ar)

If bytesRead > 0 Then

' There might be more data, so store the data received so far.

 state.sb.Append(Encoding.ASCII.GetString(state.buffer, 0, bytesRead))

' Get the rest of the data.

 client.BeginReceive(state.buffer, 0, StateObject.BufferSize, 0, New

AsyncCallback(AddressOf ReceiveCallback), state)

Else

' All the data has arrived; put it in response.

If state.sb.Length > 1 Then

 response = state.sb.ToString()

End If

' Signal that all bytes have been received.

 receiveDone.Set()

End If

End Sub 'ReceiveCallback

Private Shared Sub Send(ByVal client As Socket, ByVal data As String)

' Convert the string data to byte data using ASCII encoding.

Dim byteData As Byte() = Encoding.ASCII.GetBytes(data)

' Begin sending the data to the remote device.

 client.BeginSend(byteData, 0, byteData.Length, 0, New AsyncCallback(AddressOf

SendCallback), client)

End Sub 'Send

Private Shared Sub SendCallback(ByVal ar As IAsyncResult)

' Retrieve the socket from the state object.

Dim client As Socket = CType(ar.AsyncState, Socket)

' Complete sending the data to the remote device.

Dim bytesSent As Integer = client.EndSend(ar)

 Console.WriteLine("Sent {0} bytes to server.", bytesSent)

' Signal that all bytes have been sent.

 sendDone.Set()

End Sub 'SendCallback

End Class 'AsynchronousClient

Asynchronous Client Socket Example https://msdn.microsoft.com/en-us/library/bew39x2a(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 3:24

See Also

Asynchronous Server Socket Example

Using a Synchronous Server Socket

Socket Code Examples

© 2016 Microsoft

Asynchronous Client Socket Example https://msdn.microsoft.com/en-us/library/bew39x2a(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 3:24

Asynchronous Server Socket Example

The following example program creates a server that receives connection requests from clients. The server is built with an

asynchronous socket, so execution of the server application is not suspended while it waits for a connection from a client.

The application receives a string from the client, displays the string on the console, and then echoes the string back to the

client. The string from the client must contain the string "<EOF>" to signal the end of the message.

.NET Framework (current version)

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports System.Threading

Imports Microsoft.VisualBasic

' State object for reading client data asynchronously

Public Class StateObject

' Client socket.

Public workSocket As Socket = Nothing

' Size of receive buffer.

Public Const BufferSize As Integer = 1024

' Receive buffer.

Public buffer(BufferSize) As Byte

' Received data string.

Public sb As New StringBuilder

End Class 'StateObject

Public Class AsynchronousSocketListener

' Thread signal.

Public Shared allDone As New ManualResetEvent(False)

' This server waits for a connection and then uses asychronous operations to

' accept the connection, get data from the connected client,

' echo that data back to the connected client.

' It then disconnects from the client and waits for another client.

Public Shared Sub Main()

' Data buffer for incoming data.

Dim bytes() As Byte = New [Byte](1023) {}

' Establish the local endpoint for the socket.

Dim ipHostInfo As IPHostEntry = Dns.Resolve(Dns.GetHostName())

Dim ipAddress As IPAddress = ipHostInfo.AddressList(0)

Dim localEndPoint As New IPEndPoint(ipAddress, 11000)

' Create a TCP/IP socket.

VB

Asynchronous Server Socket Example https://msdn.microsoft.com/en-us/library/fx6588te(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:25

Dim listener As New Socket(AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.Tcp)

' Bind the socket to the local endpoint and listen for incoming connections.

 listener.Bind(localEndPoint)

 listener.Listen(100)

While True

' Set the event to nonsignaled state.

 allDone.Reset()

' Start an asynchronous socket to listen for connections.

 Console.WriteLine("Waiting for a connection...")

 listener.BeginAccept(New AsyncCallback(AddressOf AcceptCallback), listener)

' Wait until a connection is made and processed before continuing.

 allDone.WaitOne()

End While

End Sub 'Main

Public Shared Sub AcceptCallback(ByVal ar As IAsyncResult)

' Get the socket that handles the client request.

Dim listener As Socket = CType(ar.AsyncState, Socket)

' End the operation.

Dim handler As Socket = listener.EndAccept(ar)

' Create the state object for the async receive.

