
How to Use a Pen to Draw Lines 1

How to Use a Pen to Draw Rectangles 2

How to Set Pen Width and Alignment 3

How to Draw a Line with Line Caps 5

How to Join Lines 6

How to Draw a Custom Dashed Line 7

How to Draw a Line Filled with a Texture 8

How to Fill a Shape with a Solid Color 9

How to Fill a Shape with a Hatch Pattern 10

How to Fill a Shape with an Image Texture 12

How to Tile a Shape with an Image 14

How to Create a Linear Gradient 17

How to Create a Path Gradient 21

How to Apply Gamma Correction to a Gradient 28

How to Draw an Existing Bitmap to the Screen 30

How to Load and Display Metafiles 31

How to Crop and Scale Images 32

How to Rotate, Reflect, and Skew Images 34

How to Use Interpolation Mode to Control Image Quality During Scaling 37

How to Create Thumbnail Images 40

How to Improve Performance by Avoiding Automatic Scaling 42

How to Read Image Metadata 44

How to Create a Bitmap at Run Time 49

How to Extract the Icon Associated with a File in Windows Forms 50

How to Draw Opaque and Semitransparent Lines 52

How to Draw with Opaque and Semitransparent Brushes 54

How to Use Compositing Mode to Control Alpha Blending 56

How to Use a Color Matrix to Set Alpha Values in Images 59

How to Construct Font Families and Fonts 61

How to Draw Text at a Specified Location 63

How to Draw Wrapped Text in a Rectangle 65

How to Draw Text with GDI 67

How to Align Drawn Text 69

How to Create Vertical Text 71

How to Set Tab Stops in Drawn Text 73

How to Enumerate Installed Fonts 75

How to Create a Private Font Collection 77

How to Obtain Font Metrics 82

How to Use Antialiasing with Text 86

How to Draw Cardinal Splines 88

How to Draw a Single Bézier Spline 91

How to Draw a Sequence of Bézier Splines 93

How to Create Figures from Lines, Curves, and Shapes 95

How to Fill Open Figures 97

How to Flatten a Curved Path into a Line 99

Using the World Transformation 100

Managing the State of a Graphics Object 102

Why Transformation Order Is Significant 105

Using Nested Graphics Containers 107

How to Use Hit Testing with a Region 112

How to Use Clipping with a Region 114

How to Use a Color Matrix to Transform a Single Color 116

How to Translate Image Colors 119

Using Transformations to Scale Colors 121

How to Rotate Colors 125

How to Shear Colors 128

How to Use a Color Remap Table 130

How to List Installed Encoders 132

How to List Installed Decoders 134

How to Determine the Parameters Supported by an Encoder 136

How to Convert a BMP image to a PNG image 138

How to Set JPEG Compression Level 139

Double Buffered Graphics 141

How to Reduce Graphics Flicker with Double Buffering for Forms and Controls 143

How to Manually Manage Buffered Graphics 145

How to Manually Render Buffered Graphics 147

How to: Use a Pen to Draw Lines

To draw lines, you need a Graphics object and a Pen object. The Graphics object provides the DrawLine method, and the Pen

object stores features of the line, such as color and width.

Example
The following example draws a line from (20, 10) to (300, 100). The first statement uses the Pen class constructor to create a

black pen. The one argument passed to the Pen constructor is a Color object created with the FromArgb method. The values

used to create the Color object — (255, 0, 0, 0) — correspond to the alpha, red, green, and blue components of the color.

These values define an opaque black pen.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Pen

Using a Pen to Draw Lines and Shapes

Pens, Lines, and Rectangles in GDI+

© 2016 Microsoft

.NET Framework (current version)

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 0))

e.Graphics.DrawLine(pen, 20, 10, 300, 100)

VB

How to: Use a Pen to Draw Lines https://msdn.microsoft.com/en-us/library/y748y4ez(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:06

How to: Use a Pen to Draw Rectangles

To draw rectangles, you need a Graphics object and a Pen object. The Graphics object provides the DrawRectangle method,

and the Pen object stores features of the line, such as color and width.

Example
The following example draws a rectangle with its upper-left corner at (10, 10). The rectangle has a width of 100 and a height

of 50. The second argument passed to the Pen constructor indicates that the pen width is 5 pixels.

When the rectangle is drawn, the pen is centered on the rectangle's boundary. Because the pen width is 5, the sides of the

rectangle are drawn 5 pixels wide, such that 1 pixel is drawn on the boundary itself, 2 pixels are drawn on the inside, and 2

pixels are drawn on the outside. For more details on pen alignment, see How to: Set Pen Width and Alignment.

The following illustration shows the resulting rectangle. The dotted lines show where the rectangle would have been drawn if

the pen width had been one pixel. The enlarged view of the upper-left corner of the rectangle shows that the thick black

lines are centered on those dotted lines.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Using a Pen to Draw Lines and Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim blackPen As New Pen(Color.FromArgb(255, 0, 0, 0), 5)

e.Graphics.DrawRectangle(blackPen, 10, 10, 100, 50)

VB

How to: Use a Pen to Draw Rectangles https://msdn.microsoft.com/en-us/library/32t0cdd6(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:06

How to: Set Pen Width and Alignment

When you create a Pen, you can supply the pen width as one of the arguments to the constructor. You can also change the

pen width with the Width property of the Pen class.

A theoretical line has a width of 0. When you draw a line that is 1 pixel wide, the pixels are centered on the theoretical line. If

you draw a line that is more than one pixel wide, the pixels are either centered on the theoretical line or appear to one side

of the theoretical line. You can set the pen alignment property of a Pen to determine how the pixels drawn with that pen will

be positioned relative to theoretical lines.

The values Center, Outset, and Inset that appear in the following code examples are members of the PenAlignment

enumeration.

The following code example draws a line twice: once with a black pen of width 1 and once with a green pen of width 10.

To vary the width of a pen

Set the value of the Alignment property to Center (the default) to specify that pixels drawn with the green pen will be

centered on the theoretical line. The following illustration shows the resulting line.

The following code example draws a rectangle twice: once with a black pen of width 1 and once with a green pen of

width 10.

To change the alignment of a pen

Set the value of the Alignment property to Center to specify that the pixels drawn with the green pen will be centered

on the boundary of the rectangle.

.NET Framework (current version)

Dim blackPen As New Pen(Color.FromArgb(255, 0, 0, 0), 1)

Dim greenPen As New Pen(Color.FromArgb(255, 0, 255, 0), 10)

greenPen.Alignment = PenAlignment.Center

' Draw the line with the wide green pen.

e.Graphics.DrawLine(greenPen, 10, 100, 100, 50)

' Draw the line with the thin black pen.

e.Graphics.DrawLine(blackPen, 10, 100, 100, 50)

VB

How to: Set Pen Width and Alignment https://msdn.microsoft.com/en-us/library/3bssbs7z(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:07

The following illustration shows the resulting rectangle.

To create an inset pen

Change the green pen's alignment by modifying the third statement in the preceding code example as follows:

Now the pixels in the wide green line appear on the inside of the rectangle as shown in the following illustration.

See Also
Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

© 2016 Microsoft

Dim blackPen As New Pen(Color.FromArgb(255, 0, 0, 0), 1)

Dim greenPen As New Pen(Color.FromArgb(255, 0, 255, 0), 10)

greenPen.Alignment = PenAlignment.Center

' Draw the rectangle with the wide green pen.

e.Graphics.DrawRectangle(greenPen, 10, 100, 50, 50)

' Draw the rectangle with the thin black pen.

e.Graphics.DrawRectangle(blackPen, 10, 100, 50, 50)

greenPen.Alignment = PenAlignment.Inset

VB

VB

How to: Set Pen Width and Alignment https://msdn.microsoft.com/en-us/library/3bssbs7z(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:07

How to: Draw a Line with Line Caps

You can draw the start or end of a line in one of several shapes called line caps. GDI+ supports several line caps, such as

round, square, diamond, and arrowhead.

Example
You can specify line caps for the start of a line (start cap), the end of a line (end cap), or the dashes of a dashed line (dash

cap).

The following example draws a line with an arrowhead at one end and a round cap at the other end. The illustration shows

the resulting line:

Compiling the Code

Create a Windows Form and handle the form's Paint event. Paste the example code into the Paint event handler

passing e as PaintEventArgs.

See Also
System.Drawing.Pen

System.Drawing.Drawing2D.LineCap

Graphics and Drawing in Windows Forms

Using a Pen to Draw Lines and Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255), 8)

pen.StartCap = LineCap.ArrowAnchor

pen.EndCap = LineCap.RoundAnchor

e.Graphics.DrawLine(pen, 20, 175, 300, 175)

VB

How to: Draw a Line with Line Caps https://msdn.microsoft.com/en-us/library/2bdt6zkb(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:07

How to: Join Lines

A line join is the common area that is formed by two lines whose ends meet or overlap. GDI+ provides three line join styles:

miter, bevel, and round. Line join style is a property of the Pen class. When you specify a line join style for a Pen object, that

join style will be applied to all the connected lines in any GraphicsPath object drawn using that pen.

The following illustration shows the results of the beveled line join example.

Example
You can specify the line join style by using the LineJoin property of the Pen class. The example demonstrates a beveled line

join between a horizontal line and a vertical line. In the following code, the value Bevel assigned to the LineJoin property is a

member of the LineJoin enumeration. The other members of the LineJoin enumeration are Miter and Round.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Using a Pen to Draw Lines and Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim path As New GraphicsPath()

Dim penJoin As New Pen(Color.FromArgb(255, 0, 0, 255), 8)

path.StartFigure()

path.AddLine(New Point(50, 200), New Point(100, 200))

path.AddLine(New Point(100, 200), New Point(100, 250))

penJoin.LineJoin = LineJoin.Bevel

e.Graphics.DrawPath(penJoin, path)

VB

How to: Join Lines https://msdn.microsoft.com/en-us/library/91awkw32(d=printer,v=vs.110)...

1 of 1 05.09.2016 2:08

How to: Draw a Custom Dashed Line

GDI+ provides several dash styles that are listed in the DashStyle enumeration. If those standard dash styles do not suit your

needs, you can create a custom dash pattern.

Example
To draw a custom dashed line, put the lengths of the dashes and spaces in an array and assign the array as the value of the

DashPattern property of a Pen object. The following example draws a custom dashed line based on the array {5, 2, 15,

4}. If you multiply the elements of the array by the pen width of 5, you get {25, 10, 75, 20}. The displayed dashes

alternate in length between 25 and 75, and the spaces alternate in length between 10 and 20.

The following illustration shows the resulting dashed line. Note that the final dash has to be shorter than 25 units so that the

line can end at (405, 5).

Compiling the Code
Create a Windows Form and handle the form's Paint event. Paste the preceding code into the Paint event handler.

See Also
Using a Pen to Draw Lines and Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim dashValues As Single() = {5, 2, 15, 4}

Dim blackPen As New Pen(Color.Black, 5)

blackPen.DashPattern = dashValues

e.Graphics.DrawLine(blackPen, New Point(5, 5), New Point(405, 5))

VB

How to: Draw a Custom Dashed Line https://msdn.microsoft.com/en-us/library/w34xb12c(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:08

How to: Draw a Line Filled with a Texture

Instead of drawing a line with a solid color, you can draw a line with a texture. To draw lines and curves with a texture, create

a TextureBrush object, and pass that TextureBrush object to a Pen constructor. The bitmap associated with the texture brush

is used to tile the plane (invisibly), and when the pen draws a line or curve, the stroke of the pen uncovers certain pixels of

the tiled texture.

Example
The following example creates a Bitmap object from the file Texture1.jpg. That bitmap is used to construct a TextureBrush

object, and the TextureBrush object is used to construct a Pen object. The call to DrawImage draws the bitmap with its

upper-left corner at (0, 0). The call to DrawEllipse uses the Pen object to draw a textured ellipse.

The following illustration shows the bitmap and the textured ellipse.

Compiling the Code
Create a Windows Form and handle the form's Paint event. Paste the preceding code into the Paint event handler. Replace

Texture.jpg with an image valid on your system.

See Also
Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

© 2016 Microsoft

.NET Framework (current version)

Dim bitmap As New Bitmap("Texture1.jpg")

Dim tBrush As New TextureBrush(bitmap)

Dim texturedPen As New Pen(tBrush, 30)

e.Graphics.DrawImage(bitmap, 0, 0, bitmap.Width, bitmap.Height)

e.Graphics.DrawEllipse(texturedPen, 100, 20, 200, 100)

VB

How to: Draw a Line Filled with a Texture https://msdn.microsoft.com/en-us/library/swtkt67b(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:08

How to: Fill a Shape with a Solid Color

To fill a shape with a solid color, create a SolidBrush object, and then pass that SolidBrush object as an argument to one of

the fill methods of the Graphics class. The following example shows how to fill an ellipse with the color red.

Example
In the following code, the SolidBrush constructor takes a Color object as its only argument. The values used by the

FromArgb method represent the alpha, red, green, and blue components of the color. Each of these values must be in the

range 0 through 255. The first 255 indicates that the color is fully opaque, and the second 255 indicates that the red

component is at full intensity. The two zeros indicate that the green and blue components both have an intensity of 0.

The four numbers (0, 0, 100, 60) passed to the FillEllipse method specify the location and size of the bounding rectangle for

the ellipse. The rectangle has an upper-left corner of (0, 0), a width of 100, and a height of 60.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Using a Brush to Fill Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim solidBrush As New SolidBrush(_

 Color.FromArgb(255, 255, 0, 0))

e.Graphics.FillEllipse(solidBrush, 0, 0, 100, 60)

VB

How to: Fill a Shape with a Solid Color https://msdn.microsoft.com/en-us/library/s6tz5ass(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:09

How to: Fill a Shape with a Hatch Pattern

A hatch pattern is made from two colors: one for the background and one for the lines that form the pattern over the

background. To fill a closed shape with a hatch pattern, use a HatchBrush object. The following example demonstrates how

to fill an ellipse with a hatch pattern:

Example
The HatchBrush constructor takes three arguments: the hatch style, the color of the hatch line, and the color of the

background. The hatch style argument can be any value from the HatchStyle enumeration. There are more than fifty

elements in the HatchStyle enumeration; a few of those elements are shown in the following list:

Horizontal

Vertical

ForwardDiagonal

BackwardDiagonal

Cross

DiagonalCross

The following illustration shows the filled ellipse.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

.NET Framework (current version)

Dim hBrush As New HatchBrush(_

 HatchStyle.Horizontal, _

 Color.Red, _

 Color.FromArgb(255, 128, 255, 255))

e.Graphics.FillEllipse(hBrush, 0, 0, 100, 60)

VB

How to: Fill a Shape with a Hatch Pattern https://msdn.microsoft.com/en-us/library/7eec8a36(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:10

See Also
Using a Brush to Fill Shapes

© 2016 Microsoft

How to: Fill a Shape with a Hatch Pattern https://msdn.microsoft.com/en-us/library/7eec8a36(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:10

How to: Fill a Shape with an Image Texture

You can fill a closed shape with a texture by using the Image class and the TextureBrush class.

Example
The following example fills an ellipse with an image. The code constructs an Image object, and then passes the address of

that Image object as an argument to a TextureBrush constructor. The third statement scales the image, and the fourth

statement fills the ellipse with repeated copies of the scaled image.

In the following code, the Transform property contains the transformation that is applied to the image before it is drawn.

Assume that the original image has a width of 640 pixels and a height of 480 pixels. The transform shrinks the image to

75×75 by setting the horizontal and vertical scaling values.

Note

In the following example, the image size is 75×75, and the ellipse size is 150×250. Because the image is smaller than the

ellipse it is filling, the ellipse is tiled with the image. Tiling means that the image is repeated horizontally and vertically

until the boundary of the shape is reached. For more information about tiling, see How to: Tile a Shape with an Image.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also

.NET Framework (current version)

Dim image As New Bitmap("ImageFile.jpg")

Dim tBrush As New TextureBrush(image)

tBrush.Transform = New Matrix(_

 75.0F / 640.0F, _

 0.0F, _

 0.0F, _

 75.0F / 480.0F, _

 0.0F, _

 0.0F)

e.Graphics.FillEllipse(tBrush, New Rectangle(0, 150, 150, 250))

VB

How to: Fill a Shape with an Image Texture https://msdn.microsoft.com/en-us/library/sssaxczh(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:10

Using a Brush to Fill Shapes

© 2016 Microsoft

How to: Fill a Shape with an Image Texture https://msdn.microsoft.com/en-us/library/sssaxczh(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:10

How to: Tile a Shape with an Image

Just as tiles can be placed next to each other to cover a floor, rectangular images can be placed next to each other to fill (tile)

a shape. To tile the interior of a shape, use a texture brush. When you construct a TextureBrush object, one of the arguments

you pass to the constructor is an Image object. When you use the texture brush to paint the interior of a shape, the shape is

filled with repeated copies of this image.

The wrap mode property of the TextureBrush object determines how the image is oriented as it is repeated in a rectangular

grid. You can make all the tiles in the grid have the same orientation, or you can make the image flip from one grid position

to the next. The flipping can be horizontal, vertical, or both. The following examples demonstrate tiling with different types

of flipping.

To tile an image

This example uses the following 75×75 image to tile a 200×200 rectangle.

The following illustration shows how the rectangle is tiled with the image. Note that all tiles have the same

orientation; there is no flipping.

.NET Framework (current version)

Dim image As New Bitmap("HouseAndTree.gif")

Dim tBrush As New TextureBrush(image)

Dim blackPen As New Pen(Color.Black)

e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))

e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

VB

How to: Tile a Shape with an Image https://msdn.microsoft.com/en-us/library/729d4sbe(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:10

To flip an image horizontally while tiling

This example uses the same 75×75 image to fill a 200×200 rectangle. The wrap mode is set to flip the image

horizontally. The following illustration shows how the rectangle is tiled with the image. Note that as you move from

one tile to the next in a given row, the image is flipped horizontally.

To flip an image vertically while tiling

This example uses the same 75×75 image to fill a 200×200 rectangle. The wrap mode is set to flip the image

vertically.

To flip an image horizontally and vertically while tiling

This example uses the same 75×75 image to tile a 200×200 rectangle. The wrap mode is set to flip the image both

horizontally and vertically. The following illustration shows how the rectangle is tiled by the image. Note that as you

move from one tile to the next in a given row, the image is flipped horizontally, and as you move from one tile to the

Dim image As New Bitmap("HouseAndTree.gif")

Dim tBrush As New TextureBrush(image)

Dim blackPen As New Pen(Color.Black)

tBrush.WrapMode = WrapMode.TileFlipX

e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))

e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

Dim image As New Bitmap("HouseAndTree.gif")

Dim tBrush As New TextureBrush(image)

Dim blackPen As New Pen(Color.Black)

tBrush.WrapMode = WrapMode.TileFlipY

e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))

e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

VB

VB

How to: Tile a Shape with an Image https://msdn.microsoft.com/en-us/library/729d4sbe(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:10

next in a given column, the image is flipped vertically.

See Also
Using a Brush to Fill Shapes

© 2016 Microsoft

Dim image As New Bitmap("HouseAndTree.gif")

Dim tBrush As New TextureBrush(image)

Dim blackPen As New Pen(Color.Black)

tBrush.WrapMode = WrapMode.TileFlipXY

e.Graphics.FillRectangle(tBrush, New Rectangle(0, 0, 200, 200))

e.Graphics.DrawRectangle(blackPen, New Rectangle(0, 0, 200, 200))

VB

How to: Tile a Shape with an Image https://msdn.microsoft.com/en-us/library/729d4sbe(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:10

How to: Create a Linear Gradient

GDI+ provides horizontal, vertical, and diagonal linear gradients. By default, the color in a linear gradient changes uniformly.

However, you can customize a linear gradient so that the color changes in a non-uniform fashion.

The following example fills a line, an ellipse, and a rectangle with a horizontal linear gradient brush.

The LinearGradientBrush constructor receives four arguments: two points and two colors. The first point (0, 10) is associated

with the first color (red), and the second point (200, 10) is associated with the second color (blue). As you would expect, the

line drawn from (0, 10) to (200, 10) changes gradually from red to blue.

The 10s in the points (50, 10) and (200, 10) are not important. What is important is that the two points have the same

second coordinate — the line connecting them is horizontal. The ellipse and the rectangle also change gradually from red to

blue as the horizontal coordinate goes from 0 to 200.

The following illustration shows the line, the ellipse, and the rectangle. Note that the color gradient repeats itself as the

horizontal coordinate increases beyond 200.

To use horizontal linear gradients

Pass in the opaque red and opaque blue as the third and fourth argument, respectively.

.NET Framework (current version)

Dim linGrBrush As New LinearGradientBrush(_

New Point(0, 10), _

New Point(200, 10), _

 Color.FromArgb(255, 255, 0, 0), _

 Color.FromArgb(255, 0, 0, 255))

Dim pen As New Pen(linGrBrush)

e.Graphics.DrawLine(pen, 0, 10, 200, 10)

e.Graphics.FillEllipse(linGrBrush, 0, 30, 200, 100)

e.Graphics.FillRectangle(linGrBrush, 0, 155, 500, 30)

VB

How to: Create a Linear Gradient https://msdn.microsoft.com/en-us/library/0sdy66e6(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 2:11

In the preceding example, the color components change linearly as you move from a horizontal coordinate of 0 to a

horizontal coordinate of 200. For example, a point whose first coordinate is halfway between 0 and 200 will have a blue

component that is halfway between 0 and 255.

GDI+ allows you to adjust the way a color varies from one edge of a gradient to the other. Suppose you want to create a

gradient brush that changes from black to red according to the following table.

Horizontal coordinate RGB components

0 (0, 0, 0)

40 (128, 0, 0)

200 (255, 0, 0)

Note that the red component is at half intensity when the horizontal coordinate is only 20 percent of the way from 0 to 200.

The following example sets the Blend property of a LinearGradientBrush object to associate three relative intensities with

three relative positions. As in the preceding table, a relative intensity of 0.5 is associated with a relative position of 0.2. The

code fills an ellipse and a rectangle with the gradient brush.

The following illustration shows the resulting ellipse and rectangle.

To customize linear gradients

Pass in the opaque black and opaque red as the third and fourth argument, respectively.

Dim linGrBrush As New LinearGradientBrush(_

New Point(0, 10), _

New Point(200, 10), _

 Color.FromArgb(255, 0, 0, 0), _

VB

How to: Create a Linear Gradient https://msdn.microsoft.com/en-us/library/0sdy66e6(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 2:11

The gradients in the preceding examples have been horizontal; that is, the color changes gradually as you move along any

horizontal line. You can also define vertical gradients and diagonal gradients.

The following example passes the points (0, 0) and (200, 100) to a LinearGradientBrush constructor. The color blue is

associated with (0, 0), and the color green is associated with (200, 100). A line (with pen width 10) and an ellipse are filled

with the linear gradient brush.

The following illustration shows the line and the ellipse. Note that the color in the ellipse changes gradually as you move

along any line that is parallel to the line passing through (0, 0) and (200, 100).

To create diagonal linear gradients

Pass in the opaque blue and opaque green as the third and fourth argument, respectively.

 Color.FromArgb(255, 255, 0, 0))

Dim relativeIntensities As Single() = {0.0F, 0.5F, 1.0F}

Dim relativePositions As Single() = {0.0F, 0.2F, 1.0F}

'Create a Blend object and assign it to linGrBrush.

Dim blend As New Blend()

blend.Factors = relativeIntensities

blend.Positions = relativePositions

linGrBrush.Blend = blend

e.Graphics.FillEllipse(linGrBrush, 0, 30, 200, 100)

e.Graphics.FillRectangle(linGrBrush, 0, 155, 500, 30)

Dim linGrBrush As New LinearGradientBrush(_

New Point(0, 0), _

New Point(200, 100), _

 Color.FromArgb(255, 0, 0, 255), _

 Color.FromArgb(255, 0, 255, 0))

VB

How to: Create a Linear Gradient https://msdn.microsoft.com/en-us/library/0sdy66e6(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 2:11

See Also
Using a Gradient Brush to Fill Shapes

Graphics and Drawing in Windows Forms

© 2016 Microsoft

' opaque blue

' opaque green

Dim pen As New Pen(linGrBrush, 10)

e.Graphics.DrawLine(pen, 0, 0, 600, 300)

e.Graphics.FillEllipse(linGrBrush, 10, 100, 200, 100)

How to: Create a Linear Gradient https://msdn.microsoft.com/en-us/library/0sdy66e6(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 2:11

How to: Create a Path Gradient

The PathGradientBrush class allows you to customize the way you fill a shape with gradually changing colors. For example,

you can specify one color for the center of a path and another color for the boundary of a path. You can also specify

separate colors for each of several points along the boundary of a path.

Note

In GDI+, a path is a sequence of lines and curves maintained by a GraphicsPath object. For more information about GDI+

paths, see Graphics Paths in GDI+ and Constructing and Drawing Paths.

To fill an ellipse with a path gradient

The following example fills an ellipse with a path gradient brush. The center color is set to blue and the boundary

color is set to aqua. The following illustration shows the filled ellipse.

By default, a path gradient brush does not extend outside the boundary of the path. If you use the path gradient

brush to fill a figure that extends beyond the boundary of the path, the area of the screen outside the path will not be

filled.

The following illustration shows what happens if you change the FillEllipse call in the following code to

e.Graphics.FillRectangle(pthGrBrush, 0, 10, 200, 40).

.NET Framework (current version)

' Create a path that consists of a single ellipse.

Dim path As New GraphicsPath()

path.AddEllipse(0, 0, 140, 70)

' Use the path to construct a brush.

Dim pthGrBrush As New PathGradientBrush(path)

' Set the color at the center of the path to blue.

pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255)

' Set the color along the entire boundary

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

1 of 7 05.09.2016 2:11

The preceding code example is designed for use with Windows Forms, and it requires the PaintEventArgs e, which is a

parameter of PaintEventHandler.

To specify points on the boundary

The following example constructs a path gradient brush from a star-shaped path. The code sets the CenterColor

property, which sets the color at the centroid of the star to red. Then the code sets the SurroundColors property to

specify various colors (stored in the colors array) at the individual points in the points array. The final code

statement fills the star-shaped path with the path gradient brush.

' of the path to aqua.

Dim colors As Color() = {Color.FromArgb(255, 0, 255, 255)}

pthGrBrush.SurroundColors = colors

e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70)

' Put the points of a polygon in an array.

Dim points As Point() = { _

New Point(75, 0), _

New Point(100, 50), _

New Point(150, 50), _

New Point(112, 75), _

New Point(150, 150), _

New Point(75, 100), _

New Point(0, 150), _

New Point(37, 75), _

New Point(0, 50), _

New Point(50, 50)}

' Use the array of points to construct a path.

Dim path As New GraphicsPath()

path.AddLines(points)

' Use the path to construct a path gradient brush.

Dim pthGrBrush As New PathGradientBrush(path)

' Set the color at the center of the path to red.

pthGrBrush.CenterColor = Color.FromArgb(255, 255, 0, 0)

' Set the colors of the points in the array.

Dim colors As Color() = { _

 Color.FromArgb(255, 0, 0, 0), _

 Color.FromArgb(255, 0, 255, 0), _

 Color.FromArgb(255, 0, 0, 255), _

 Color.FromArgb(255, 255, 255, 255), _

 Color.FromArgb(255, 0, 0, 0), _

 Color.FromArgb(255, 0, 255, 0), _

 Color.FromArgb(255, 0, 0, 255), _

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

2 of 7 05.09.2016 2:11

The following example draws a path gradient without a GraphicsPath object in the code. The particular

PathGradientBrush constructor in the example receives an array of points but does not require a GraphicsPath object.

Also, note that the PathGradientBrush is used to fill a rectangle, not a path. The rectangle is larger than the closed

path used to define the brush, so some of the rectangle is not painted by the brush. The following illustration shows

the rectangle (dotted line) and the portion of the rectangle painted by the path gradient brush.

 Color.FromArgb(255, 255, 255, 255), _

 Color.FromArgb(255, 0, 0, 0), _

 Color.FromArgb(255, 0, 255, 0)}

pthGrBrush.SurroundColors = colors

' Fill the path with the path gradient brush.

e.Graphics.FillPath(pthGrBrush, path)

' Construct a path gradient brush based on an array of points.

Dim ptsF As PointF() = { _

New PointF(0, 0), _

New PointF(160, 0), _

New PointF(160, 200), _

New PointF(80, 150), _

New PointF(0, 200)}

Dim pBrush As New PathGradientBrush(ptsF)

' An array of five points was used to construct the path gradient

' brush. Set the color of each point in that array.

'Point (0, 0) is red

'Point (160, 0) is green

'Point (160, 200) is green

'Point (80, 150) is blue

'Point (0, 200) is red

Dim colors As Color() = { _

 Color.FromArgb(255, 255, 0, 0), _

 Color.FromArgb(255, 0, 255, 0), _

 Color.FromArgb(255, 0, 255, 0), _

 Color.FromArgb(255, 0, 0, 255), _

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

3 of 7 05.09.2016 2:11

To customize a path gradient

One way to customize a path gradient brush is to set its FocusScales property. The focus scales specify an inner path

that lies inside the main path. The center color is displayed everywhere inside that inner path rather than only at the

center point.

The following example creates a path gradient brush based on an elliptical path. The code sets the boundary color to

blue, sets the center color to aqua, and then uses the path gradient brush to fill the elliptical path.

Next, the code sets the focus scales of the path gradient brush. The x focus scale is set to 0.3, and the y focus scale is

set to 0.8. The code calls the TranslateTransform method of a Graphics object so that the subsequent call to FillPath

fills an ellipse that sits to the right of the first ellipse.

To see the effect of the focus scales, imagine a small ellipse that shares its center with the main ellipse. The small

(inner) ellipse is the main ellipse scaled (about its center) horizontally by a factor of 0.3 and vertically by a factor of

0.8. As you move from the boundary of the outer ellipse to the boundary of the inner ellipse, the color changes

gradually from blue to aqua. As you move from the boundary of the inner ellipse to the shared center, the color

remains aqua.

The following illustration shows the output of the following code. The ellipse on the left is aqua only at the center

point. The ellipse on the right is aqua everywhere inside the inner path.

 Color.FromArgb(255, 255, 0, 0)}

pBrush.SurroundColors = colors

' Set the center color to white.

pBrush.CenterColor = Color.White

' Use the path gradient brush to fill a rectangle.

e.Graphics.FillRectangle(pBrush, New Rectangle(0, 0, 160, 200))

' Create a path that consists of a single ellipse.

Dim path As New GraphicsPath()

path.AddEllipse(0, 0, 200, 100)

' Create a path gradient brush based on the elliptical path.

Dim pthGrBrush As New PathGradientBrush(path)

' Set the color along the entire boundary to blue.

' Changed variable name from color

Dim blueColor As Color() = {Color.Blue}

pthGrBrush.SurroundColors = blueColor

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

4 of 7 05.09.2016 2:11

To customize with interpolation

Another way to customize a path gradient brush is to specify an array of interpolation colors and an array of

interpolation positions.

The following example creates a path gradient brush based on a triangle. The code sets the InterpolationColors

property of the path gradient brush to specify an array of interpolation colors (dark green, aqua, blue) and an array

of interpolation positions (0, 0.25, 1). As you move from the boundary of the triangle to the center point, the color

changes gradually from dark green to aqua and then from aqua to blue. The change from dark green to aqua

happens in 25 percent of the distance from dark green to blue.

The following illustration shows the triangle filled with the custom path gradient brush.

' Set the center color to aqua.

pthGrBrush.CenterColor = Color.Aqua

' Use the path gradient brush to fill the ellipse.

e.Graphics.FillPath(pthGrBrush, path)

' Set the focus scales for the path gradient brush.

pthGrBrush.FocusScales = New PointF(0.3F, 0.8F)

' Use the path gradient brush to fill the ellipse again.

' Show this filled ellipse to the right of the first filled ellipse.

e.Graphics.TranslateTransform(220.0F, 0.0F)

e.Graphics.FillPath(pthGrBrush, path)

' Vertices of the outer triangle

Dim points As Point() = { _

New Point(100, 0), _

New Point(200, 200), _

New Point(0, 200)}

' No GraphicsPath object is created. The PathGradientBrush

' object is constructed directly from the array of points.

Dim pthGrBrush As New PathGradientBrush(points)

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

5 of 7 05.09.2016 2:11

To set the center point

By default, the center point of a path gradient brush is at the centroid of the path used to construct the brush. You

can change the location of the center point by setting the CenterPoint property of the PathGradientBrush class.

The following example creates a path gradient brush based on an ellipse. The center of the ellipse is at (70, 35), but

the center point of the path gradient brush is set to (120, 40).

' Create an array of colors containing dark green, aqua, and blue.

Dim colors As Color() = { _

 Color.FromArgb(255, 0, 128, 0), _

 Color.FromArgb(255, 0, 255, 255), _

 Color.FromArgb(255, 0, 0, 255)}

' Dark green is at the boundary of the triangle.

' Aqua is 40 percent of the way from the boundary to the center point.

' Blue is at the center point.

Dim relativePositions As Single() = { _

 0.0F, _

 0.4F, _

 1.0F}

Dim colorBlend As New ColorBlend()

colorBlend.Colors = colors

colorBlend.Positions = relativePositions

pthGrBrush.InterpolationColors = colorBlend

' Fill a rectangle that is larger than the triangle

' specified in the Point array. The portion of the

' rectangle outside the triangle will not be painted.

e.Graphics.FillRectangle(pthGrBrush, 0, 0, 200, 200)

' Create a path that consists of a single ellipse.

Dim path As New GraphicsPath()

path.AddEllipse(0, 0, 140, 70)

' Use the path to construct a brush.

Dim pthGrBrush As New PathGradientBrush(path)

' Set the center point to a location that is not

' the centroid of the path.

pthGrBrush.CenterPoint = New PointF(120, 40)

' Set the color at the center of the path to blue.

pthGrBrush.CenterColor = Color.FromArgb(255, 0, 0, 255)

' Set the color along the entire boundary

' of the path to aqua.

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

6 of 7 05.09.2016 2:11

The following illustration shows the filled ellipse and the center point of the path gradient brush.

You can set the center point of a path gradient brush to a location outside the path that was used to construct the

brush. The following example replaces the call to set the CenterPoint property in the preceding code.

The following illustration shows the output with this change.

In the preceding illustration, the points at the far right of the ellipse are not pure blue (although they are very close).

The colors in the gradient are positioned as if the fill reached the point (145, 35) where the color would be pure blue

(0, 0, 255). But the fill never reaches (145, 35) because a path gradient brush paints only inside its path.

Compiling the Code
The preceding examples are designed for use with Windows Forms, and they require PaintEventArgs e, which is a parameter

of the Paint event handler.

See Also
Using a Gradient Brush to Fill Shapes

© 2016 Microsoft

Dim colors As Color() = {Color.FromArgb(255, 0, 255, 255)}

pthGrBrush.SurroundColors = colors

e.Graphics.FillEllipse(pthGrBrush, 0, 0, 140, 70)

pthGrBrush.CenterPoint = New PointF(145, 35)

VB

How to: Create a Path Gradient https://msdn.microsoft.com/en-us/library/7fswd1t7(d=printer,v=vs.110).aspx

7 of 7 05.09.2016 2:11

How to: Apply Gamma Correction to a
Gradient

You can enable gamma correction for a linear gradient brush by setting the brush's GammaCorrection property to true. You

can disable gamma correction by setting the GammaCorrection property to false. Gamma correction is disabled by default.

Example
The example creates a linear gradient brush and uses that brush to fill two rectangles. The first rectangle is filled without

gamma correction, and the second rectangle is filled with gamma correction.

The following illustration shows the two filled rectangles. The top rectangle, which does not have gamma correction, appears

dark in the middle. The bottom rectangle, which has gamma correction, appears to have more uniform intensity.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
LinearGradientBrush

Using a Gradient Brush to Fill Shapes

.NET Framework (current version)

Dim linGrBrush As New LinearGradientBrush(_

New Point(0, 10), _

New Point(200, 10), _

 Color.Red, _

 Color.Blue)

e.Graphics.FillRectangle(linGrBrush, 0, 0, 200, 50)

linGrBrush.GammaCorrection = True

e.Graphics.FillRectangle(linGrBrush, 0, 60, 200, 50)

VB

How to: Apply Gamma Correction to a Gradient https://msdn.microsoft.com/en-us/library/5chww2y4(d=printer,v=vs.110)...

1 of 2 05.09.2016 2:12

© 2016 Microsoft

How to: Apply Gamma Correction to a Gradient https://msdn.microsoft.com/en-us/library/5chww2y4(d=printer,v=vs.110)...

2 of 2 05.09.2016 2:12

How to: Draw an Existing Bitmap to the
Screen

You can easily draw an existing image on the screen. First you need to create a Bitmap object by using the bitmap

constructor that takes a file name, Bitmap(String). This constructor accepts images with several different file formats,

including BMP, GIF, JPEG, PNG, and TIFF. After you have created the Bitmap object, pass that Bitmap object to the

DrawImage method of a Graphics object.

Example
This example creates a Bitmap object from a JPEG file and then draws the bitmap with its upper-left corner at (60, 10).

The following illustration shows the bitmap drawn at the specified location.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Graphics and Drawing in Windows Forms

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

.NET Framework (current version)

Dim bitmap As New Bitmap("Grapes.jpg")

e.Graphics.DrawImage(bitmap, 60, 10)

VB

How to: Draw an Existing Bitmap to the Screen https://msdn.microsoft.com/en-us/library/8tda2c3c(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:13

How to: Load and Display Metafiles

The Metafile class, which inherits from the Image class, provides methods for recording, displaying, and examining vector

images.

Example
To display a vector image (metafile) on the screen, you need a Metafile object and a Graphics object. Pass the name of a file

(or a stream) to a Metafile constructor. After you have created a Metafile object, pass that Metafile object to the DrawImage

method of a Graphics object.

The example creates a Metafile object from an EMF (enhanced metafile) file and then draws the image with its upper-left

corner at (60, 10).

The following illustration shows the metafile drawn at the specified location.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

.NET Framework (current version)

Dim metafile As New Metafile("SampleMetafile.emf")

e.Graphics.DrawImage(metafile, 60, 10)

VB

How to: Load and Display Metafiles https://msdn.microsoft.com/en-us/library/wb42xhfh(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:13

How to: Crop and Scale Images

The Graphics class provides several DrawImage methods, some of which have source and destination rectangle parameters

that you can use to crop and scale images.

Example
The following example constructs an Image object from the disk file Apple.gif. The code draws the entire apple image in its

original size. The code then calls the DrawImage method of a Graphics object to draw a portion of the apple image in a

destination rectangle that is larger than the original apple image.

The DrawImage method determines which portion of the apple to draw by looking at the source rectangle, which is specified

by the third, fourth, fifth, and sixth arguments. In this case, the apple is cropped to 75 percent of its width and 75 percent of

its height.

The DrawImage method determines where to draw the cropped apple and how big to make the cropped apple by looking

at the destination rectangle, which is specified by the second argument. In this case, the destination rectangle is 30 percent

wider and 30 percent taller than the original image.

The following illustration shows the original apple and the scaled, cropped apple.

.NET Framework (current version)

Dim image As New Bitmap("Apple.gif")

' Draw the image unaltered with its upper‐left corner at (0, 0).

e.Graphics.DrawImage(image, 0, 0)

' Make the destination rectangle 30 percent wider and

' 30 percent taller than the original image.

' Put the upper‐left corner of the destination

' rectangle at (150, 20).

Dim width As Integer = image.Width

Dim height As Integer = image.Height

VB

How to: Crop and Scale Images https://msdn.microsoft.com/en-us/library/7wt4bf7h(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:13

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Make sure to replace Apple.gif with an image file name and path that are valid on your system.

See Also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

Dim destinationRect As New RectangleF(_

 150, _

 20, _

 1.3F * width, _

 1.3F * height)

' Draw a portion of the image. Scale that portion of the image

' so that it fills the destination rectangle.

Dim sourceRect As New RectangleF(0, 0, 0.75F * width, 0.75F * height)

e.Graphics.DrawImage(_

 image, _

 destinationRect, _

 sourceRect, _

 GraphicsUnit.Pixel)

How to: Crop and Scale Images https://msdn.microsoft.com/en-us/library/7wt4bf7h(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:13

How to: Rotate, Reflect, and Skew Images

You can rotate, reflect, and skew an image by specifying destination points for the upper-left, upper-right, and lower-left

corners of the original image. The three destination points determine an affine transformation that maps the original

rectangular image to a parallelogram.

Example
For example, suppose the original image is a rectangle with upper-left corner at (0, 0), upper-right corner at (100, 0), and

lower-left corner at (0, 50). Now suppose you map those three points to destination points as follows.

Original point Destination point

Upper-left (0, 0) (200, 20)

Upper-right (100, 0) (110, 100)

Lower-left (0, 50) (250, 30)

The following illustration shows the original image and the image mapped to the parallelogram. The original image has

been skewed, reflected, rotated, and translated. The x-axis along the top edge of the original image is mapped to the line

that runs through (200, 20) and (110, 100). The y-axis along the left edge of the original image is mapped to the line that

runs through (200, 20) and (250, 30).