Dim state As New StateObject

 state.workSocket = handler

 handler.BeginReceive(state.buffer, 0, StateObject.BufferSize, 0, New

AsyncCallback(AddressOf ReadCallback), state)

End Sub 'AcceptCallback

Public Shared Sub ReadCallback(ByVal ar As IAsyncResult)

Dim content As String = String.Empty

' Retrieve the state object and the handler socket

' from the asynchronous state object.

Dim state As StateObject = CType(ar.AsyncState, StateObject)

Dim handler As Socket = state.workSocket

' Read data from the client socket.

Dim bytesRead As Integer = handler.EndReceive(ar)

If bytesRead > 0 Then

' There might be more data, so store the data received so far.

 state.sb.Append(Encoding.ASCII.GetString(state.buffer, 0, bytesRead))

' Check for end‐of‐file tag. If it is not there, read

' more data.

 content = state.sb.ToString()

If content.IndexOf("<EOF>") > ‐1 Then

Asynchronous Server Socket Example https://msdn.microsoft.com/en-us/library/fx6588te(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:25

See Also

Asynchronous Client Socket Example

Using an Asynchronous Server Socket

Socket Code Examples

© 2016 Microsoft

' All the data has been read from the

' client. Display it on the console.

 Console.WriteLine("Read {0} bytes from socket. " + vbLf + " Data : {1}",

content.Length, content)

' Echo the data back to the client.

 Send(handler, content)

Else

' Not all data received. Get more.

 handler.BeginReceive(state.buffer, 0, StateObject.BufferSize, 0, New

AsyncCallback(AddressOf ReadCallback), state)

End If

End If

End Sub 'ReadCallback

Private Shared Sub Send(ByVal handler As Socket, ByVal data As String)

' Convert the string data to byte data using ASCII encoding.

Dim byteData As Byte() = Encoding.ASCII.GetBytes(data)

' Begin sending the data to the remote device.

 handler.BeginSend(byteData, 0, byteData.Length, 0, New AsyncCallback(AddressOf

SendCallback), handler)

End Sub 'Send

Private Shared Sub SendCallback(ByVal ar As IAsyncResult)

' Retrieve the socket from the state object.

Dim handler As Socket = CType(ar.AsyncState, Socket)

' Complete sending the data to the remote device.

Dim bytesSent As Integer = handler.EndSend(ar)

 Console.WriteLine("Sent {0} bytes to client.", bytesSent)

 handler.Shutdown(SocketShutdown.Both)

 handler.Close()

' Signal the main thread to continue.

 allDone.Set()

End Sub 'SendCallback

End Class 'AsynchronousSocketListener

Asynchronous Server Socket Example https://msdn.microsoft.com/en-us/library/fx6588te(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:25

FTP

The .NET Framework provides comprehensive support for the FTP protocol with the FtpWebRequest and FtpWebResponse

classes. These classes are derived from WebRequest and WebResponse. In most cases, the WebRequest and WebResponse

classes provide all that is necessary to make the request, but if you need access to the FTP-specific features exposed as

properties, you can typecast these classes to FtpWebRequest or FtpWebResponse.

Examples
For more information, see the following topics: How to: Download Files with FTP, How to: Upload Files with FTP, and How

to: List Directory Contents with FTP.

FTP and proxies
If a proxy (specified by the Proxy property) is an HTTP proxy, then only the DownloadFile, ListDirectory, and

ListDirectoryDetails commands are supported.

See Also
Accessing the Internet Through a Proxy

Network Programming Samples

FTP Client Technology Sample

FTP Explorer Technology Sample

Using Application Protocols

© 2016 Microsoft

.NET Framework (current version)

FTP https://msdn.microsoft.com/en-us/library/ms229718(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 3:26

How to: Download Files with FTP

This sample shows how to download a file from an FTP server.

Compiling the Code
This example requires:

References to the System.Net namespace.

.NET Framework (current version)

using System;

using System.IO;

using System.Net;

using System.Text;

namespace Examples.System.Net

{

public class WebRequestGetExample

 {

public static void Main ()

 {

// Get the object used to communicate with the server.