The following illustration shows a similar transformation applied to a photographic image.

.NET Framework (current version)

How to: Rotate, Reflect, and Skew Images https://msdn.microsoft.com/en-us/library/3b575a03(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:14

The following illustration shows a similar transformation applied to a metafile.

The following example produces the images shown in the first illustration.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Make sure to replace Stripes.bmp with the path to an image that is valid on your system.

See Also

' New Point(200, 20) = destination for upper‐left point of original

' New Point(110, 100) = destination for upper‐right point of original

' New Point(250, 30) = destination for lower‐left point of original

Dim destinationPoints As Point() = { _

New Point(200, 20), _

New Point(110, 100), _

New Point(250, 30)}

Dim image As New Bitmap("Stripes.bmp")

' Draw the image unaltered with its upper‐left corner at (0, 0).

e.Graphics.DrawImage(image, 0, 0)

' Draw the image mapped to the parallelogram.

e.Graphics.DrawImage(image, destinationPoints)

VB

How to: Rotate, Reflect, and Skew Images https://msdn.microsoft.com/en-us/library/3b575a03(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:14

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

How to: Rotate, Reflect, and Skew Images https://msdn.microsoft.com/en-us/library/3b575a03(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:14

How to: Use Interpolation Mode to Control
Image Quality During Scaling

The interpolation mode of a Graphics object influences the way GDI+ scales (stretches and shrinks) images. The

InterpolationMode enumeration defines several interpolation modes, some of which are shown in the following list:

NearestNeighbor

Bilinear

HighQualityBilinear

Bicubic

HighQualityBicubic

To stretch an image, each pixel in the original image must be mapped to a group of pixels in the larger image. To shrink an

image, groups of pixels in the original image must be mapped to single pixels in the smaller image. The effectiveness of the

algorithms that perform these mappings determines the quality of a scaled image. Algorithms that produce higher-quality

scaled images tend to require more processing time. In the preceding list, NearestNeighbor is the lowest-quality mode and

HighQualityBicubic is the highest-quality mode.

To set the interpolation mode, assign one of the members of the InterpolationMode enumeration to the InterpolationMode

property of a Graphics object.

Example
The following example draws an image and then shrinks the image with three different interpolation modes.

The following illustration shows the original image and the three smaller images.

.NET Framework (current version)

How to: Use Interpolation Mode to Control Image Quality During Scaling https://msdn.microsoft.com/en-us/library/k0fsyd4e(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:14

Dim image As New Bitmap("GrapeBunch.bmp")

Dim width As Integer = image.Width

Dim height As Integer = image.Height

' Draw the image with no shrinking or stretching. Pass in the destination

' rectangle (2nd argument), the upper‐left corner (3rd and 4th arguments),

' width (5th argument), and height (6th argument) of the source

' rectangle.

e.Graphics.DrawImage(_

 image, _

New Rectangle(10, 10, width, height), _

 0, _

 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

Nothing)

' Shrink the image using low‐quality interpolation.

e.Graphics.InterpolationMode = InterpolationMode.NearestNeighbor

' Pass in the destination rectangle, and the upper‐left corner, width,

' and height of the source rectangle as above.

e.Graphics.DrawImage(_

image, _

New Rectangle(10, 250, CInt(0.6 * width), CInt(0.6 * height)), _

0, _

VB

How to: Use Interpolation Mode to Control Image Quality During Scaling https://msdn.microsoft.com/en-us/library/k0fsyd4e(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:14

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

0, _

width, _

height, _

GraphicsUnit.Pixel)

' Shrink the image using medium‐quality interpolation.

e.Graphics.InterpolationMode = InterpolationMode.HighQualityBilinear

' Pass in the destination rectangle, and the upper‐left corner, width,

' and height of the source rectangle as above.

e.Graphics.DrawImage(_

image, _

New Rectangle(150, 250, CInt(0.6 * width), _

CInt(0.6 * height)), _

0, _

0, _

width, _

height, _

GraphicsUnit.Pixel)

' Shrink the image using high‐quality interpolation.

e.Graphics.InterpolationMode = InterpolationMode.HighQualityBicubic

' Pass in the destination rectangle, and the upper‐left corner, width,

' and height of the source rectangle as above.

e.Graphics.DrawImage(_

 image, _

New Rectangle(290, 250, CInt(0.6 * width), CInt(0.6 * height)), _

 0, _

 0, _

 width, _

 height, _

 GraphicsUnit.Pixel)

How to: Use Interpolation Mode to Control Image Quality During Scaling https://msdn.microsoft.com/en-us/library/k0fsyd4e(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:14

How to: Create Thumbnail Images

A thumbnail image is a small version of an image. You can create a thumbnail image by calling the GetThumbnailImage

method of an Image object.

Example
The following example constructs an Image object from a JPG file. The original image has a width of 640 pixels and a height

of 479 pixels. The code creates a thumbnail image that has a width of 100 pixels and a height of 100 pixels.

The following illustration shows the thumbnail image.

Note

In this example, a callback method is declared, but never used. This supports all versions of GDI+.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. To run the example, follow these steps:

.NET Framework (current version)

Public Function ThumbnailCallback() As Boolean

 Return True

End Function

Private Sub GetThumbnail(ByVal e As PaintEventArgs)

 Dim callback As New Image.GetThumbnailImageAbort(AddressOf

ThumbnailCallback)

 Dim image As Image = New Bitmap("c:\FakePhoto.jpg")

 Dim pThumbnail As Image = image.GetThumbnailImage(100, 100, callback, New

IntPtr())

 e.Graphics.DrawImage(pThumbnail, 10, 10, pThumbnail.Width,

pThumbnail.Height)

End Sub

VB

How to: Create Thumbnail Images https://msdn.microsoft.com/en-us/library/ets0sayh(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:15

Create a new Windows Forms application.1.

Add the example code to the form.2.

Create a handler for the form's Paint event3.

In the Paint handler, call the GetThumbnail method and pass e for PaintEventArgs.4.

Find an image file that you want to make a thumbnail of.5.

In the GetThumbnail method, specify the path and file name to your image.6.

Press F5 to run the example.

A 100 by 100 thumbnail image appears on the form.

7.

See Also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

How to: Create Thumbnail Images https://msdn.microsoft.com/en-us/library/ets0sayh(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:15

How to: Improve Performance by Avoiding
Automatic Scaling

GDI+ may automatically scale an image as you draw it, which would decrease performance. Alternatively, you can control

the scaling of the image by passing the dimensions of the destination rectangle to the DrawImage method.

For example, the following call to the DrawImage method specifies an upper-left corner of (50, 30) but does not specify a

destination rectangle.

Although this is the easiest version of the DrawImage method in terms of the number of required arguments, it is not

necessarily the most efficient. If the resolution used by GDI+ (usually 96 dots per inch) is different from the resolution stored

in the Image object, then the DrawImage method will scale the image. For example, suppose an Image object has a width of

216 pixels and a stored horizontal resolution value of 72 dots per inch. Because 216/72 is 3, DrawImage will scale the image

so that it has a width of 3 inches at a resolution of 96 dots per inch. That is, DrawImage will display an image that has a width

of 96x3 = 288 pixels.

Even if your screen resolution is different from 96 dots per inch, GDI+ will probably scale the image as if the screen

resolution were 96 dots per inch. That is because a GDI+ Graphics object is associated with a device context, and when GDI+

queries the device context for the screen resolution, the result is usually 96, regardless of the actual screen resolution. You

can avoid automatic scaling by specifying the destination rectangle in the DrawImage method.

Example
The following example draws the same image twice. In the first case, the width and height of the destination rectangle are

not specified, and the image is automatically scaled. In the second case, the width and height (measured in pixels) of the

destination rectangle are specified to be the same as the width and height of the original image. The following illustration

shows the image rendered twice.

.NET Framework (current version)

e.Graphics.DrawImage(image, 50, 30) ' upper‐left corner at (50, 30)

Dim image As New Bitmap("Texture.jpg")

e.Graphics.DrawImage(image, 10, 10)

VB

VB

How to: Improve Performance by Avoiding Automatic Scaling https://msdn.microsoft.com/en-us/library/1bttkazd(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:15

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Replace Texture.jpg with an image name and path that are valid on your system.

See Also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

e.Graphics.DrawImage(image, 120, 10, image.Width, image.Height)

How to: Improve Performance by Avoiding Automatic Scaling https://msdn.microsoft.com/en-us/library/1bttkazd(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:15

How to: Read Image Metadata

Some image files contain metadata that you can read to determine features of the image. For example, a digital photograph

might contain metadata that you can read to determine the make and model of the camera used to capture the image. With

GDI+, you can read existing metadata, and you can also write new metadata to image files.

GDI+ stores an individual piece of metadata in a PropertyItem object. You can read the PropertyItems property of an Image

object to retrieve all the metadata from a file. The PropertyItems property returns an array of PropertyItem objects.

A PropertyItem object has the following four properties: Id, Value, Len, and Type.

Id
A tag that identifies the metadata item. Some values that can be assigned to Id are shown in the following table.

Hexadecimal value Description

0x0320

0x010F

0x0110

0x9003

0x829A

0x5090

0x5091

Image title

Equipment manufacturer

Equipment model

ExifDTOriginal

Exif exposure time

Luminance table

Chrominance table

Value
An array of values. The format of the values is determined by the Type property.

Len
The length (in bytes) of the array of values pointed to by the Value property.

.NET Framework (current version)

How to: Read Image Metadata https://msdn.microsoft.com/en-us/library/xddt0dz7(d=printer,v=vs.110).aspx

1 of 5 05.09.2016 2:16

Type
The data type of the values in the array pointed to by the Value property. The formats indicated by the Type property

values are shown in the following table

Numeric value Description

1 A Byte

2 An array of Byte objects encoded as ASCII

3 A 16-bit integer

4 A 32-bit integer

5 An array of two Byte objects that represent a rational number

6 Not used

7 Undefined

8 Not used

9 SLong

10 SRational

Example

Description

The following code example reads and displays the seven pieces of metadata in the file FakePhoto.jpg. The second

(index 1) property item in the list has Id 0x010F (equipment manufacturer) and Type 2 (ASCII-encoded byte array). The

code example displays the value of that property item.

The code produces output similar to the following:

Property Item 0

id: 0x320

type: 2

length: 16 bytes

How to: Read Image Metadata https://msdn.microsoft.com/en-us/library/xddt0dz7(d=printer,v=vs.110).aspx

2 of 5 05.09.2016 2:16

Property Item 1

id: 0x10f

type: 2

length: 17 bytes

Property Item 2

id: 0x110

type: 2

length: 7 bytes

Property Item 3

id: 0x9003

type: 2

length: 20 bytes

Property Item 4

id: 0x829a

type: 5

length: 8 bytes

Property Item 5

id: 0x5090

type: 3

length: 128 bytes

Property Item 6

id: 0x5091

type: 3

length: 128 bytes

The equipment make is Northwind Camera.

How to: Read Image Metadata https://msdn.microsoft.com/en-us/library/xddt0dz7(d=printer,v=vs.110).aspx

3 of 5 05.09.2016 2:16

Code

'Create an Image object.

Dim image As Bitmap = New Bitmap("c:\FakePhoto.jpg")

'Get the PropertyItems property from image.

Dim propItems As PropertyItem() = image.PropertyItems

'Set up the display.

Dim font As New Font("Arial", 12)

Dim blackBrush As New SolidBrush(Color.Black)

Dim X As Integer = 0

Dim Y As Integer = 0

'For each PropertyItem in the array, display the ID, type, and length.

Dim count As Integer = 0

Dim propItem As PropertyItem

For Each propItem In propItems

 e.Graphics.DrawString(_

"Property Item " & count.ToString(), _

 font, _

 blackBrush, _

 X, Y)

 Y += font.Height

 e.Graphics.DrawString(_

" iD: 0x" & propItem.Id.ToString("x"), _

 font, _

 blackBrush, _

 X, Y)

 Y += font.Height

 e.Graphics.DrawString(_

" type: " & propItem.Type.ToString(), _

 font, _

 blackBrush, _

 X, Y)

 Y += font.Height

 e.Graphics.DrawString(_

" length: " & propItem.Len.ToString() & " bytes", _

 font, _

 blackBrush, _

 X, Y)

 Y += font.Height

count += 1

VB

How to: Read Image Metadata https://msdn.microsoft.com/en-us/library/xddt0dz7(d=printer,v=vs.110).aspx

4 of 5 05.09.2016 2:16

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Handle the form's Paint event and paste this code into the paint event handler. You must replace

FakePhoto.jpg with an image name and path valid on your system and import the System.Drawing.Imaging

namespace.

See Also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

Next propItem

'Convert the value of the second property to a string, and display it.

Dim encoding As New System.Text.ASCIIEncoding()

Dim manufacturer As String = encoding.GetString(propItems(1).Value)

e.Graphics.DrawString(_

"The equipment make is " & manufacturer & ".", _

 font, _

 blackBrush, _

 X, Y)

How to: Read Image Metadata https://msdn.microsoft.com/en-us/library/xddt0dz7(d=printer,v=vs.110).aspx

5 of 5 05.09.2016 2:16

How to: Create a Bitmap at Run Time

This example creates and draws in a Bitmap object and displays it in an existing Windows Forms PictureBox control.

Example

Compiling the Code
This example requires:

A Windows Form that imports the System, System.Drawing and System.Windows.Forms assemblies.

See Also
Bitmap

Images, Bitmaps, and Metafiles

© 2016 Microsoft

.NET Framework (current version)

Private pictureBox1 As New PictureBox()

Public Sub CreateBitmapAtRuntime()

 pictureBox1.Size = New Size(210, 110)

Me.Controls.Add(pictureBox1)

Dim flag As New Bitmap(200, 100)

Dim flagGraphics As Graphics = Graphics.FromImage(flag)

Dim red As Integer = 0

Dim white As Integer = 11

While white <= 100

 flagGraphics.FillRectangle(Brushes.Red, 0, red, 200, 10)

 flagGraphics.FillRectangle(Brushes.White, 0, white, 200, 10)

 red += 20

 white += 20

End While

 pictureBox1.Image = flag

End Sub

VB

How to: Create a Bitmap at Run Time https://msdn.microsoft.com/en-us/library/ms404307(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:16

How to: Extract the Icon Associated with a
File in Windows Forms

Many files have embedded icons that provide a visual representation of the associated file type. For example, Microsoft

Word documents contain an icon that identifies them as Word documents. When displaying files in a list control or table

control, you may want to display the icon representing the file type next to each file name. You can do this easily by using

the ExtractAssociatedIcon method.

Example
The following code example demonstrates how to extract the icon associated with a file and display the file name and its

associated icon in a ListView control.

.NET Framework (current version)

Private listView1 As ListView

Private imageList1 As ImageList

Public Sub ExtractAssociatedIconEx()

' Initialize the ListView, ImageList and Form.

 listView1 = New ListView()

 imageList1 = New ImageList()

 listView1.Location = New Point(37, 12)

 listView1.Size = New Size(161, 242)

 listView1.SmallImageList = imageList1

 listView1.View = View.SmallIcon

Me.ClientSize = New System.Drawing.Size(292, 266)

Me.Controls.Add(Me.listView1)

Me.Text = "Form1"

' Get the c:\ directory.

Dim dir As New System.IO.DirectoryInfo("c:\")

Dim item As ListViewItem

 listView1.BeginUpdate()

Dim file As System.IO.FileInfo

For Each file In dir.GetFiles()

' Set a default icon for the file.

Dim iconForFile As Icon = SystemIcons.WinLogo

 item = New ListViewItem(file.Name, 1)

' Check to see if the image collection contains an image

VB

How to: Extract the Icon Associated with a File in Windows Forms https://msdn.microsoft.com/en-us/library/ms404308(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:17

Compiling the Code
To compile the example:

Paste the preceding code into a Windows Form, and call the ExtractAssociatedIconExample method from the

form's constructor or Load event-handling method.

You will need to make sure that your form imports the System.IO namespace.

See Also
Images, Bitmaps, and Metafiles

ListView Control (Windows Forms)

© 2016 Microsoft

' for this extension, using the extension as a key.

If Not (imageList1.Images.ContainsKey(file.Extension)) Then

' If not, add the image to the image list.

 iconForFile = System.Drawing.Icon.ExtractAssociatedIcon(file.FullName)

 imageList1.Images.Add(file.Extension, iconForFile)

End If

 item.ImageKey = file.Extension

 listView1.Items.Add(item)

Next file

 listView1.EndUpdate()

End Sub

How to: Extract the Icon Associated with a File in Windows Forms https://msdn.microsoft.com/en-us/library/ms404308(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:17

How to: Draw Opaque and Semitransparent
Lines

When you draw a line, you must pass a Pen object to the DrawLine method of the Graphics class. One of the parameters of

the Pen constructor is a Color object. To draw an opaque line, set the alpha component of the color to 255. To draw a

semitransparent line, set the alpha component to any value from 1 through 254.

When you draw a semitransparent line over a background, the color of the line is blended with the colors of the

background. The alpha component specifies how the line and background colors are mixed; alpha values near 0 place more

weight on the background colors, and alpha values near 255 place more weight on the line color.

Example
The following example draws a bitmap and then draws three lines that use the bitmap as a background. The first line uses an

alpha component of 255, so it is opaque. The second and third lines use an alpha component of 128, so they are

semitransparent; you can see the background image through the lines. The statement that sets the CompositingQuality

property causes the blending for the third line to be done in conjunction with gamma correction.

The following illustration shows the output of the following code.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

.NET Framework (current version)

Dim bitmap As New Bitmap("Texture1.jpg")

e.Graphics.DrawImage(bitmap, 10, 5, bitmap.Width, bitmap.Height)

Dim opaquePen As New Pen(Color.FromArgb(255, 0, 0, 255), 15)

Dim semiTransPen As New Pen(Color.FromArgb(128, 0, 0, 255), 15)

e.Graphics.DrawLine(opaquePen, 0, 20, 100, 20)

e.Graphics.DrawLine(semiTransPen, 0, 40, 100, 40)

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected

e.Graphics.DrawLine(semiTransPen, 0, 60, 100, 60)

VB

How to: Draw Opaque and Semitransparent Lines https://msdn.microsoft.com/en-us/library/87ffw8c1(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:17

See Also
Alpha Blending Lines and Fills

How to: Give Your Control a Transparent Background

How to: Draw with Opaque and Semitransparent Brushes

© 2016 Microsoft

How to: Draw Opaque and Semitransparent Lines https://msdn.microsoft.com/en-us/library/87ffw8c1(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:17

How to: Draw with Opaque and
Semitransparent Brushes

When you fill a shape, you must pass a Brush object to one of the fill methods of the Graphics class. The one parameter of

the SolidBrush constructor is a Color object. To fill an opaque shape, set the alpha component of the color to 255. To fill a

semitransparent shape, set the alpha component to any value from 1 through 254.

When you fill a semitransparent shape, the color of the shape is blended with the colors of the background. The alpha

component specifies how the shape and background colors are mixed; alpha values near 0 place more weight on the

background colors, and alpha values near 255 place more weight on the shape color.

Example
The following example draws a bitmap and then fills three ellipses that overlap the bitmap. The first ellipse uses an alpha

component of 255, so it is opaque. The second and third ellipses use an alpha component of 128, so they are

semitransparent; you can see the background image through the ellipses. The call that sets the CompositingQuality property

causes the blending for the third ellipse to be done in conjunction with gamma correction.

The following illustration shows the output of the following code.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

.NET Framework (current version)

Dim bitmap As New Bitmap("Texture1.jpg")

e.Graphics.DrawImage(bitmap, 50, 50, bitmap.Width, bitmap.Height)

Dim opaqueBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))

Dim semiTransBrush As New SolidBrush(Color.FromArgb(128, 0, 0, 255))

e.Graphics.FillEllipse(opaqueBrush, 35, 45, 45, 30)

e.Graphics.FillEllipse(semiTransBrush, 86, 45, 45, 30)

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected

e.Graphics.FillEllipse(semiTransBrush, 40, 90, 86, 30)

VB

How to: Draw with Opaque and Semitransparent Brushes https://msdn.microsoft.com/en-us/library/5s2dwfx1(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:18

See Also
Graphics and Drawing in Windows Forms

Alpha Blending Lines and Fills

How to: Give Your Control a Transparent Background

How to: Draw Opaque and Semitransparent Lines

© 2016 Microsoft

How to: Draw with Opaque and Semitransparent Brushes https://msdn.microsoft.com/en-us/library/5s2dwfx1(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:18

How to: Use Compositing Mode to Control
Alpha Blending

There may be times when you want to create an off-screen bitmap that has the following characteristics:

Colors have alpha values that are less than 255.