 FtpWebRequest request =

(FtpWebRequest)WebRequest.Create("ftp://www.contoso.com/test.htm");

 request.Method = WebRequestMethods.Ftp.DownloadFile;

// This example assumes the FTP site uses anonymous logon.

 request.Credentials = new NetworkCredential

("anonymous","janeDoe@contoso.com");

 FtpWebResponse response = (FtpWebResponse)request.GetResponse();

 Stream responseStream = response.GetResponseStream();

 StreamReader reader = new StreamReader(responseStream);

 Console.WriteLine(reader.ReadToEnd());

 Console.WriteLine("Download Complete, status {0}",

response.StatusDescription);

 reader.Close();

 response.Close();

 }

 }

}

C#

How to: Download Files with FTP https://msdn.microsoft.com/en-us/library/ms229711(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:26

Robust Programming

.NET Framework Security

© 2016 Microsoft

How to: Download Files with FTP https://msdn.microsoft.com/en-us/library/ms229711(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:26

How to: Upload Files with FTP

This sample shows how to upload a file to an FTP server.

.NET Framework (current version)

using System;

using System.IO;

using System.Net;

using System.Text;

namespace Examples.System.Net

{

public class WebRequestGetExample

 {

public static void Main ()

 {

// Get the object used to communicate with the server.

 FtpWebRequest request =

(FtpWebRequest)WebRequest.Create("ftp://www.contoso.com/test.htm");

 request.Method = WebRequestMethods.Ftp.UploadFile;

// This example assumes the FTP site uses anonymous logon.

 request.Credentials = new NetworkCredential

("anonymous","janeDoe@contoso.com");

// Copy the contents of the file to the request stream.

 StreamReader sourceStream = new StreamReader("testfile.txt");

byte [] fileContents = Encoding.UTF8.GetBytes(sourceStream.ReadToEnd());

 sourceStream.Close();

 request.ContentLength = fileContents.Length;

 Stream requestStream = request.GetRequestStream();

 requestStream.Write(fileContents, 0, fileContents.Length);

 requestStream.Close();

 FtpWebResponse response = (FtpWebResponse)request.GetResponse();

 Console.WriteLine("Upload File Complete, status {0}",

response.StatusDescription);

 response.Close();

 }

 }

 }

}

C#

How to: Upload Files with FTP https://msdn.microsoft.com/en-us/library/ms229715(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:26

Compiling the Code
This example requires:

References to the System.Net namespace.

Robust Programming

.NET Framework Security

© 2016 Microsoft

How to: Upload Files with FTP https://msdn.microsoft.com/en-us/library/ms229715(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:26

How to: List Directory Contents with FTP

This sample shows how to list the directory contents of an FTP server.

Compiling the Code
This example requires:

References to the System.Net namespace.

.NET Framework (current version)

using System;

using System.IO;

using System.Net;

using System.Text;

namespace Examples.System.Net

{

public class WebRequestGetExample

 {

public static void Main ()

 {

// Get the object used to communicate with the server.

 FtpWebRequest request =

(FtpWebRequest)WebRequest.Create("ftp://www.contoso.com/");

 request.Method = WebRequestMethods.Ftp.ListDirectoryDetails;

// This example assumes the FTP site uses anonymous logon.

 request.Credentials = new NetworkCredential

("anonymous","janeDoe@contoso.com");

 FtpWebResponse response = (FtpWebResponse)request.GetResponse();

 Stream responseStream = response.GetResponseStream();

 StreamReader reader = new StreamReader(responseStream);

 Console.WriteLine(reader.ReadToEnd());

 Console.WriteLine("Directory List Complete, status {0}",

response.StatusDescription);

 reader.Close();

 response.Close();

 }

 }

}

C#

How to: List Directory Contents with FTP https://msdn.microsoft.com/en-us/library/ms229716(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 3:27

Robust Programming

.NET Framework Security

© 2016 Microsoft

How to: List Directory Contents with FTP https://msdn.microsoft.com/en-us/library/ms229716(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 3:27

Understanding WebRequest Problems and
Exceptions

WebRequest and its derived classes (HttpWebRequest, FtpWebRequest, and FileWebRequest) throw exceptions to signal an

abnormal condition. Sometimes the resolution of these problems is not obvious.

Solutions

Examine the Status property of the WebException to determine the problem. The following table shows several status

values and some possible resolutions.

Status Details Solution

SendFailure

-or-

ReceiveFailure

There is a problem with the

underlying socket. The connection

may have been reset.