Colors are not alpha blended with each other as you create the bitmap.

When you display the finished bitmap, colors in the bitmap are alpha blended with the background colors on the

display device.

To create such a bitmap, construct a blank Bitmap object, and then construct a Graphics object based on that bitmap. Set

the compositing mode of the Graphics object to CompositingMode.SourceCopy.

Example
The following example creates a Graphics object based on a Bitmap object. The code uses the Graphics object along with

two semitransparent brushes (alpha = 160) to paint on the bitmap. The code fills a red ellipse and a green ellipse using the

semitransparent brushes. The green ellipse overlaps the red ellipse, but the green is not blended with the red because the

compositing mode of the Graphics object is set to SourceCopy.

The code draws the bitmap on the screen twice: once on a white background and once on a multicolored background. The

pixels in the bitmap that are part of the two ellipses have an alpha component of 160, so the ellipses are blended with the

background colors on the screen.

The following illustration shows the output of the code example. Note that the ellipses are blended with the background,

but they are not blended with each other.

The code example contains this statement:

If you want the ellipses to be blended with each other as well as with the background, change that statement to the

following:

.NET Framework (current version)

bitmapGraphics.CompositingMode = CompositingMode.SourceCopy

VB

How to: Use Compositing Mode to Control Alpha Blending https://msdn.microsoft.com/en-us/library/ffyxebc0(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:18

The following illustration shows the output of the revised code.

bitmapGraphics.CompositingMode = CompositingMode.SourceOver

' Create a blank bitmap.

Dim myBitmap As New Bitmap(180, 100)

' Create a Graphics object that we can use to draw on the bitmap.

Dim bitmapGraphics As Graphics = Graphics.FromImage(myBitmap)

' Create a red brush and a green brush, each with an alpha value of 160.

Dim redBrush As New SolidBrush(Color.FromArgb(160, 255, 0, 0))

Dim greenBrush As New SolidBrush(Color.FromArgb(160, 0, 255, 0))

' Set the compositing mode so that when we draw overlapping ellipses,

' the colors of the ellipses are not blended.

bitmapGraphics.CompositingMode = CompositingMode.SourceCopy

' Fill an ellipse using a red brush that has an alpha value of 160.

bitmapGraphics.FillEllipse(redBrush, 0, 0, 150, 70)

' Fill a second ellipse using a green brush that has an alpha value of

' 160. The green ellipse overlaps the red ellipse, but the green is not

' blended with the red.

bitmapGraphics.FillEllipse(greenBrush, 30, 30, 150, 70)

'Set the compositing quality of the form's Graphics object.

e.Graphics.CompositingQuality = CompositingQuality.GammaCorrected

' Draw a multicolored background.

Dim colorBrush As New SolidBrush(Color.Aqua)

e.Graphics.FillRectangle(colorBrush, 200, 0, 60, 100)

colorBrush.Color = Color.Yellow

e.Graphics.FillRectangle(colorBrush, 260, 0, 60, 100)

colorBrush.Color = Color.Fuchsia

e.Graphics.FillRectangle(colorBrush, 320, 0, 60, 100)

'Display the bitmap on a white background.

e.Graphics.DrawImage(myBitmap, 0, 0)

' Display the bitmap on a multicolored background.

e.Graphics.DrawImage(myBitmap, 200, 0)

VB

VB

How to: Use Compositing Mode to Control Alpha Blending https://msdn.microsoft.com/en-us/library/ffyxebc0(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:18

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also
FromArgb

Alpha Blending Lines and Fills

© 2016 Microsoft

How to: Use Compositing Mode to Control Alpha Blending https://msdn.microsoft.com/en-us/library/ffyxebc0(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:18

How to: Use a Color Matrix to Set Alpha
Values in Images

The Bitmap class (which inherits from the Image class) and the ImageAttributes class provide functionality for getting and

setting pixel values. You can use the ImageAttributes class to modify the alpha values for an entire image, or you can call the

SetPixel method of the Bitmap class to modify individual pixel values.

Example
The ImageAttributes class has many properties that you can use to modify images during rendering. In the following

example, an ImageAttributes object is used to set all the alpha values to 80 percent of what they were. This is done by

initializing a color matrix and setting the alpha scaling value in the matrix to 0.8. The address of the color matrix is passed to

the SetColorMatrix method of the ImageAttributes object, and the ImageAttributes object is passed to the DrawString

method of the Graphics object.

During rendering, the alpha values in the bitmap are converted to 80 percent of what they were. This results in an image that

is blended with the background. As the following illustration shows, the bitmap image looks transparent; you can see the

solid black line through it.

Where the image is over the white portion of the background, the image has been blended with the color white. Where the

image crosses the black line, the image is blended with the color black.

.NET Framework (current version)

' Create the Bitmap object and load it with the texture image.

Dim bitmap As New Bitmap("Texture.jpg")

' Initialize the color matrix.

' Note the value 0.8 in row 4, column 4.

Dim matrixItems As Single()() = { _

New Single() {1, 0, 0, 0, 0}, _

New Single() {0, 1, 0, 0, 0}, _

New Single() {0, 0, 1, 0, 0}, _

New Single() {0, 0, 0, 0.8F, 0}, _

New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(matrixItems)

' Create an ImageAttributes object and set its color matrix.

Dim imageAtt As New ImageAttributes()

imageAtt.SetColorMatrix(_

VB

How to: Use a Color Matrix to Set Alpha Values in Images https://msdn.microsoft.com/en-us/library/w177ax15(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:19

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also
Graphics and Drawing in Windows Forms

Alpha Blending Lines and Fills

© 2016 Microsoft

 colorMatrix, _

 ColorMatrixFlag.Default, _

 ColorAdjustType.Bitmap)

' First draw a wide black line.

e.Graphics.DrawLine(_

New Pen(Color.Black, 25), _

New Point(10, 35), _

New Point(200, 35))

' Now draw the semitransparent bitmap image.

Dim iWidth As Integer = bitmap.Width

Dim iHeight As Integer = bitmap.Height

' Pass in the destination rectangle (2nd argument) and the x _

' coordinate (3rd argument), x coordinate (4th argument), width _

' (5th argument), and height (6th argument) of the source rectangle.

e.Graphics.DrawImage(_

 bitmap, _

New Rectangle(30, 0, iWidth, iHeight), _

 0.0F, _

 0.0F, _

 iWidth, _

 iHeight, _

 GraphicsUnit.Pixel, _

 imageAtt)

How to: Use a Color Matrix to Set Alpha Values in Images https://msdn.microsoft.com/en-us/library/w177ax15(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:19

How to: Construct Font Families and Fonts

GDI+ groups fonts with the same typeface but different styles into font families. For example, the Arial font family contains

the following fonts:

Arial Regular

Arial Bold

Arial Italic

Arial Bold Italic

GDI+ uses four styles to form families: regular, bold, italic, and bold italic. Adjectives such as narrow and rounded are not

considered styles; rather they are part of the family name. For example, Arial Narrow is a font family with the following

members:

Arial Narrow Regular

Arial Narrow Bold

Arial Narrow Italic

Arial Narrow Bold Italic

Before you can draw text with GDI+, you need to construct a FontFamily object and a Font object. The FontFamily object

specifies the typeface (for example, Arial), and the Font object specifies the size, style, and units.

Example
The following example constructs a regular style Arial font with a size of 16 pixels. In the following code, the first argument

passed to the Font constructor is the FontFamily object. The second argument specifies the size of the font measured in units

identified by the fourth argument. The third argument identifies the style.

Pixel is a member of the GraphicsUnit enumeration, and Regular is a member of the FontStyle enumeration.

.NET Framework (current version)

Dim fontFamily As New FontFamily("Arial")

Dim font As New Font(_

 fontFamily, _

 16, _

 FontStyle.Regular, _

 GraphicsUnit.Pixel)

VB

How to: Construct Font Families and Fonts https://msdn.microsoft.com/en-us/library/4kxs7tfz(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:19

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also
Using Fonts and Text

Graphics and Drawing in Windows Forms

© 2016 Microsoft

How to: Construct Font Families and Fonts https://msdn.microsoft.com/en-us/library/4kxs7tfz(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:19

How to: Draw Text at a Specified Location

When you perform custom drawing, you can draw text in a single horizontal line starting at a specified point. You can draw

text in this manner by using the DrawString overloaded method of the Graphics class that takes a Point or PointF parameter.

The DrawString method also requires a Brush and Font

You can also use the DrawText overloaded method of the TextRenderer that takes a Point. DrawText also requires a Color

and a Font.

The following illustration shows the output of text drawn at a specified point when you use the DrawString overloaded

method.

To draw a line of text with GDI+

Use the DrawString method, passing the text you want, Point or PointF, Font, and Brush.1.

To draw a line of text with GDI

Use the DrawText method, passing the text you want, Point, Font, and Color.1.

.NET Framework (current version)

Dim font1 As New Font("Times New Roman", 24, FontStyle.Bold, GraphicsUnit.Pixel)

Try

Dim pointF1 As New PointF(30, 10)

 e.Graphics.DrawString("Hello", font1, Brushes.Blue, pointF1)

Finally

 font1.Dispose()

End Try

Dim font As New Font("Times New Roman", 24, FontStyle.Bold, GraphicsUnit.Pixel)

Try

Dim point1 As New Point(30, 10)

 TextRenderer.DrawText(e.Graphics, "Hello", font, point1, Color.Blue)

Finally

 font.Dispose()

End Try

VB

VB

How to: Draw Text at a Specified Location https://msdn.microsoft.com/en-us/library/b87ey14t(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:20

Compiling the Code
The previous examples require:

PaintEventArgs e, which is a parameter of PaintEventHandler.

See Also
How to: Draw Text with GDI

Using Fonts and Text

How to: Construct Font Families and Fonts

How to: Draw Wrapped Text in a Rectangle

© 2016 Microsoft

How to: Draw Text at a Specified Location https://msdn.microsoft.com/en-us/library/b87ey14t(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:20

How to: Draw Wrapped Text in a Rectangle

You can draw wrapped text in a rectangle by using the DrawString overloaded method of the Graphics class that takes a

Rectangle or RectangleF parameter. You will also use a Brush and a Font.

You can also draw wrapped text in a rectangle by using the DrawText overloaded method of the TextRenderer that takes a

Rectangle and a TextFormatFlags parameter. You will also use a Color and a Font.

The following illustration shows the output of text drawn in the rectangle when you use the DrawString method.

To draw wrapped text in a rectangle with GDI+

Use the DrawString overloaded method, passing the text you want, Rectangle or RectangleF, Font and Brush.1.

To draw wrapped text in a rectangle with GDI

Use the TextFormatFlags enumeration value to specify the text should be wrapped with the DrawText overloaded

method, passing the text you want, Rectangle, Font and Color.

1.

.NET Framework (current version)

Dim text1 As String = "Draw text in a rectangle by passing a RectF to the DrawString

method."

Dim font1 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)

Try

Dim rectF1 As New RectangleF(30, 10, 100, 122)

 e.Graphics.DrawString(text1, font1, Brushes.Blue, rectF1)

 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(rectF1))

Finally

 font1.Dispose()

End Try

Dim text2 As String = _

VB

VB

How to: Draw Wrapped Text in a Rectangle https://msdn.microsoft.com/en-us/library/baw6k39s(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:20

Compiling the Code
The previous examples require:

PaintEventArgs e, which is a parameter of PaintEventHandler.

See Also
How to: Draw Text with GDI

Using Fonts and Text

How to: Construct Font Families and Fonts

How to: Draw Text at a Specified Location

© 2016 Microsoft

"Draw text in a rectangle by passing a RectF to the DrawString method."

Dim font2 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)

Try

Dim rect2 As New Rectangle(30, 10, 100, 122)

' Specify the text is wrapped.

Dim flags As TextFormatFlags = TextFormatFlags.WordBreak

 TextRenderer.DrawText(e.Graphics, text2, font2, rect2, Color.Blue, flags)

 e.Graphics.DrawRectangle(Pens.Black, Rectangle.Round(rect2))

Finally

 font2.Dispose()

End Try

How to: Draw Wrapped Text in a Rectangle https://msdn.microsoft.com/en-us/library/baw6k39s(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:20

How to: Draw Text with GDI

With the DrawText method in the TextRenderer class, you can access GDI functionality for drawing text on a form or control.

GDI text rendering typically offers better performance and more accurate text measuring than GDI+.

Note

The DrawText methods of the TextRenderer class are not supported for printing. When printing, always use the

DrawString methods of the Graphics class.

Example
The following code example demonstrates how to draw text on multiple lines within a rectangle using the DrawText method.

To render text with the TextRenderer class, you need an IDeviceContext, such as a Graphics and a Font, a location to draw the

text, and the color in which it should be drawn. Optionally, you can specify the text formatting by using the TextFormatFlags

enumeration.

For more information about obtaining a Graphics, see How to: Create Graphics Objects for Drawing. For more information

about constructing a Font, see How to: Construct Font Families and Fonts.

Compiling the Code
The preceding code example is designed for use with Windows Forms, and it requires the PaintEventArgs e, which is a

parameter of PaintEventHandler.

See Also
TextRenderer

Font

.NET Framework (current version)

Private Sub RenderText6(ByVal e As PaintEventArgs)

Dim flags As TextFormatFlags = TextFormatFlags.Bottom Or _

 TextFormatFlags.EndEllipsis

 TextRenderer.DrawText(e.Graphics, _

"This is some text that will be clipped at the end.", _

Me.Font, New Rectangle(10, 10, 100, 50), SystemColors.ControlText, flags)

End Sub

VB

How to: Draw Text with GDI https://msdn.microsoft.com/en-us/library/ms171753(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:20

Color

Color

Using Fonts and Text

© 2016 Microsoft

How to: Draw Text with GDI https://msdn.microsoft.com/en-us/library/ms171753(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:20

How to: Align Drawn Text

When you perform custom drawing, you may often want to center drawn text on a form or control. You can easily align text

drawn with the DrawString or DrawText methods by creating the correct formatting object and setting the appropriate

format flags.

To draw centered text with GDI+ (DrawString)

Use a StringFormat with the appropriate DrawString method to specify centered text.1.

To draw centered text with GDI (DrawText)

Use the TextFormatFlags enumeration for wrapping as well as vertically and horizontally centering text with the

appropriate DrawText method.

1.

.NET Framework (current version)

Dim text1 As String = "Use StringFormat and Rectangle objects to" & _

" center text in a rectangle."

Dim font1 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)

Try

Dim rect1 As New Rectangle(10, 10, 130, 140)

' Create a StringFormat object with the each line of text, and the block

' of text centered on the page.

Dim stringFormat As New StringFormat()

 stringFormat.Alignment = StringAlignment.Center

 stringFormat.LineAlignment = StringAlignment.Center

' Draw the text and the surrounding rectangle.

 e.Graphics.DrawString(text1, font1, Brushes.Blue, rect1, stringFormat)

 e.Graphics.DrawRectangle(Pens.Black, rect1)

Finally

 font1.Dispose()

End Try

Dim text2 As String = "Use TextFormatFlags and Rectangle objects to" & _

" center text in a rectangle."

Dim font2 As New Font("Arial", 12, FontStyle.Bold, GraphicsUnit.Point)

Try

Dim rect2 As New Rectangle(150, 10, 130, 140)

VB

VB

How to: Align Drawn Text https://msdn.microsoft.com/en-us/library/332kzs7c(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:21

Compiling the Code
The preceding code examples are designed for use with Windows Forms, and they require PaintEventArgs e, which is a

parameter of PaintEventHandler.

See Also
How to: Draw Text with GDI

Using Fonts and Text

How to: Construct Font Families and Fonts

© 2016 Microsoft

' Create a TextFormatFlags with word wrapping, horizontal center and

' vertical center specified.

Dim flags As TextFormatFlags = TextFormatFlags.HorizontalCenter Or _

 TextFormatFlags.VerticalCenter Or TextFormatFlags.WordBreak

' Draw the text and the surrounding rectangle.

 TextRenderer.DrawText(e.Graphics, text2, font2, rect2, Color.Blue, flags)

 e.Graphics.DrawRectangle(Pens.Black, rect2)

Finally

 font2.Dispose()

End Try

How to: Align Drawn Text https://msdn.microsoft.com/en-us/library/332kzs7c(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:21

How to: Create Vertical Text

You can use a StringFormat object to specify that text be drawn vertically rather than horizontally.

Example
The following example assigns the value DirectionVertical to the FormatFlags property of a StringFormat object. That

StringFormat object is passed to the DrawString method of the Graphics class. The value DirectionVertical is a member of

the StringFormatFlags enumeration.

The following illustration shows the vertical text.

Compiling the Code

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e , which is a

.NET Framework (current version)

Dim myText As String = "Vertical text"

Dim fontFamily As New FontFamily("Lucida Console")

Dim font As New Font(_

 fontFamily, _

 14, _

 FontStyle.Regular, _

 GraphicsUnit.Point)

Dim pointF As New PointF(40, 10)

Dim stringFormat As New StringFormat()

Dim solidBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))

stringFormat.FormatFlags = StringFormatFlags.DirectionVertical

e.Graphics.DrawString(myText, font, solidBrush, pointF, stringFormat)

VB

How to: Create Vertical Text https://msdn.microsoft.com/en-us/library/da9f790s(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:21

parameter of PaintEventHandler.

See Also
How to: Draw Text with GDI

© 2016 Microsoft

How to: Create Vertical Text https://msdn.microsoft.com/en-us/library/da9f790s(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:21

How to: Set Tab Stops in Drawn Text

You can set tab stops for text by calling the SetTabStops method of a StringFormat object and then passing that

StringFormat object to the DrawString method of the Graphics class.

Note

The System.Windows.Forms.TextRenderer does not support adding tab stops to drawn text, although you can expand

existing tab stops using the TextFormatFlags.ExpandTabs flag.

Example
The following example sets tab stops at 150, 250, and 350. Then, the code displays a tabbed list of names and test scores.

The following illustration shows the tabbed text.

The following code passes two arguments to the SetTabStops method. The second argument is an array that contains tab

offsets. The first argument passed to SetTabStops is 0, which indicates that the first offset in the array is measured from

position 0, the left edge of the bounding rectangle.

.NET Framework (current version)

Dim myText As String = _

"Name" & ControlChars.Tab & _

"Test 1" & ControlChars.Tab & _

"Test 2" & ControlChars.Tab & _

"Test 3" & ControlChars.Cr

myText = myText & "Joe" & ControlChars.Tab & _

"95" & ControlChars.Tab & _

"88" & ControlChars.Tab & _

"91" & ControlChars.Cr

myText = myText & "Mary" & ControlChars.Tab & _

"98" & ControlChars.Tab & _

"84" & ControlChars.Tab & _

"90" & ControlChars.Cr

myText = myText & "Sam" & ControlChars.Tab & _

"42" & ControlChars.Tab & _

"76" & ControlChars.Tab & _

VB

How to: Set Tab Stops in Drawn Text https://msdn.microsoft.com/en-us/library/2c6tzes6(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:22

Compiling the Code

The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a

parameter of PaintEventHandler.

See Also
Using Fonts and Text

How to: Draw Text with GDI

© 2016 Microsoft

"98" & ControlChars.Cr

myText = myText & "Jane" & ControlChars.Tab & _

"65" & ControlChars.Tab & _

"73" & ControlChars.Tab & _

"92" & ControlChars.Cr

Dim fontFamily As New FontFamily("Courier New")

Dim font As New Font(_

 fontFamily, _

 12, _

 FontStyle.Regular, _

 GraphicsUnit.Point)

Dim rect As New Rectangle(10, 10, 450, 100)

Dim stringFormat As New StringFormat()

Dim solidBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))

Dim tabs As Single() = {150, 100, 100, 100}

stringFormat.SetTabStops(0, tabs)

e.Graphics.DrawString(myText, font, solidBrush, RectangleF.op_implicit(rect),

stringFormat)

Dim pen As Pen = Pens.Black

e.Graphics.DrawRectangle(pen, rect)

How to: Set Tab Stops in Drawn Text https://msdn.microsoft.com/en-us/library/2c6tzes6(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:22

How to: Enumerate Installed Fonts

The InstalledFontCollection class inherits from the FontCollection abstract base class. You can use an InstalledFontCollection

object to enumerate the fonts installed on the computer. The Families property of an InstalledFontCollection object is an

array of FontFamily objects.

Example
The following example lists the names of all the font families installed on the computer. The code retrieves the Name

property of each FontFamily object in the array returned by the Families property. As the family names are retrieved, they

are concatenated to form a comma-separated list. Then the DrawString method of the Graphics class draws the comma-

separated list in a rectangle.