Reconnect and resend the request.

Make sure the latest service pack is installed.

Increase the value of the

ServicePointManager.MaxServicePointIdleTime

property.

Set HttpWebRequest.KeepAlive to false.

Increase the number of maximum connections

with the DefaultConnectionLimit property.

Check the proxy configuration.

If using SSL, make sure the server process has

permission to access the Certificate store.

If sending a large amount of data, set

AllowWriteStreamBuffering to false.

TrustFailure The server certificate could not be

validated.

Try to open the URI using Internet Explorer.

Resolve any Security Alerts displayed by IE. If

you cannot resolve the security alert, then you

can create a certificate policy class that

implements ICertificatePolicy that returns true,

and pass it to CertificatePolicy.

Refer to http://support.microsoft.com

/?id=823177.

.NET Framework (current version)

Understanding WebRequest Problems and Exceptions https://msdn.microsoft.com/en-us/library/ms346609(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 3:27

Make sure that the certificate of the Certificate

Authority that signed the server certificate is

added to the Trusted Certificate Authority list

in Internet Explorer.

Make sure that the host name in the URL

matches the common name on the server

certificate.

SecureChannelFailure An error occurred in the SSL

transaction, or there is a certificate

problem.

The .NET Framework version 1.1 only supports

SSL version 3.0. If the server is using only TLS

version 1.0 or SSL version 2.0, the exception is

thrown. Upgrade to .NET Framework version

2.0, and set SecurityProtocol to match the

server.

The client certificate was signed by a Certificate

Authority (CA) that the server does not trust.

Install the CA's certificate on the server. See

http://support.microsoft.com/?id=332077.

Make sure you have the latest service pack

installed.

ConnectFailure The connection failed. A firewall or proxy is blocking the connection.

Modify the firewall or proxy to allow the

connection.

Explicitly designate a WebProxy in the client

application by calling the WebProxy

constructor (WebServiceProxyClass.Proxy =

new WebProxy(http://server:80, true)).

Run Filemon or Regmon to ensure that the

worker process identity has the necessary

permissions to access WSPWSP.dll,

HKLM\System\CurrentControlSet\Services

\DnsCache or HKLM\System

\CurrentControlSet\Services\WinSock2.

NameResolutionFailure The Domain Name Service could

not resolve the host name.

Configure the proxy correctly. See

http://support.microsoft.com/?id=318140.

Ensure that any installed anti-virus software or

firewall is not blocking the connection.

RequestCanceled Abort was called, or an error

occurred.

This problem might be caused by a heavy load

on the client or server. Reduce the load.

Increase the DefaultConnectionLimit setting.

See http://support.microsoft.com/?id=821268

Understanding WebRequest Problems and Exceptions https://msdn.microsoft.com/en-us/library/ms346609(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 3:27

to modify Web service performance settings.

ConnectionClosed The application attempted to write

to a socket that has already been

closed.

The client or server is overloaded. Reduce the

load.

Increase the DefaultConnectionLimit setting.

See http://support.microsoft.com/?id=821268

to modify Web service performance settings.

MessageLengthLimitExceeded The limit set

(MaximumResponseHeadersLength)

on the message length was

exceeded.

Increase the value of the

MaximumResponseHeadersLength property.

ProxyNameResolutionFailure The Domain Name Service could

not resolve the proxy host name.

Configure the proxy correctly. See

http://support.microsoft.com/?id=318140.

Force HttpWebRequest to use no proxy by

setting the Proxy property to null.

ServerProtocolViolation The response from the server is not

a valid HTTP response. This problem

occurs when the .NET Framework

detects that the server response

does not comply with HTTP 1.1 RFC.

This problem may occur when the

response contains incorrect headers

or incorrect header delimiters.RFC

2616 defines HTTP 1.1 and the valid

format for the response from the

server. For more information, see

http://www.ietf.org.

Get a network trace of the transaction and

examine the headers in the response.

If your application requires the server response

without parsing (this could be a security issue),

set useUnsafeHeaderParsing to true in the

configuration file. See <httpWebRequest>

Element (Network Settings).

See Also

HttpWebRequest

HttpWebResponse

Dns

© 2016 Microsoft

Understanding WebRequest Problems and Exceptions https://msdn.microsoft.com/en-us/library/ms346609(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 3:27