If you run the example code, the output will be similar to that shown in the following illustration.

.NET Framework (current version)

Dim fontFamily As New FontFamily("Arial")

Dim font As New Font(_

 fontFamily, _

 8, _

 FontStyle.Regular, _

 GraphicsUnit.Point)

Dim rectF As New RectangleF(10, 10, 500, 500)

Dim solidBrush As New SolidBrush(Color.Black)

Dim familyName As String

Dim familyList As String = ""

Dim fontFamilies() As FontFamily

VB

How to: Enumerate Installed Fonts https://msdn.microsoft.com/en-us/library/0yf5t4e8(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:22

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler. In addition, you should import the System.Drawing.Text namespace.

See Also
Using Fonts and Text

© 2016 Microsoft

Dim installedFontCollection As New InstalledFontCollection()

' Get the array of FontFamily objects.

fontFamilies = installedFontCollection.Families

' The loop below creates a large string that is a comma‐separated

' list of all font family names.

Dim count As Integer = fontFamilies.Length

Dim j As Integer

While j < count

 familyName = fontFamilies(j).Name

 familyList = familyList & familyName

 familyList = familyList & ", "

 j += 1

End While

' Draw the large string (list of all families) in a rectangle.

e.Graphics.DrawString(familyList, font, solidBrush, rectF)

How to: Enumerate Installed Fonts https://msdn.microsoft.com/en-us/library/0yf5t4e8(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:22

How to: Create a Private Font Collection

The PrivateFontCollection class inherits from the FontCollection abstract base class. You can use a PrivateFontCollection

object to maintain a set of fonts specifically for your application. A private font collection can include installed system fonts

as well as fonts that have not been installed on the computer. To add a font file to a private font collection, call the

AddFontFile method of a PrivateFontCollection object.

The Families property of a PrivateFontCollection object contains an array of FontFamily objects.

The number of font families in a private font collection is not necessarily the same as the number of font files that have been

added to the collection. For example, suppose you add the files ArialBd.tff, Times.tff, and TimesBd.tff to a collection. There

will be three files but only two families in the collection because Times.tff and TimesBd.tff belong to the same family.

Example
The following example adds the following three font files to a PrivateFontCollection object:

C:\systemroot\Fonts\Arial.tff (Arial, regular)

C:\systemroot\Fonts\CourBI.tff (Courier New, bold italic)

C:\systemroot\Fonts\TimesBd.tff (Times New Roman, bold)

The code retrieves an array of FontFamily objects from the Families property of the PrivateFontCollection object.

For each FontFamily object in the collection, the code calls the IsStyleAvailable method to determine whether various styles

(regular, bold, italic, bold italic, underline, and strikeout) are available. The arguments passed to the IsStyleAvailable method

are members of the FontStyle enumeration.

If a given family/style combination is available, a Font object is constructed using that family and style. The first argument

passed to the Font constructor is the font family name (not a FontFamily object as is the case for other variations of the Font

constructor). After the Font object is constructed, it is passed to the DrawString method of the Graphics class to display the

family name along with the name of the style.

The output of the following code is similar to the output shown in the following illustration.

.NET Framework (current version)

How to: Create a Private Font Collection https://msdn.microsoft.com/en-us/library/y505zzfw(d=printer,v=vs.110).aspx

1 of 5 05.09.2016 2:22

Arial.tff (which was added to the private font collection in the following code example) is the font file for the Arial regular

style. Note, however, that the program output shows several available styles other than regular for the Arial font family. That

is because GDI+ can simulate the bold, italic, and bold italic styles from the regular style. GDI+ can also produce underlines

and strikeouts from the regular style.

Similarly, GDI+ can simulate the bold italic style from either the bold style or the italic style. The program output shows that

the bold italic style is available for the Times family even though TimesBd.tff (Times New Roman, bold) is the only Times file

in the collection.

Dim pointF As New PointF(10, 0)

Dim solidBrush As New SolidBrush(Color.Black)

Dim count As Integer = 0

Dim familyName As String = ""

Dim familyNameAndStyle As String

Dim fontFamilies() As FontFamily

Dim privateFontCollection As New PrivateFontCollection()

' Add three font files to the private collection.

privateFontCollection.AddFontFile("D:\systemroot\Fonts\Arial.ttf")

privateFontCollection.AddFontFile("D:\systemroot\Fonts\CourBI.ttf")

privateFontCollection.AddFontFile("D:\systemroot\Fonts\TimesBD.ttf")

' Get the array of FontFamily objects.

fontFamilies = privateFontCollection.Families

' How many objects in the fontFamilies array?

count = fontFamilies.Length

' Display the name of each font family in the private collection

' along with the available styles for that font family.

Dim j As Integer

While j < count

' Get the font family name.

 familyName = fontFamilies(j).Name

' Is the regular style available?

VB

How to: Create a Private Font Collection https://msdn.microsoft.com/en-us/library/y505zzfw(d=printer,v=vs.110).aspx

2 of 5 05.09.2016 2:22

If fontFamilies(j).IsStyleAvailable(FontStyle.Regular) Then

 familyNameAndStyle = ""

 familyNameAndStyle = familyNameAndStyle & familyName

 familyNameAndStyle = familyNameAndStyle & " Regular"

Dim regFont As New Font(_

 familyName, _

 16, _

 FontStyle.Regular, _

 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

 familyNameAndStyle, _

 regFont, _

 solidBrush, _

 pointF)

 pointF.Y += regFont.Height

End If

' Is the bold style available?

If fontFamilies(j).IsStyleAvailable(FontStyle.Bold) Then

 familyNameAndStyle = ""

 familyNameAndStyle = familyNameAndStyle & familyName

 familyNameAndStyle = familyNameAndStyle & " Bold"

Dim boldFont As New Font(_

 familyName, _

 16, _

 FontStyle.Bold, _

 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

 familyNameAndStyle, _

 boldFont, _

 solidBrush, _

 pointF)

 pointF.Y += boldFont.Height

End If

' Is the italic style available?

If fontFamilies(j).IsStyleAvailable(FontStyle.Italic) Then

 familyNameAndStyle = ""

 familyNameAndStyle = familyNameAndStyle & familyName

 familyNameAndStyle = familyNameAndStyle & " Italic"

Dim italicFont As New Font(_

 familyName, _

 16, _

 FontStyle.Italic, _

 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

How to: Create a Private Font Collection https://msdn.microsoft.com/en-us/library/y505zzfw(d=printer,v=vs.110).aspx

3 of 5 05.09.2016 2:22

 familyNameAndStyle, _

 italicFont, _

 solidBrush, pointF)

 pointF.Y += italicFont.Height

End If

' Is the bold italic style available?

If fontFamilies(j).IsStyleAvailable(FontStyle.Italic) And _

 fontFamilies(j).IsStyleAvailable(FontStyle.Bold) Then

 familyNameAndStyle = ""

 familyNameAndStyle = familyNameAndStyle & familyName

 familyNameAndStyle = familyNameAndStyle & "BoldItalic"

Dim italicFont As New Font(_

 familyName, _

 16, _

 FontStyle.Italic Or FontStyle.Bold, _

 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

 familyNameAndStyle, _

 italicFont, _

 solidBrush, _

 pointF)

 pointF.Y += italicFont.Height

End If

' Is the underline style available?

If fontFamilies(j).IsStyleAvailable(FontStyle.Underline) Then

 familyNameAndStyle = ""

 familyNameAndStyle = familyNameAndStyle & familyName

 familyNameAndStyle = familyNameAndStyle & " Underline"

Dim underlineFont As New Font(_

 familyName, _

 16, _

 FontStyle.Underline, _

 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

 familyNameAndStyle, _

 underlineFont, _

 solidBrush, _

 pointF)

 pointF.Y += underlineFont.Height

End If

' Is the strikeout style available?

If fontFamilies(j).IsStyleAvailable(FontStyle.Strikeout) Then

 familyNameAndStyle = ""

 familyNameAndStyle = familyNameAndStyle & familyName

 familyNameAndStyle = familyNameAndStyle & " Strikeout"

How to: Create a Private Font Collection https://msdn.microsoft.com/en-us/library/y505zzfw(d=printer,v=vs.110).aspx

4 of 5 05.09.2016 2:22

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also
PrivateFontCollection

Using Fonts and Text

© 2016 Microsoft

Dim strikeFont As New Font(_

 familyName, _

 16, _

 FontStyle.Strikeout, _

 GraphicsUnit.Pixel)

 e.Graphics.DrawString(_

 familyNameAndStyle, _

 strikeFont, _

 solidBrush, _

 pointF)

 pointF.Y += strikeFont.Height

End If

' Separate the families with white space.

 pointF.Y += 10

End While

How to: Create a Private Font Collection https://msdn.microsoft.com/en-us/library/y505zzfw(d=printer,v=vs.110).aspx

5 of 5 05.09.2016 2:22

How to: Obtain Font Metrics

The FontFamily class provides the following methods that retrieve various metrics for a particular family/style combination:

GetEmHeight(FontStyle)

GetCellAscent(FontStyle)

GetCellDescent(FontStyle)

GetLineSpacing(FontStyle)

The numbers returned by these methods are in font design units, so they are independent of the size and units of a particular

Font object.

The following illustration shows the various metrics.

Example
The following example displays the metrics for the regular style of the Arial font family. The code also creates a Font object

(based on the Arial family) with size 16 pixels and displays the metrics (in pixels) for that particular Font object.

The following illustration shows the output of the example code.

.NET Framework (current version)

How to: Obtain Font Metrics https://msdn.microsoft.com/en-us/library/xwf9s90b(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 2:23

Note the first two lines of output in the preceding illustration. The Font object returns a size of 16, and the FontFamily object

returns an em height of 2,048. These two numbers (16 and 2,048) are the key to converting between font design units and

the units (in this case pixels) of the Font object.

For example, you can convert the ascent from design units to pixels as follows:

The following code positions text vertically by setting the Y data member of a PointF object. The y-coordinate is increased

by font.Height for each new line of text. The Height property of a Font object returns the line spacing (in pixels) for that

particular Font object. In this example, the number returned by Height is 19. Note that this is the same as the number

(rounded up to an integer) obtained by converting the line-spacing metric to pixels.

Note that the em height (also called size or em size) is not the sum of the ascent and the descent. The sum of the ascent and

the descent is called the cell height. The cell height minus the internal leading is equal to the em height. The cell height plus

the external leading is equal to the line spacing.

Dim infoString As String = "" ' enough space for one line of output

Dim ascent As Integer ' font family ascent in design units

Dim ascentPixel As Single ' ascent converted to pixels

Dim descent As Integer ' font family descent in design units

Dim descentPixel As Single ' descent converted to pixels

Dim lineSpacing As Integer ' font family line spacing in design units

Dim lineSpacingPixel As Single ' line spacing converted to pixels

Dim fontFamily As New FontFamily("Arial")

Dim font As New Font(_

 fontFamily, _

 16, _

 FontStyle.Regular, _

 GraphicsUnit.Pixel)

Dim pointF As New PointF(10, 10)

Dim solidBrush As New SolidBrush(Color.Black)

' Display the font size in pixels.

infoString = "font.Size returns " & font.Size.ToString() & "."

e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down one line.

pointF.Y += font.Height

' Display the font family em height in design units.

infoString = "fontFamily.GetEmHeight() returns " & _

VB

How to: Obtain Font Metrics https://msdn.microsoft.com/en-us/library/xwf9s90b(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 2:23

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also
Graphics and Drawing in Windows Forms

 fontFamily.GetEmHeight(FontStyle.Regular) & "."

e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down two lines.

pointF.Y += 2 * font.Height

' Display the ascent in design units and pixels.

ascent = fontFamily.GetCellAscent(FontStyle.Regular)

' 14.484375 = 16.0 * 1854 / 2048

ascentPixel = _

 font.Size * ascent / fontFamily.GetEmHeight(FontStyle.Regular)

infoString = "The ascent is " & ascent & " design units, " & ascentPixel _

 & " pixels."

e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down one line.

pointF.Y += font.Height

' Display the descent in design units and pixels.

descent = fontFamily.GetCellDescent(FontStyle.Regular)

' 3.390625 = 16.0 * 434 / 2048

descentPixel = _

 font.Size * descent / fontFamily.GetEmHeight(FontStyle.Regular)

infoString = "The descent is " & descent & " design units, " & _

 descentPixel & " pixels."

e.Graphics.DrawString(infoString, font, solidBrush, pointF)

' Move down one line.

pointF.Y += font.Height

' Display the line spacing in design units and pixels.

lineSpacing = fontFamily.GetLineSpacing(FontStyle.Regular)

' 18.398438 = 16.0 * 2355 / 2048

lineSpacingPixel = _

 font.Size * lineSpacing / fontFamily.GetEmHeight(FontStyle.Regular)

infoString = "The line spacing is " & lineSpacing & " design units, " & _

 lineSpacingPixel & " pixels."

e.Graphics.DrawString(infoString, font, solidBrush, pointF)

How to: Obtain Font Metrics https://msdn.microsoft.com/en-us/library/xwf9s90b(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 2:23

Using Fonts and Text

© 2016 Microsoft

How to: Obtain Font Metrics https://msdn.microsoft.com/en-us/library/xwf9s90b(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 2:23

How to: Use Antialiasing with Text

Antialiasing refers to the smoothing of jagged edges of drawn graphics and text to improve their appearance or readability.

With the managed GDI+ classes, you can render high quality antialiased text, as well as lower quality text. Typically, higher

quality rendering takes more processing time than lower quality rendering. To set the text quality level, set the

TextRenderingHint property of a Graphics to one of the elements of the TextRenderingHint enumeration

Example
The following code example draws text with two different quality settings.

The following illustration shows the output of the cod example code.

Compiling the Code
The preceding code example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter

of PaintEventHandler.

See Also

.NET Framework (current version)

Dim fontFamily As New FontFamily("Times New Roman")

Dim font As New Font(_

 fontFamily, _

 32, _

 FontStyle.Regular, _

 GraphicsUnit.Pixel)

Dim solidBrush As New SolidBrush(Color.FromArgb(255, 0, 0, 255))

Dim string1 As String = "SingleBitPerPixel"

Dim string2 As String = "AntiAlias"

e.Graphics.TextRenderingHint = TextRenderingHint.SingleBitPerPixel

e.Graphics.DrawString(string1, font, solidBrush, New PointF(10, 10))

e.Graphics.TextRenderingHint = TextRenderingHint.AntiAlias

e.Graphics.DrawString(string2, font, solidBrush, New PointF(10, 60))

VB

How to: Use Antialiasing with Text https://msdn.microsoft.com/en-us/library/a619zh6z(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:23

Using Fonts and Text

© 2016 Microsoft

How to: Use Antialiasing with Text https://msdn.microsoft.com/en-us/library/a619zh6z(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:23

How to: Draw Cardinal Splines

A cardinal spline is a curve that passes smoothly through a given set of points. To draw a cardinal spline, create a Graphics

object and pass the address of an array of points to the DrawCurve method.

Drawing a Bell-Shaped Cardinal Spline

The following example draws a bell-shaped cardinal spline that passes through five designated points. The following

illustration shows the curve and five points.

Drawing a Closed Cardinal Spline

Use the DrawClosedCurve method of the Graphics class to draw a closed cardinal spline. In a closed cardinal spline,

the curve continues through the last point in the array and connects with the first point in the array. The following

example draws a closed cardinal spline that passes through six designated points. The following illustration shows the

closed spline along with the six points.

.NET Framework (current version)

Dim points As Point() = { _

New Point(0, 100), _

New Point(50, 80), _

New Point(100, 20), _

New Point(150, 80), _

New Point(200, 100)}

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))

e.Graphics.DrawCurve(pen, points)

VB

How to: Draw Cardinal Splines https://msdn.microsoft.com/en-us/library/554h284b(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:24

Changing the Bend of a Cardinal Spline

Change the way a cardinal spline bends by passing a tension argument to the DrawCurve method. The following

example draws three cardinal splines that pass through the same set of points. The following illustration shows the

three splines along with their tension values. Note that when the tension is 0, the points are connected by straight

lines.

Compiling the Code
The preceding examples are designed for use with Windows Forms, and they require PaintEventArgs e, which is a parameter

of the Paint event handler.

See Also

Dim points As Point() = { _

New Point(60, 60), _

New Point(150, 80), _

New Point(200, 40), _

New Point(180, 120), _

New Point(120, 100), _

New Point(80, 160)}

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))

e.Graphics.DrawClosedCurve(pen, points)

Dim points As Point() = { _

New Point(20, 50), _

New Point(100, 10), _

New Point(200, 100), _

New Point(300, 50), _

New Point(400, 80)}

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))

e.Graphics.DrawCurve(pen, points, 0.0F)

e.Graphics.DrawCurve(pen, points, 0.6F)

e.Graphics.DrawCurve(pen, points, 1.0F)

VB

VB

How to: Draw Cardinal Splines https://msdn.microsoft.com/en-us/library/554h284b(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:24

Lines, Curves, and Shapes

Constructing and Drawing Curves

© 2016 Microsoft

How to: Draw Cardinal Splines https://msdn.microsoft.com/en-us/library/554h284b(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:24

How to: Draw a Single Bézier Spline

A Bézier spline is defined by four points: a start point, two control points, and an endpoint.

Example
The following example draws a Bézier spline with start point (10, 100) and endpoint (200, 100). The control points are (100,

10) and (150, 150).

The following illustration shows the resulting Bézier spline along with its start point, control points, and endpoint. The

illustration also shows the spline's convex hull, which is a polygon formed by connecting the four points with straight lines.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
DrawBezier

Bézier Splines in GDI+

How to: Draw a Sequence of Bézier Splines

.NET Framework (current version)

Dim p1 As New Point(10, 100) ' Start point

Dim c1 As New Point(100, 10) ' First control point

Dim c2 As New Point(150, 150) ' Second control point

Dim p2 As New Point(200, 100) ' Endpoint

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 255))

e.Graphics.DrawBezier(pen, p1, c1, c2, p2)

VB

How to: Draw a Single Bézier Spline https://msdn.microsoft.com/en-us/library/88ehxdxb(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:24

© 2016 Microsoft

How to: Draw a Single Bézier Spline https://msdn.microsoft.com/en-us/library/88ehxdxb(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:24

How to: Draw a Sequence of Bézier Splines

You can use the DrawBeziers method of the Graphics class to draw a sequence of connected Bézier splines.

Example
The following example draws a curve that consists of two connected Bézier splines. The endpoint of the first Bézier spline is

the start point of the second Bézier spline.

The following illustration shows the connected splines along with the seven points.

.NET Framework (current version)

' Point(10, 100) = start point of first spline

' Point(75, 10) = first control point of first spline

' Point(80, 50) = second control point of first spline

' Point(100, 150) = endpoint of first spline and start point of second spline

' Point(125, 80) = first control point of second spline

' Point(175, 200) = second control point of second spline

' Point(200, 80)} = endpoint of second spline

Dim p As Point() = { _

New Point(10, 100), _

New Point(75, 10), _

New Point(80, 50), _

New Point(100, 150), _

New Point(125, 80), _

New Point(175, 200), _

New Point(200, 80)}

Dim pen As New Pen(Color.Blue)

e.Graphics.DrawBeziers(pen, p)

VB

How to: Draw a Sequence of Bézier Splines https://msdn.microsoft.com/en-us/library/8kc0eez9(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:25

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Graphics and Drawing in Windows Forms

Bézier Splines in GDI+

Constructing and Drawing Curves

© 2016 Microsoft

How to: Draw a Sequence of Bézier Splines https://msdn.microsoft.com/en-us/library/8kc0eez9(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:25

How to: Create Figures from Lines, Curves,
and Shapes

To create a figure, construct a GraphicsPath, and then call methods, such as AddLine and AddCurve, to add primitives to the

path.

Example
The following code examples create paths that have figures:

The first example creates a path that has a single figure. The figure consists of a single arc. The arc has a sweep angle

of –180 degrees, which is counterclockwise in the default coordinate system.

The second example creates a path that has two figures. The first figure is an arc followed by a line. The second figure

is a line followed by a curve followed by a line. The first figure is left open, and the second figure is closed.

.NET Framework (current version)

Dim path As New GraphicsPath()

path.AddArc(175, 50, 50, 50, 0, ‐180)

e.Graphics.DrawPath(New Pen(Color.FromArgb(128, 255, 0, 0), 4), path)

' Create an array of points for the curve in the second figure.

Dim points As Point() = { _

New Point(40, 60), _

New Point(50, 70), _

New Point(30, 90)}

Dim path As New GraphicsPath()

path.StartFigure() ' Start the first figure.

path.AddArc(175, 50, 50, 50, 0, ‐180)

path.AddLine(100, 0, 250, 20)

' First figure is not closed.

path.StartFigure() ' Start the second figure.

path.AddLine(50, 20, 5, 90)

path.AddCurve(points, 3)

path.AddLine(50, 150, 150, 180)

path.CloseFigure() ' Second figure is closed.

e.Graphics.DrawPath(New Pen(Color.FromArgb(255, 255, 0, 0), 2), path)

VB

VB

How to: Create Figures from Lines, Curves, and Shapes https://msdn.microsoft.com/en-us/library/b5hek5ky(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:25

Compiling the Code
The previous examples are designed for use with Windows Forms, and they require PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
GraphicsPath

Constructing and Drawing Paths

Using a Pen to Draw Lines and Shapes

© 2016 Microsoft

How to: Create Figures from Lines, Curves, and Shapes https://msdn.microsoft.com/en-us/library/b5hek5ky(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:25

How to: Fill Open Figures

You can fill a path by passing a GraphicsPath object to the FillPath method. The FillPath method fills the path according to

the fill mode (alternate or winding) currently set for the path. If the path has any open figures, the path is filled as if those

figures were closed. GDI+ closes a figure by drawing a straight line from its ending point to its starting point.

Example
The following example creates a path that has one open figure (an arc) and one closed figure (an ellipse). The FillPath

method fills the path according to the default fill mode, which is Alternate.

The following illustration shows the output of the example code. Note that the path is filled (according to Alternate) as if the

open figure were closed by a straight line from its ending point to its starting point.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also

.NET Framework (current version)

Dim path As New GraphicsPath()

' Add an open figure.

path.AddArc(0, 0, 150, 120, 30, 120)

' Add an intrinsically closed figure.

path.AddEllipse(50, 50, 50, 100)

Dim pen As New Pen(Color.FromArgb(128, 0, 0, 255), 5)

Dim brush As New SolidBrush(Color.Red)

' The fill mode is FillMode.Alternate by default.

e.Graphics.FillPath(brush, path)

e.Graphics.DrawPath(pen, path)

VB

How to: Fill Open Figures https://msdn.microsoft.com/en-us/library/kekf4cez(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:26

GraphicsPath

Graphics Paths in GDI+

© 2016 Microsoft

How to: Fill Open Figures https://msdn.microsoft.com/en-us/library/kekf4cez(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:26

How to: Flatten a Curved Path into a Line

A GraphicsPath object stores a sequence of lines and Bézier splines. You can add several types of curves (ellipses, arcs,

cardinal splines) to a path, but each curve is converted to a Bézier spline before it is stored in the path. Flattening a path

consists of converting each Bézier spline in the path to a sequence of straight lines. The following illustration shows a path

before and after flattening.

To Flatten a Path

call the Flatten method of a GraphicsPath object. The Flatten method receives a flatness argument that specifies the

maximum distance between the flattened path and the original path.

See Also

System.Drawing.Drawing2D.GraphicsPath

Lines, Curves, and Shapes

Constructing and Drawing Paths

© 2016 Microsoft

.NET Framework (current version)

How to: Flatten a Curved Path into a Line https://msdn.microsoft.com/en-us/library/xk7x2780(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:26

Using the World Transformation

The world transformation is a property of the Graphics class. The numbers that specify the world transformation are stored

in a Matrix object, which represents a 3×3 matrix. The Matrix and Graphics classes have several methods for setting the

numbers in the world transformation matrix.

Different Types of Transformations
In the following example, the code first creates a 50×50 rectangle and locates it at the origin (0, 0). The origin is at the

upper-left corner of the client area.

The following code applies a scaling transformation that expands the rectangle by a factor of 1.75 in the x direction and

shrinks the rectangle by a factor of 0.5 in the y direction:

The result is a rectangle that is longer in the x direction and shorter in the y direction than the original.

To rotate the rectangle instead of scaling it, use the following code:

To translate the rectangle, use the following code:

.NET Framework (current version)

Dim rect As New Rectangle(0, 0, 50, 50)

Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)

e.Graphics.DrawRectangle(pen, rect)

e.Graphics.ScaleTransform(1.75F, 0.5F)

e.Graphics.DrawRectangle(pen, rect)

e.Graphics.ResetTransform()

e.Graphics.RotateTransform(28) ' 28 degrees

e.Graphics.DrawRectangle(pen, rect)

e.Graphics.ResetTransform()

e.Graphics.TranslateTransform(150, 150)

e.Graphics.DrawRectangle(pen, rect)

VB

VB

VB

VB

Using the World Transformation https://msdn.microsoft.com/en-us/library/7f5k7y3f(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:27

See Also
Matrix

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

© 2016 Microsoft

Using the World Transformation https://msdn.microsoft.com/en-us/library/7f5k7y3f(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:27

Managing the State of a Graphics Object

The Graphics class is at the heart of GDI+. To draw anything, you obtain a Graphics object, set its properties, and call its

methods DrawLine, DrawImage, DrawString, and the like).

The following example calls the DrawRectangle method of a Graphics object. The first argument passed to the

DrawRectangle method is a Pen object.

Graphics State
A Graphics object does more than provide drawing methods, such as DrawLine and DrawRectangle. A Graphics object

also maintains graphics state, which can be divided into the following categories:

Quality settings

Transformations

Clipping region

Quality Settings

A Graphics object has several properties that influence the quality of the items that are drawn. For example, you can set

the TextRenderingHint property to specify the type of antialiasing (if any) applied to text. Other properties that

influence quality are SmoothingMode, CompositingMode, CompositingQuality, and InterpolationMode.

The following example draws two ellipses, one with the smoothing mode set to AntiAlias and one with the smoothing

mode set to HighSpeed:

.NET Framework (current version)

Dim graphics As Graphics = e.Graphics

Dim pen As New Pen(Color.Blue) ' Opaque blue

graphics.DrawRectangle(pen, 10, 10, 200, 100)

Dim graphics As Graphics = e.Graphics

Dim pen As New Pen(Color.Blue)

graphics.SmoothingMode = SmoothingMode.AntiAlias

graphics.DrawEllipse(pen, 0, 0, 200, 100)

graphics.SmoothingMode = SmoothingMode.HighSpeed

graphics.DrawEllipse(pen, 0, 150, 200, 100)

VB

VB

Managing the State of a Graphics Object https://msdn.microsoft.com/en-us/library/sf4e5x7z(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:28

Transformations

A Graphics object maintains two transformations (world and page) that are applied to all items drawn by that Graphics

object. Any affine transformation can be stored in the world transformation. Affine transformations include scaling,

rotating, reflecting, skewing, and translating. The page transformation can be used for scaling and for changing units

(for example, pixels to inches). For more information, see Coordinate Systems and Transformations.

The following example sets the world and page transformations of a Graphics object. The world transformation is set to

a 30-degree rotation. The page transformation is set so that the coordinates passed to the second DrawEllipse will be

treated as millimeters instead of pixels. The code makes two identical calls to the DrawEllipse method. The world

transformation is applied to the first DrawEllipse call, and both transformations (world and page) are applied to the

second DrawEllipse call.

The following illustration shows the two ellipses. Note that the 30-degree rotation is about the origin of the coordinate

system (upper-left corner of the client area), not about the centers of the ellipses. Also note that the pen width of 1

means 1 pixel for the first ellipse and 1 millimeter for the second ellipse.

Clipping Region

A Graphics object maintains a clipping region that applies to all items drawn by that Graphics object. You can set the

Dim graphics As Graphics = e.Graphics

Dim pen As New Pen(Color.Red)

graphics.ResetTransform()

graphics.RotateTransform(30) ' world transformation

graphics.DrawEllipse(pen, 0, 0, 100, 50)

graphics.PageUnit = GraphicsUnit.Millimeter ' page transformation

graphics.DrawEllipse(pen, 0, 0, 100, 50)

VB

Managing the State of a Graphics Object https://msdn.microsoft.com/en-us/library/sf4e5x7z(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:28

clipping region by calling the SetClip method.

The following example creates a plus-shaped region by forming the union of two rectangles. That region is designated

as the clipping region of a Graphics object. Then the code draws two lines that are restricted to the interior of the

clipping region.

The following illustration shows the clipped lines.

See Also
Graphics and Drawing in Windows Forms

Using Nested Graphics Containers

© 2016 Microsoft

Dim graphics As Graphics = e.Graphics

' Opaque red, width 5

Dim pen As New Pen(Color.Red, 5)

' Opaque aqua

Dim brush As New SolidBrush(Color.FromArgb(255, 180, 255, 255))

' Create a plus‐shaped region by forming the union of two rectangles.

Dim [region] As New [Region](New Rectangle(50, 0, 50, 150))

[region].Union(New Rectangle(0, 50, 150, 50))

graphics.FillRegion(brush, [region])

' Set the clipping region.

graphics.SetClip([region], CombineMode.Replace)

' Draw two clipped lines.

graphics.DrawLine(pen, 0, 30, 150, 160)

graphics.DrawLine(pen, 40, 20, 190, 150)

VB

Managing the State of a Graphics Object https://msdn.microsoft.com/en-us/library/sf4e5x7z(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:28

Why Transformation Order Is Significant

A single Matrix object can store a single transformation or a sequence of transformations. The latter is called a composite

transformation. The matrix of a composite transformation is obtained by multiplying the matrices of individual

transformations.

Composite Transform Examples
In a composite transformation, the order of individual transformations is important. For example, if you first rotate, then

scale, then translate, you get a different result than if you first translate, then rotate, then scale. In GDI+, composite

transformations are built from left to right. If S, R, and T are scale, rotation, and translation matrices respectively, then the

product SRT (in that order) is the matrix of the composite transformation that first scales, then rotates, then translates. The

matrix produced by the product SRT is different from the matrix produced by the product TRS.

One reason order is significant is that transformations like rotation and scaling are done with respect to the origin of the

coordinate system. Scaling an object that is centered at the origin produces a different result than scaling an object that

has been moved away from the origin. Similarly, rotating an object that is centered at the origin produces a different

result than rotating an object that has been moved away from the origin.

The following example combines scaling, rotation and translation (in that order) to form a composite transformation. The

argument Append passed to the RotateTransform method indicates that the rotation will follow the scaling. Likewise, the

argument Append passed to the TranslateTransform method indicates that the translation will follow the rotation.

Append and Prepend are members of the MatrixOrder enumeration.

The following example makes the same method calls as the preceding example, but the order of the calls is reversed. The

resulting order of operations is first translate, then rotate, then scale, which produces a very different result than first scale,

then rotate, then translate.

.NET Framework (current version)

Dim rect As New Rectangle(0, 0, 50, 50)

Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)

e.Graphics.ResetTransform()

e.Graphics.ScaleTransform(1.75F, 0.5F)

e.Graphics.RotateTransform(28, MatrixOrder.Append)

e.Graphics.TranslateTransform(150, 150, MatrixOrder.Append)

e.Graphics.DrawRectangle(pen, rect)

Dim rect As New Rectangle(0, 0, 50, 50)

Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)

e.Graphics.ResetTransform()

e.Graphics.TranslateTransform(150, 150, MatrixOrder.Append)

e.Graphics.RotateTransform(28, MatrixOrder.Append)

VB

VB

Why Transformation Order Is Significant https://msdn.microsoft.com/en-us/library/eews39w7(d=printer,v=vs.110)...

1 of 2 05.09.2016 2:28

One way to reverse the order of individual transformations in a composite transformation is to reverse the order of a

sequence of method calls. A second way to control the order of operations is to change the matrix order argument. The

following example is the same as the preceding example, except that Append has been changed to Prepend. The matrix

multiplication is done in the order SRT, where S, R, and T are the matrices for scale, rotate, and translate, respectively. The

order of the composite transformation is first scale, then rotate, then translate.

The result of the immediately preceding example is the same as the result of the first example in this topic. This is because

we reversed both the order of the method calls and the order of the matrix multiplication.

See Also
Matrix

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

© 2016 Microsoft

e.Graphics.ScaleTransform(1.75F, 0.5F)

e.Graphics.DrawRectangle(pen, rect)

Dim rect As New Rectangle(0, 0, 50, 50)

Dim pen As New Pen(Color.FromArgb(128, 200, 0, 200), 2)

e.Graphics.ResetTransform()

e.Graphics.TranslateTransform(150, 150, MatrixOrder.Prepend)

e.Graphics.RotateTransform(28, MatrixOrder.Prepend)

e.Graphics.ScaleTransform(1.75F, 0.5F)

e.Graphics.DrawRectangle(pen, rect)

VB

Why Transformation Order Is Significant https://msdn.microsoft.com/en-us/library/eews39w7(d=printer,v=vs.110)...

2 of 2 05.09.2016 2:28

Using Nested Graphics Containers

GDI+ provides containers that you can use to temporarily replace or augment part of the state in a Graphics object. You

create a container by calling the BeginContainer method of a Graphics object. You can call BeginContainer repeatedly to

form nested containers. Each call to BeginContainer must be paired with a call to EndContainer.

Transformations in Nested Containers

.NET Framework (current version)

Using Nested Graphics Containers https://msdn.microsoft.com/en-us/library/a4sf8bx4(d=printer,v=vs.110).aspx

1 of 5 05.09.2016 2:29

The following example creates a Graphics object and a container within that Graphics object. The world transformation of

the Graphics object is a translation 100 units in the x direction and 80 units in the y direction. The world transformation of

the container is a 30-degree rotation. The code makes the call DrawRectangle(pen, ‐60, ‐30, 120, 60) twice. The

first call to DrawRectangle is inside the container; that is, the call is in between the calls to BeginContainer and

EndContainer. The second call to DrawRectangle is after the call to EndContainer.

In the preceding code, the rectangle drawn from inside the container is transformed first by the world transformation of

the container (rotation) and then by the world transformation of the Graphics object (translation). The rectangle drawn

from outside the container is transformed only by the world transformation of the Graphics object (translation). The

following illustration shows the two rectangles.

Clipping in Nested Containers
The following example demonstrates how nested containers handle clipping regions. The code creates a Graphics object

and a container within that Graphics object. The clipping region of the Graphics object is a rectangle, and the clipping

region of the container is an ellipse. The code makes two calls to the DrawLine method. The first call to DrawLine is inside

the container, and the second call to DrawLine is outside the container (after the call to EndContainer). The first line is

clipped by the intersection of the two clipping regions. The second line is clipped only by the rectangular clipping region

of the Graphics object.

Dim graphics As Graphics = e.Graphics

Dim pen As New Pen(Color.Red)

Dim graphicsContainer As GraphicsContainer

graphics.FillRectangle(Brushes.Black, 100, 80, 3, 3)

graphics.TranslateTransform(100, 80)

graphicsContainer = graphics.BeginContainer()

graphics.RotateTransform(30)

graphics.DrawRectangle(pen, ‐60, ‐30, 120, 60)

graphics.EndContainer(graphicsContainer)

graphics.DrawRectangle(pen, ‐60, ‐30, 120, 60)

Dim graphics As Graphics = e.Graphics

VB

VB

Using Nested Graphics Containers https://msdn.microsoft.com/en-us/library/a4sf8bx4(d=printer,v=vs.110).aspx

2 of 5 05.09.2016 2:29

The following illustration shows the two clipped lines.

As the two preceding examples show, transformations and clipping regions are cumulative in nested containers. If you set

the world transformations of the container and the Graphics object, both transformations will apply to items drawn from

inside the container. The transformation of the container will be applied first, and the transformation of the Graphics

object will be applied second. If you set the clipping regions of the container and the Graphics object, items drawn from

inside the container will be clipped by the intersection of the two clipping regions.

Quality Settings in Nested Containers
Quality settings (SmoothingMode, TextRenderingHint, and the like) in nested containers are not cumulative; rather, the

quality settings of the container temporarily replace the quality settings of a Graphics object. When you create a new

container, the quality settings for that container are set to default values. For example, suppose you have a Graphics

object with a smoothing mode of AntiAlias. When you create a container, the smoothing mode inside the container is the

default smoothing mode. You are free to set the smoothing mode of the container, and any items drawn from inside the

container will be drawn according to the mode you set. Items drawn after the call to EndContainer will be drawn

according to the smoothing mode (AntiAlias) that was in place before the call to BeginContainer.

Dim graphicsContainer As GraphicsContainer

Dim redPen As New Pen(Color.Red, 2)

Dim bluePen As New Pen(Color.Blue, 2)

Dim aquaBrush As New SolidBrush(Color.FromArgb(255, 180, 255, 255))

Dim greenBrush As New SolidBrush(Color.FromArgb(255, 150, 250, 130))

graphics.SetClip(New Rectangle(50, 65, 150, 120))

graphics.FillRectangle(aquaBrush, 50, 65, 150, 120)

graphicsContainer = graphics.BeginContainer()

' Create a path that consists of a single ellipse.

Dim path As New GraphicsPath()

path.AddEllipse(75, 50, 100, 150)

' Construct a region based on the path.

Dim [region] As New [Region](path)

graphics.FillRegion(greenBrush, [region])

graphics.SetClip([region], CombineMode.Replace)

graphics.DrawLine(redPen, 50, 0, 350, 300)

graphics.EndContainer(graphicsContainer)

graphics.DrawLine(bluePen, 70, 0, 370, 300)

Using Nested Graphics Containers https://msdn.microsoft.com/en-us/library/a4sf8bx4(d=printer,v=vs.110).aspx

3 of 5 05.09.2016 2:29

Several Layers of Nested Containers
You are not limited to one container in a Graphics object. You can create a sequence of containers, each nested in the

preceding, and you can specify the world transformation, clipping region, and quality settings of each of those nested

containers. If you call a drawing method from inside the innermost container, the transformations will be applied in order,

starting with the innermost container and ending with the outermost container. Items drawn from inside the innermost

container will be clipped by the intersection of all the clipping regions.

The following example creates a Graphics object and sets its text rendering hint to AntiAlias. The code creates two

containers, one nested within the other. The text rendering hint of the outer container is set to SingleBitPerPixel, and the

text rendering hint of the inner container is set to AntiAlias. The code draws three strings: one from the inner container,

one from the outer container, and one from the Graphics object itself.

The following illustration shows the three strings. The strings drawn from the inner container and from the Graphics object

Dim graphics As Graphics = e.Graphics

Dim innerContainer As GraphicsContainer

Dim outerContainer As GraphicsContainer

Dim brush As New SolidBrush(Color.Blue)

Dim fontFamily As New FontFamily("Times New Roman")

Dim font As New Font(_

 fontFamily, _

 36, _

 FontStyle.Regular, _

 GraphicsUnit.Pixel)

graphics.TextRenderingHint = _

System.Drawing.Text.TextRenderingHint.AntiAlias

outerContainer = graphics.BeginContainer()

graphics.TextRenderingHint = _

 System.Drawing.Text.TextRenderingHint.SingleBitPerPixel

innerContainer = graphics.BeginContainer()

graphics.TextRenderingHint = _

 System.Drawing.Text.TextRenderingHint.AntiAlias

graphics.DrawString(_

"Inner Container", _

 font, _

 brush, _

New PointF(20, 10))

graphics.EndContainer(innerContainer)

graphics.DrawString("Outer Container", font, brush, New PointF(20, 50))

graphics.EndContainer(outerContainer)

graphics.DrawString("Graphics Object", font, brush, New PointF(20, 90))

VB

Using Nested Graphics Containers https://msdn.microsoft.com/en-us/library/a4sf8bx4(d=printer,v=vs.110).aspx

4 of 5 05.09.2016 2:29

are smoothed by antialiasing. The string drawn from the outer container is not smoothed by antialiasing because the

TextRenderingHint property is set to SingleBitPerPixel.

See Also
Graphics

Managing the State of a Graphics Object

© 2016 Microsoft

Using Nested Graphics Containers https://msdn.microsoft.com/en-us/library/a4sf8bx4(d=printer,v=vs.110).aspx

5 of 5 05.09.2016 2:29

How to: Use Hit Testing with a Region

The purpose of hit testing is to determine whether the cursor is over a given object, such as an icon or a button.

Example
The following example creates a plus-shaped region by forming the union of two rectangular regions. Assume that the

variable point holds the location of the most recent click. The code checks to see whether point is in the plus-shaped

region. If the point is in the region (a hit), the region is filled with an opaque red brush. Otherwise, the region is filled with a

semitransparent red brush.

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also

.NET Framework (current version)

Dim point As New Point(60, 10)

' Assume that the variable "point" contains the location of the

' most recent mouse click.

' To simulate a hit, assign (60, 10) to point.

' To simulate a miss, assign (0, 0) to point.

Dim solidBrush As New SolidBrush(Color.Black)

Dim region1 As New [Region](New Rectangle(50, 0, 50, 150))

Dim region2 As New [Region](New Rectangle(0, 50, 150, 50))

' Create a plus‐shaped region by forming the union of region1 and region2.

' The union replaces region1.

region1.Union(region2)

If region1.IsVisible(point, e.Graphics) Then

' The point is in the region. Use an opaque brush.

 solidBrush.Color = Color.FromArgb(255, 255, 0, 0)

Else

' The point is not in the region. Use a semitransparent brush.

 solidBrush.Color = Color.FromArgb(64, 255, 0, 0)

End If

e.Graphics.FillRegion(solidBrush, region1)

VB

How to: Use Hit Testing with a Region https://msdn.microsoft.com/en-us/library/atbcc7xb(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:29

Region

Regions in GDI+

How to: Use Clipping with a Region

© 2016 Microsoft

How to: Use Hit Testing with a Region https://msdn.microsoft.com/en-us/library/atbcc7xb(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:29

How to: Use Clipping with a Region

One of the properties of the Graphics class is the clip region. All drawing done by a given Graphics object is restricted to the

clip region of that Graphics object. You can set the clip region by calling the SetClip method.

Example
The following example constructs a path that consists of a single polygon. Then the code constructs a region, based on that

path. The region is passed to the SetClip method of a Graphics object, and then two strings are drawn.

The following illustration shows the clipped strings.

.NET Framework (current version)

' Create a path that consists of a single polygon.

Dim polyPoints As Point() = { _

New Point(10, 10), _

New Point(150, 10), _

New Point(100, 75), _

New Point(100, 150)}

Dim path As New GraphicsPath()

path.AddPolygon(polyPoints)

' Construct a region based on the path.

Dim [region] As New [Region](path)

' Draw the outline of the region.

Dim pen As Pen = Pens.Black

e.Graphics.DrawPath(pen, path)

' Set the clipping region of the Graphics object.

e.Graphics.SetClip([region], CombineMode.Replace)

' Draw some clipped strings.

Dim fontFamily As New FontFamily("Arial")

Dim font As New Font(_

 fontFamily, _

 36, _

 FontStyle.Bold, _

VB

How to: Use Clipping with a Region https://msdn.microsoft.com/en-us/library/155t36zz(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:30

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

PaintEventHandler.

See Also
Regions in GDI+

Using Regions

© 2016 Microsoft

 GraphicsUnit.Pixel)

Dim solidBrush As New SolidBrush(Color.FromArgb(255, 255, 0, 0))

e.Graphics.DrawString(_

"A Clipping Region", _

 font, _

 solidBrush, _

New PointF(15, 25))

e.Graphics.DrawString(_

"A Clipping Region", _

 font, _

 solidBrush, _

New PointF(15, 68))

How to: Use Clipping with a Region https://msdn.microsoft.com/en-us/library/155t36zz(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:30

How to: Use a Color Matrix to Transform a
Single Color

GDI+ provides the Image and Bitmap classes for storing and manipulating images. Image and Bitmap objects store the color

of each pixel as a 32-bit number: 8 bits each for red, green, blue, and alpha. Each of the four components is a number from 0

through 255, with 0 representing no intensity and 255 representing full intensity. The alpha component specifies the

transparency of the color: 0 is fully transparent, and 255 is fully opaque.

A color vector is a 4-tuple of the form (red, green, blue, alpha). For example, the color vector (0, 255, 0, 255) represents an

opaque color that has no red or blue, but has green at full intensity.

Another convention for representing colors uses the number 1 for full intensity. Using that convention, the color described

in the preceding paragraph would be represented by the vector (0, 1, 0, 1). GDI+ uses the convention of 1 as full intensity

when it performs color transformations.

You can apply linear transformations (rotation, scaling, and the like) to color vectors by multiplying the color vectors by a

4×4 matrix. However, you cannot use a 4×4 matrix to perform a translation (nonlinear). If you add a dummy fifth coordinate

(for example, the number 1) to each of the color vectors, you can use a 5×5 matrix to apply any combination of linear

transformations and translations. A transformation consisting of a linear transformation followed by a translation is called an

affine transformation.

For example, suppose you want to start with the color (0.2, 0.0, 0.4, 1.0) and apply the following transformations:

Double the red component1.

Add 0.2 to the red, green, and blue components2.

The following matrix multiplication will perform the pair of transformations in the order listed.

The elements of a color matrix are indexed (zero-based) by row and then column. For example, the entry in the fifth row and

third column of matrix M is denoted by M[4][2].

The 5×5 identity matrix (shown in the following illustration) has 1s on the diagonal and 0s everywhere else. If you multiply a

color vector by the identity matrix, the color vector does not change. A convenient way to form the matrix of a color

transformation is to start with the identity matrix and make a small change that produces the desired transformation.

.NET Framework (current version)

How to: Use a Color Matrix to Transform a Single Color https://msdn.microsoft.com/en-us/library/6tf7sa87(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:30

For a more detailed discussion of matrices and transformations, see Coordinate Systems and Transformations.

Example
The following example takes an image that is all one color (0.2, 0.0, 0.4, 1.0) and applies the transformation described in the

preceding paragraphs.

The following illustration shows the original image on the left and the transformed image on the right.

The code in the following example uses the following steps to perform the recoloring:

Initialize a ColorMatrix object.1.

Create an ImageAttributes object and pass the ColorMatrix object to the SetColorMatrix method of the

ImageAttributes object.

2.

Pass the ImageAttributes object to the DrawImage method of a Graphics object.3.

Dim image As New Bitmap("InputColor.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

' The following matrix consists of the following transformations:

' red scaling factor of 2

' green scaling factor of 1

' blue scaling factor of 1

' alpha scaling factor of 1

' three translations of 0.2

Dim colorMatrixElements As Single()() = { _

New Single() {2, 0, 0, 0, 0}, _

New Single() {0, 1, 0, 0, 0}, _

New Single() {0, 0, 1, 0, 0}, _

New Single() {0, 0, 0, 1, 0}, _

New Single() {0.2F, 0.2F, 0.2F, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

VB

How to: Use a Color Matrix to Transform a Single Color https://msdn.microsoft.com/en-us/library/6tf7sa87(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:30

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Recoloring Images

Coordinate Systems and Transformations

© 2016 Microsoft

imageAttributes.SetColorMatrix(colorMatrix, ColorMatrixFlag.Default,

ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10)

e.Graphics.DrawImage(_

 image, _

New Rectangle(120, 10, width, height), _

 0, _

 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

 imageAttributes)

How to: Use a Color Matrix to Transform a Single Color https://msdn.microsoft.com/en-us/library/6tf7sa87(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:30

How to: Translate Image Colors

A translation adds a value to one or more of the four color components. The color matrix entries that represent translations

are given in the following table.

Component to be translated Matrix entry

Red [4][0]

Green [4][1]

Blue [4][2]

Alpha [4][3]

Example
The following example constructs an Image object from the file ColorBars.bmp. Then the code adds 0.75 to the red

component of each pixel in the image. The original image is drawn alongside the transformed image.

The following illustration shows the original image on the left and the transformed image on the right.

The following table lists the color vectors for the four bars before and after the red translation. Note that because the

maximum value for a color component is 1, the red component in the second row does not change. (Similarly, the minimum

value for a color component is 0.)

Original Translated

Black (0, 0, 0, 1) (0.75, 0, 0, 1)

Red (1, 0, 0, 1) (1, 0, 0, 1)

Green (0, 1, 0, 1) (0.75, 1, 0, 1)

Blue (0, 0, 1, 1) (0.75, 0, 1, 1)

.NET Framework (current version)

How to: Translate Image Colors https://msdn.microsoft.com/en-us/library/ys160710(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:31

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Replace ColorBars.bmp with an image file name and path that are valid on your system.

See Also
ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

© 2016 Microsoft

Dim image As New Bitmap("ColorBars.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = { _

New Single() {1, 0, 0, 0, 0}, _

New Single() {0, 1, 0, 0, 0}, _

New Single() {0, 0, 1, 0, 0}, _

New Single() {0, 0, 0, 1, 0}, _

New Single() {0.75F, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(_

 colorMatrix, _

 ColorMatrixFlag.Default, _

 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle (2nd argument), the upper‐left corner

' (3rd and 4th arguments), width (5th argument), and height (6th

' argument) of the source rectangle.

e.Graphics.DrawImage(_

 image, _

New Rectangle(150, 10, width, height), _

 0, 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

 imageAttributes)

VB

How to: Translate Image Colors https://msdn.microsoft.com/en-us/library/ys160710(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:31

Using Transformations to Scale Colors

A scaling transformation multiplies one or more of the four color components by a number. The color matrix entries that

represent scaling are given in the following table.

Component to be scaled Matrix entry

Red [0][0]

Green [1][1]

Blue [2][2]

Alpha [3][3]

Scaling One Color
The following example constructs an Image object from the file ColorBars2.bmp. Then the code scales the blue

component of each pixel in the image by a factor of 2. The original image is drawn alongside the transformed image.

.NET Framework (current version)

Dim image As New Bitmap("ColorBars2.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = { _

New Single() {1, 0, 0, 0, 0}, _

New Single() {0, 1, 0, 0, 0}, _

New Single() {0, 0, 2, 0, 0}, _

New Single() {0, 0, 0, 1, 0}, _

New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(_

 colorMatrix, _

 ColorMatrixFlag.Default, _

 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

VB

Using Transformations to Scale Colors https://msdn.microsoft.com/en-us/library/07dx6721(d=printer,v=vs.110).aspx

1 of 4 05.09.2016 2:31

The following illustration shows the original image on the left and the scaled image on the right.

The following table lists the color vectors for the four bars before and after the blue scaling. Note that the blue

component in the fourth color bar went from 0.8 to 0.6. That is because GDI+ retains only the fractional part of the result.

For example, (2)(0.8) = 1.6, and the fractional part of 1.6 is 0.6. Retaining only the fractional part ensures that the result is

always in the interval [0, 1].

Original Scaled

(0.4, 0.4, 0.4, 1) (0.4, 0.4, 0.8, 1)

(0.4, 0.2, 0.2, 1) (0.4, 0.2, 0.4, 1)

(0.2, 0.4, 0.2, 1) (0.2, 0.4, 0.4, 1)

(0.4, 0.4, 0.8, 1) (0.4, 0.4, 0.6, 1)

Scaling Multiple Colors
The following example constructs an Image object from the file ColorBars2.bmp. Then the code scales the red, green, and

blue components of each pixel in the image. The red components are scaled down 25 percent, the green components are

scaled down 35 percent, and the blue components are scaled down 50 percent.

' Pass in the destination rectangle (2nd argument), the upper‐left corner

' (3rd and 4th arguments), width (5th argument), and height (6th

' argument) of the source rectangle.

e.Graphics.DrawImage(_

 image, _

New Rectangle(150, 10, width, height), _

 0, 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

 imageAttributes)

Dim image As New Bitmap("ColorBars.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

VB

Using Transformations to Scale Colors https://msdn.microsoft.com/en-us/library/07dx6721(d=printer,v=vs.110).aspx

2 of 4 05.09.2016 2:31

The following illustration shows the original image on the left and the scaled image on the right.

The following table lists the color vectors for the four bars before and after the red, green and blue scaling.

Original Scaled

(0.6, 0.6, 0.6, 1) (0.45, 0.39, 0.3, 1)

(0, 1, 1, 1) (0, 0.65, 0.5, 1)

(1, 1, 0, 1) (0.75, 0.65, 0, 1)

(1, 0, 1, 1) (0.75, 0, 0.5, 1)

Dim colorMatrixElements As Single()() = { _

New Single() {0.75F, 0, 0, 0, 0}, _

New Single() {0, 0.65F, 0, 0, 0}, _

New Single() {0, 0, 0.5F, 0, 0}, _

New Single() {0, 0, 0, 1, 0}, _

New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(_

 colorMatrix, _

 ColorMatrixFlag.Default, _

 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle, and the upper‐left corner, width,

' and height of the source rectangle as in the previous example.

e.Graphics.DrawImage(_

 image, _

New Rectangle(150, 10, width, height), _

 0, 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

 imageAttributes)

Using Transformations to Scale Colors https://msdn.microsoft.com/en-us/library/07dx6721(d=printer,v=vs.110).aspx

3 of 4 05.09.2016 2:31

See Also
ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

© 2016 Microsoft

Using Transformations to Scale Colors https://msdn.microsoft.com/en-us/library/07dx6721(d=printer,v=vs.110).aspx

4 of 4 05.09.2016 2:31

How to: Rotate Colors

Rotation in a four-dimensional color space is difficult to visualize. We can make it easier to visualize rotation by agreeing to

keep one of the color components fixed. Suppose we agree to keep the alpha component fixed at 1 (fully opaque). Then we

can visualize a three-dimensional color space with red, green, and blue axes as shown in the following illustration.

A color can be thought of as a point in 3-D space. For example, the point (1, 0, 0) in space represents the color red, and the

point (0, 1, 0) in space represents the color green.

The following illustration shows what it means to rotate the color (1, 0, 0) through an angle of 60 degrees in the Red-Green

plane. Rotation in a plane parallel to the Red-Green plane can be thought of as rotation about the blue axis.

The following illustration shows how to initialize a color matrix to perform rotations about each of the three coordinate axes

(red, green, blue).

.NET Framework (current version)

How to: Rotate Colors https://msdn.microsoft.com/en-us/library/9ya02xa6(d=printer,v=vs.110).aspx

1 of 3 05.09.2016 2:31

Example
The following example takes an image that is all one color (1, 0, 0.6) and applies a 60-degree rotation about the blue axis.

The angle of the rotation is swept out in a plane that is parallel to the red-green plane.

The following illustration shows the original image on the left and the color-rotated image on the right.

The following illustration shows a visualization of the color rotation performed in the following code.

Private Sub RotateColors(ByVal e As PaintEventArgs)

Dim image As Bitmap = New Bitmap("RotationInput.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

VB

How to: Rotate Colors https://msdn.microsoft.com/en-us/library/9ya02xa6(d=printer,v=vs.110).aspx

2 of 3 05.09.2016 2:31

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Replace RotationInput.bmp with an image file name and path valid on your system.

See Also
ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

© 2016 Microsoft

Dim degrees As Single = 60.0F

Dim r As Double = degrees * System.Math.PI / 180 ' degrees to radians

Dim colorMatrixElements As Single()() = { _

New Single() {CSng(System.Math.Cos(r)), _

CSng(System.Math.Sin(r)), 0, 0, 0}, _

New Single() {CSng(‐System.Math.Sin(r)), _

CSng(‐System.Math.Cos(r)), 0, 0, 0}, _

New Single() {0, 0, 2, 0, 0}, _

New Single() {0, 0, 0, 1, 0}, _

New Single() {0, 0, 0, 0, 1}}

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

 imageAttributes.SetColorMatrix(_

 colorMatrix, _

 ColorMatrixFlag.Default, _

 ColorAdjustType.Bitmap)

 e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle (2nd argument), the upper‐left corner

' (3rd and 4th arguments), width (5th argument), and height (6th

' argument) of the source rectangle.

 e.Graphics.DrawImage(_

 image, _

New Rectangle(150, 10, width, height), _

 0, 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

 imageAttributes)

End Sub

How to: Rotate Colors https://msdn.microsoft.com/en-us/library/9ya02xa6(d=printer,v=vs.110).aspx

3 of 3 05.09.2016 2:31

How to: Shear Colors

Shearing increases or decreases a color component by an amount proportional to another color component. For example,

consider the transformation where the red component is increased by one half the value of the blue component. Under such

a transformation, the color (0.2, 0.5, 1) would become (0.7, 0.5, 1). The new red component is 0.2 + (1/2)(1) = 0.7.

Example
The following example constructs an Image object from the file ColorBars4.bmp. Then the code applies the shearing

transformation described in the preceding paragraph to each pixel in the image.

The following illustration shows the original image on the left and the sheared image on the right.

The following table lists the color vectors for the four bars before and after the shearing transformation.

Original Sheared

(0, 0, 1, 1) (0.5, 0, 1, 1)

(0.5, 1, 0.5, 1) (0.75, 1, 0.5, 1)

(1, 1, 0, 1) (1, 1, 0, 1)

(0.4, 0.4, 0.4, 1) (0.6, 0.4, 0.4, 1)

.NET Framework (current version)

Dim image = New Bitmap("ColorBars.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

Dim colorMatrixElements As Single()() = _

 {New Single() {1, 0, 0, 0, 0}, _

New Single() {0, 1, 0, 0, 0}, _

New Single() {0.5F, 0, 1, 0, 0}, _

New Single() {0, 0, 0, 1, 0}, _

New Single() {0, 0, 0, 0, 1}}

VB

How to: Shear Colors https://msdn.microsoft.com/en-us/library/sc8302at(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:32

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler. Replace ColorBars.bmp with an image name and path valid on your system.

See Also
ColorMatrix

ImageAttributes

Graphics and Drawing in Windows Forms

Recoloring Images

© 2016 Microsoft

Dim colorMatrix As New ColorMatrix(colorMatrixElements)

imageAttributes.SetColorMatrix(colorMatrix, ColorMatrixFlag.Default, _

 ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

e.Graphics.DrawImage(image, New Rectangle(150, 10, width, height), 0, 0, _

 width, height, GraphicsUnit.Pixel, imageAttributes)

How to: Shear Colors https://msdn.microsoft.com/en-us/library/sc8302at(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:32

How to: Use a Color Remap Table

Remapping is the process of converting the colors in an image according to a color remap table. The color remap table is an

array of ColorMap objects. Each ColorMap object in the array has an OldColor property and a NewColor property.

When GDI+ draws an image, each pixel of the image is compared to the array of old colors. If a pixel's color matches an old

color, its color is changed to the corresponding new color. The colors are changed only for rendering — the color values of

the image itself (stored in an Image or Bitmap object) are not changed.

To draw a remapped image, initialize an array of ColorMap objects. Pass that array to the SetRemapTable method of an

ImageAttributes object, and then pass the ImageAttributes object to the DrawImage method of a Graphics object.

Example
The following example creates an Image object from the file RemapInput.bmp. The code creates a color remap table that

consists of a single ColorMap object. The OldColor property of the ColorRemap object is red, and the NewColor property is

blue. The image is drawn once without remapping and once with remapping. The remapping process changes all the red

pixels to blue.

The following illustration shows the original image on the left and the remapped image on the right.

.NET Framework (current version)

Dim image As New Bitmap("RemapInput.bmp")

Dim imageAttributes As New ImageAttributes()

Dim width As Integer = image.Width

Dim height As Integer = image.Height

Dim colorMap As New ColorMap()

colorMap.OldColor = Color.FromArgb(255, 255, 0, 0) ' opaque red

colorMap.NewColor = Color.FromArgb(255, 0, 0, 255) ' opaque blue

Dim remapTable As ColorMap() = {colorMap}

imageAttributes.SetRemapTable(remapTable, ColorAdjustType.Bitmap)

e.Graphics.DrawImage(image, 10, 10, width, height)

' Pass in the destination rectangle (2nd argument), the upper‐left corner

' (3rd and 4th arguments), width (5th argument), and height (6th

' argument) of the source rectangle.

e.Graphics.DrawImage(_

VB

How to: Use a Color Remap Table https://msdn.microsoft.com/en-us/library/4b4dc1kz(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:32

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

See Also
Recoloring Images

Images, Bitmaps, and Metafiles

© 2016 Microsoft

 image, _

New Rectangle(150, 10, width, height), _

 0, 0, _

 width, _

 height, _

 GraphicsUnit.Pixel, _

 imageAttributes)

How to: Use a Color Remap Table https://msdn.microsoft.com/en-us/library/4b4dc1kz(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:32

How to: List Installed Encoders

You may want to list the image encoders available on a computer, to determine whether your application can save to a

particular image file format. The ImageCodecInfo class provides the GetImageEncoders static methods so that you can

determine which image encoders are available. GetImageEncoders returns an array of ImageCodecInfo objects.

Example
The following code example outputs the list of installed encoders and their property values.

.NET Framework (current version)

Private Sub GetImageEncodersExample(ByVal e As PaintEventArgs)

' Get an array of available encoders.

Dim myCodecs() As ImageCodecInfo

 myCodecs = ImageCodecInfo.GetImageEncoders()

Dim numCodecs As Integer = myCodecs.GetLength(0)

' Set up display variables.

Dim foreColor As Color = Color.Black

Dim font As New Font("Arial", 8)

Dim i As Integer = 0

' Check to determine whether any codecs were found.

If numCodecs > 0 Then

' Set up an array to hold codec information. There are 9

' information elements plus 1 space for each codec, so 10 times

' the number of codecs found is allocated.

Dim myCodecInfo(numCodecs * 10) As String

' Write all the codec information to the array.

For i = 0 To numCodecs ‐ 1

 myCodecInfo((i * 10)) = "Codec Name = " + myCodecs(i).CodecName

 myCodecInfo((i * 10 + 1)) = "Class ID = " + myCodecs(i).Clsid.ToString()

 myCodecInfo((i * 10 + 2)) = "DLL Name = " + myCodecs(i).DllName

 myCodecInfo((i * 10 + 3)) = "Filename Ext. = " + myCodecs(i).FilenameExtension

 myCodecInfo((i * 10 + 4)) = "Flags = " + myCodecs(i).Flags.ToString()

 myCodecInfo((i * 10 + 5)) = "Format Descrip. = " +

myCodecs(i).FormatDescription

 myCodecInfo((i * 10 + 6)) = "Format ID = " + myCodecs(i).FormatID.ToString()

 myCodecInfo((i * 10 + 7)) = "MimeType = " + myCodecs(i).MimeType

 myCodecInfo((i * 10 + 8)) = "Version = " + myCodecs(i).Version.ToString()

 myCodecInfo((i * 10 + 9)) = " "

Next i

Dim numMyCodecInfo As Integer = myCodecInfo.GetLength(0)

VB

How to: List Installed Encoders https://msdn.microsoft.com/en-us/library/bb882582(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:32

Compiling the Code
This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

See Also
How to: List Installed Decoders

Using Image Encoders and Decoders in Managed GDI+

© 2016 Microsoft

' Render all of the information to the screen.

Dim j As Integer = 20

For i = 0 To numMyCodecInfo ‐ 1

 e.Graphics.DrawString(myCodecInfo(i), _

 font, New SolidBrush(foreColor), 20, j)

 j += 12

Next i

Else

 e.Graphics.DrawString("No Codecs Found", _

 font, New SolidBrush(foreColor), 20, 20)

End If

End Sub

How to: List Installed Encoders https://msdn.microsoft.com/en-us/library/bb882582(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:32

How to: List Installed Decoders

You may want to list the image decoders available on a computer, to determine whether your application can read a

particular image file format. The ImageCodecInfo class provides the GetImageDecoders static methods so that you can

determine which image decoders are available. GetImageDecoders returns an array of ImageCodecInfo objects.

Example
The following code example outputs the list of installed decoders and their property values.

.NET Framework (current version)

Private Sub GetImageDecodersExample(ByVal e As PaintEventArgs)

' Get an array of available decoders.

Dim myCodecs() As ImageCodecInfo

 myCodecs = ImageCodecInfo.GetImageDecoders()

Dim numCodecs As Integer = myCodecs.GetLength(0)

' Set up display variables.

Dim foreColor As Color = Color.Black

Dim font As New Font("Arial", 8)

Dim i As Integer = 0

' Check to determine whether any codecs were found.

If numCodecs > 0 Then

' Set up an array to hold codec information. There are 9

' information elements plus 1 space for each codec, so 10 times

' the number of codecs found is allocated.

Dim myCodecInfo(numCodecs * 10) As String

' Write all the codec information to the array.

For i = 0 To numCodecs ‐ 1

 myCodecInfo((i * 10)) = "Codec Name = " + myCodecs(i).CodecName

 myCodecInfo((i * 10 + 1)) = "Class ID = " + myCodecs(i).Clsid.ToString()

 myCodecInfo((i * 10 + 2)) = "DLL Name = " + myCodecs(i).DllName

 myCodecInfo((i * 10 + 3)) = "Filename Ext. = " + myCodecs(i).FilenameExtension

 myCodecInfo((i * 10 + 4)) = "Flags = " + myCodecs(i).Flags.ToString()

 myCodecInfo((i * 10 + 5)) = "Format Descrip. = " +

myCodecs(i).FormatDescription

 myCodecInfo((i * 10 + 6)) = "Format ID = " + myCodecs(i).FormatID.ToString()

 myCodecInfo((i * 10 + 7)) = "MimeType = " + myCodecs(i).MimeType

 myCodecInfo((i * 10 + 8)) = "Version = " + myCodecs(i).Version.ToString()

 myCodecInfo((i * 10 + 9)) = " "

Next i

Dim numMyCodecInfo As Integer = myCodecInfo.GetLength(0)

' Render all of the information to the screen.

VB

How to: List Installed Decoders https://msdn.microsoft.com/en-us/library/bb882580(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:33

Compiling the Code
This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

See Also
How to: List Installed Encoders

Using Image Encoders and Decoders in Managed GDI+

© 2016 Microsoft

Dim j As Integer = 20

For i = 0 To numMyCodecInfo ‐ 1

 e.Graphics.DrawString(myCodecInfo(i), _

 font, New SolidBrush(foreColor), 20, j)

 j += 12

Next i

Else

 e.Graphics.DrawString("No Codecs Found", _

 font, New SolidBrush(foreColor), 20, 20)

End If

End Sub

How to: List Installed Decoders https://msdn.microsoft.com/en-us/library/bb882580(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:33

How to: Determine the Parameters
Supported by an Encoder

You can adjust image parameters, such as quality and compression level, but you must know which parameters are

supported by a given image encoder. The Image class provides the GetEncoderParameterList method so that you can

determine which image parameters are supported for a particular encoder. You specify the encoder with a GUID. The

GetEncoderParameterList method returns an array of EncoderParameter objects.

Example
The following example code outputs the supported parameters for the JPEG encoder. Use the list of parameter categories

and associated GUIDs in the Encoder class overview to determine the category for each parameter.

.NET Framework (current version)

Private Sub GetSupportedParameters(ByVal e As PaintEventArgs)

Dim bitmap1 As New Bitmap(1, 1)

Dim jpgEncoder As ImageCodecInfo = GetEncoder(ImageFormat.Jpeg)

Dim paramList As EncoderParameters = _

 bitmap1.GetEncoderParameterList(jpgEncoder.Clsid)

Dim encParams As EncoderParameter() = paramList.Param

Dim paramInfo As New StringBuilder()

Dim i As Integer

For i = 0 To encParams.Length ‐ 1

 paramInfo.Append("Param " & i & " holds " & _

 encParams(i).NumberOfValues & " items of type " & _

 encParams(i).Type.ToString() & vbCr & vbLf & "Guid category: " & _

 encParams(i).Encoder.Guid.ToString() & vbCr & vbLf)

Next i

 e.Graphics.DrawString(paramInfo.ToString(), _

Me.Font, Brushes.Red, 10.0F, 10.0F)

End Sub

Private Function GetEncoder(ByVal format As ImageFormat) As ImageCodecInfo

Dim codecs As ImageCodecInfo() = ImageCodecInfo.GetImageDecoders()

Dim codec As ImageCodecInfo

For Each codec In codecs

If codec.FormatID = format.Guid Then

Return codec

End If

Next codec

Return Nothing

VB

How to: Determine the Parameters Supported by an Encoder https://msdn.microsoft.com/en-us/library/bb882589(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:33

Compiling the Code
This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

See Also
How to: List Installed Encoders

Types of Bitmaps

Using Image Encoders and Decoders in Managed GDI+

© 2016 Microsoft

End Function

How to: Determine the Parameters Supported by an Encoder https://msdn.microsoft.com/en-us/library/bb882589(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:33

How to: Convert a BMP image to a PNG
image

Oftentimes, you will want to convert from one image file format to another. You can do this conversion easily by calling the

Save method of the Image class and specifying the ImageFormat for the desired image file format.

Example
The following example loads a BMP image from a type, and saves the image in the PNG format.

Compiling the Code
This example requires:

A Windows Forms application.

A reference to the System.Drawing.Imaging namespace.

See Also
How to: List Installed Encoders

Using Image Encoders and Decoders in Managed GDI+

Types of Bitmaps

© 2016 Microsoft

.NET Framework (current version)

Private Sub SaveBmpAsPNG()

Dim bmp1 As New Bitmap(GetType(Button), "Button.bmp")

 bmp1.Save("c:\button.png", ImageFormat.Png)

End Sub

VB

How to: Convert a BMP image to a PNG image https://msdn.microsoft.com/en-us/library/bb882585(d=printer,v=vs.110).aspx

1 of 1 05.09.2016 2:34

How to: Set JPEG Compression Level

You may want to modify the parameters of an image when you save the image to disk to minimize the file size or improve

its quality. You can adjust the quality of a JPEG image by modifying its compression level. To specify the compression level

when you save a JPEG image, you must create an EncoderParameters object and pass it to the Save method of the Image

class. Initialize the EncoderParameters object so that it has an array that consists of one EncoderParameter. When you create

the EncoderParameter, specify the Quality encoder, and the desired compression level.

Example
The following example code creates an EncoderParameter object and saves three JPEG images. Each JPEG image is saved

with a different quality level, by modifying the long value passed to the EncoderParameter constructor. A quality level of 0

corresponds to the greatest compression, and a quality level of 100 corresponds to the least compression.

.NET Framework (current version)

Private Sub VaryQualityLevel()

' Get a bitmap. The Using statement ensures objects

' are automatically disposed from memory after use.

Using bmp1 As New Bitmap("C:\test\TestPhoto.jpg")

Dim jpgEncoder As ImageCodecInfo = GetEncoder(ImageFormat.Jpeg)

' Create an Encoder object based on the GUID

' for the Quality parameter category.

Dim myEncoder As System.Drawing.Imaging.Encoder =

System.Drawing.Imaging.Encoder.Quality

' Create an EncoderParameters object.

' An EncoderParameters object has an array of EncoderParameter

' objects. In this case, there is only one

' EncoderParameter object in the array.

Dim myEncoderParameters As New EncoderParameters(1)

Dim myEncoderParameter As New EncoderParameter(myEncoder, 50L)

 myEncoderParameters.Param(0) = myEncoderParameter

 bmp1.Save("c:\test\TestPhotoQualityFifty.jpg", jpgEncoder, myEncoderParameters)

 myEncoderParameter = New EncoderParameter(myEncoder, 100L)

 myEncoderParameters.Param(0) = myEncoderParameter

 bmp1.Save("C:\test\TestPhotoQualityHundred.jpg", jpgEncoder, myEncoderParameters)

' Save the bitmap as a JPG file with zero quality level compression.

 myEncoderParameter = New EncoderParameter(myEncoder, 0L)

 myEncoderParameters.Param(0) = myEncoderParameter

 bmp1.Save("C:\test\TestPhotoQualityZero.jpg", jpgEncoder, myEncoderParameters)

End Using

End Sub

VB

How to: Set JPEG Compression Level https://msdn.microsoft.com/en-us/library/bb882583(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:34

Compiling the Code
This example requires:

A Windows Forms application.

A PaintEventArgs, which is a parameter of PaintEventHandler.

An image file that is named TestPhoto.jpg and located at c:\.

See Also
How to: Determine the Parameters Supported by an Encoder

Types of Bitmaps

Using Image Encoders and Decoders in Managed GDI+

© 2016 Microsoft

Private Function GetEncoder(ByVal format As ImageFormat) As ImageCodecInfo

Dim codecs As ImageCodecInfo() = ImageCodecInfo.GetImageDecoders()

Dim codec As ImageCodecInfo

For Each codec In codecs

If codec.FormatID = format.Guid Then

Return codec

End If

Next codec

Return Nothing

End Function

VB

How to: Set JPEG Compression Level https://msdn.microsoft.com/en-us/library/bb882583(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:34

Double Buffered Graphics

Flicker is a common problem when programming graphics. Graphics operations that require multiple complex painting

operations can cause the rendered images to appear to flicker or have an otherwise unacceptable appearance. To address

these problems, the .NET Framework provides access to double buffering.

Double buffering uses a memory buffer to address the flicker problems associated with multiple paint operations. When

double buffering is enabled, all paint operations are first rendered to a memory buffer instead of the drawing surface on the

screen. After all paint operations are completed, the memory buffer is copied directly to the drawing surface associated with

it. Because only one graphics operation is performed on the screen, the image flickering associated with complex painting

operations is eliminated.

Default Double Buffering
The easiest way to use double buffering in your applications is to use the default double buffering for forms and controls

that is provided by the .NET Framework. You can enable default double buffering for your Windows Forms and authored

Windows controls by setting the DoubleBuffered property to true or by using the SetStyle method. For more

information, see How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls.

Manually Managing Buffered Graphics
For more advanced double buffering scenarios, such as animation or advanced memory management, you can use the

.NET Framework classes to implement your own double-buffering logic. The class responsible for allocating and

managing individual graphics buffers is the BufferedGraphicsContext class. Every application domain has its own default

BufferedGraphicsContext instance that manages all of the default double buffering for that application. In most cases

there will be only one application domain per application, so there is generally one default BufferedGraphicsContext per

application. Default BufferedGraphicsContext instances are managed by the BufferedGraphicsManager class. You can

retrieve a reference to the default BufferedGraphicsContext instance by calling the BufferedGraphicsManager.Current

Property. You can also create a dedicated BufferedGraphicsContext instance, which can improve performance for

graphically intensive applications. For information on how to create a BufferedGraphicsContext instance, see How to:

Manually Manage Buffered Graphics.

Manually Displaying Buffered Graphics
You can use an instance of the BufferedGraphicsContext class to create graphics buffers by calling the

BufferedGraphicsContext.Allocate Method, which returns an instance of the BufferedGraphics class. A BufferedGraphics

object manages a memory buffer that is associated with a rendering surface, such as a form or control.

After it is instantiated, the BufferedGraphics class manages rendering to an in-memory graphics buffer. You can render

graphics to the memory buffer through the BufferedGraphics.Graphics Property, which exposes a Graphics object that

directly represents the memory buffer. You can paint to this Graphics object just as you would to a Graphics object that

represents a drawing surface. After all the graphics have been drawn to the buffer, you can use the

.NET Framework (current version)

Double Buffered Graphics https://msdn.microsoft.com/en-us/library/b367a457(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:35

BufferedGraphics.Render Method to copy the contents of the buffer to the drawing surface on the screen.

For more information on using the BufferedGraphics class, see Manually Rendering Buffered Graphics. For more

information on rendering graphics, see Graphics and Drawing in Windows Forms

See Also
BufferedGraphics

BufferedGraphicsContext

BufferedGraphicsManager

How to: Manually Render Buffered Graphics

How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls

How to: Manually Manage Buffered Graphics

Graphics and Drawing in Windows Forms

© 2016 Microsoft

Double Buffered Graphics https://msdn.microsoft.com/en-us/library/b367a457(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:35

How to: Reduce Graphics Flicker with Double
Buffering for Forms and Controls

Double buffering uses a memory buffer to address the flicker problems associated with multiple paint operations. When

double buffering is enabled, all paint operations are first rendered to a memory buffer instead of the drawing surface on the

screen. After all paint operations are completed, the memory buffer is copied directly to the drawing surface associated with

it. Because only one graphics operation is performed on the screen, the image flickering associated with complex painting

operations is eliminated.For most applications, the default double buffering provided by the .NET Framework will provide

the best results. Standard Windows Forms controls are double buffered by default. You can enable default double buffering

in your forms and authored controls in two ways. You can either set the DoubleBuffered property to true, or you can call the

SetStyle method to set the OptimizedDoubleBuffer flag to true. Both methods will enable default double buffering for your

form or control and provide flicker-free graphics rendering. Calling the SetStyle method is recommended only for custom

controls for which you have written all the rendering code.

For more advanced double buffering scenarios, such as animation or advanced memory management, you can implement

your own double buffering logic. For more information, see How to: Manually Manage Buffered Graphics.

To reduce flicker

Set the DoubleBuffered property to true.

- or -

Call the SetStyle method to set the OptimizedDoubleBuffer flag to true.

See Also

.NET Framework (current version)

DoubleBuffered = True

SetStyle(ControlStyles.OptimizedDoubleBuffer, True)

VB

VB

How to: Reduce Graphics Flicker with Double Buffering for Forms and C... https://msdn.microsoft.com/en-us/library/3t7htc9c(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:35

DoubleBuffered

SetStyle

Double Buffered Graphics

Graphics and Drawing in Windows Forms

© 2016 Microsoft

How to: Reduce Graphics Flicker with Double Buffering for Forms and C... https://msdn.microsoft.com/en-us/library/3t7htc9c(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:35

How to: Manually Manage Buffered Graphics

For more advanced double buffering scenarios, you can use the .NET Framework classes to implement your own double-

buffering logic. The class responsible for allocating and managing individual graphics buffers is the BufferedGraphicsContext

class. Every application has its own default BufferedGraphicsContext that manages all of the default double buffering for that

application. You can retrieve a reference to this instance by calling the Current.

To obtain a reference to the default BufferedGraphicsContext

Set the Current property, as shown in the following code example.

Note

You do not need to call the Dispose method on the BufferedGraphicsContext reference that you receive from the

BufferedGraphicsManager class. The BufferedGraphicsManager handles all of the memory allocation and

distribution for default BufferedGraphicsContext instances.

For graphically intensive applications such as animation, you can sometimes improve performance by using a

dedicated BufferedGraphicsContext instead of the BufferedGraphicsContext provided by the

BufferedGraphicsManager. This enables you to create and manage graphics buffers individually, without incurring the

performance overhead of managing all the other buffered graphics associated with your application, though the

memory consumed by the application will be greater.

To create a dedicated BufferedGraphicsContext

Declare and create a new instance of the BufferedGraphicsContext class, as shown in the following code example.

.NET Framework (current version)

Dim myContext As BufferedGraphicsContext

myContext = BufferedGraphicsManager.Current

Dim myContext As BufferedGraphicsContext

myContext = New BufferedGraphicsContext

' Insert code to create graphics here.

' On a nondefault BufferedGraphicsContext instance, you should always

' call Dispose when finished.

myContext.Dispose()

VB

VB

How to: Manually Manage Buffered Graphics https://msdn.microsoft.com/en-us/library/tdk2485d(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:35

See Also
BufferedGraphicsContext

Double Buffered Graphics

How to: Manually Render Buffered Graphics

© 2016 Microsoft

How to: Manually Manage Buffered Graphics https://msdn.microsoft.com/en-us/library/tdk2485d(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:35

How to: Manually Render Buffered Graphics

If you are managing your own buffered graphics, you will need to be able to create and render graphics buffers. You can

create instances of the BufferedGraphics class that is associated with drawing surfaces on your screen by calling the Allocate

method. This method creates a BufferedGraphics instance that is associated with a particular rendering surface, such as a

form or control. After you have created a BufferedGraphics instance, you can draw graphics to the buffer it represents

through the Graphics property. After you have performed all graphics operations, you can copy the contents of the buffer to

the screen by calling the Render method.

Note

If you perform your own rendering, memory consumption will increase, though the increase may only be slight.

To manually display buffered graphics

Obtain a reference to an instance of the BufferedGraphicsContext class. For more information, see How to: Manually

Manage Buffered Graphics.

1.

Create an instance of the BufferedGraphics class by calling the Allocate method, as shown in the following code

example.

2.

Draw graphics to the graphics buffer by setting the Graphics property. For example:3.

When you have completed all of your drawing operations to the graphics buffer, call the Render method to render4.

.NET Framework (current version)

' This example assumes the existence of a form called Form1.

Dim currentContext As BufferedGraphicsContext

Dim myBuffer As BufferedGraphics

' Gets a reference to the current BufferedGraphicsContext.

currentContext = BufferedGraphicsManager.Current

' Creates a BufferedGraphics instance associated with Form1, and with

' dimensions the same size as the drawing surface of Form1.

myBuffer = currentContext.Allocate(Me.CreateGraphics, _

Me.DisplayRectangle)

' Draws an ellipse to the graphics buffer.

myBuffer.Graphics.DrawEllipse(Pens.Blue, Me.DisplayRectangle)

VB

VB

How to: Manually Render Buffered Graphics https://msdn.microsoft.com/en-us/library/ka0yazs1(d=printer,v=vs.110).aspx

1 of 2 05.09.2016 2:36

the buffer, either to the drawing surface associated with that buffer, or to a specified drawing surface, as shown in the

following code example.

After you are finished rendering graphics, call the Dispose method on the BufferedGraphics instance to free system

resources.

5.

See Also
BufferedGraphicsContext

BufferedGraphics

Double Buffered Graphics

How to: Manually Manage Buffered Graphics

© 2016 Microsoft

' Renders the contents of the buffer to the drawing surface associated

' with the buffer.

myBuffer.Render()

' Renders the contents of the buffer to the specified drawing surface.

myBuffer.Render(Me.CreateGraphics)

myBuffer.Dispose()

VB

VB

How to: Manually Render Buffered Graphics https://msdn.microsoft.com/en-us/library/ka0yazs1(d=printer,v=vs.110).aspx

2 of 2 05.09.2016 2:36

