
Using Managed Graphics Classes 1

Control.OnPaint Method (PaintEventArgs) 3

Getting Started with Graphics Programming 7

How to Create Graphics Objects for Drawing 9

How to Create a Pen 13

How to Set the Color of a Pen 14

How to Create a Solid Brush 15

How to Draw a Line on a Windows Form 16

How to Draw an Outlined Shape 17

How to Draw a Filled Rectangle on a Windows Form 19

How to Draw a Filled Ellipse on a Windows Form 20

How to Draw Text on a Windows Form 21

How to Draw Vertical Text on a Windows Form 23

How to Render Images with GDI+ 25

How to Create a Shaped Windows Form 27

How to Copy Pixels for Reducing Flicker in Windows Forms 28

Using a Pen to Draw Lines and Shapes 30

Using a Brush to Fill Shapes 31

Using a Gradient Brush to Fill Shapes 33

Working with Images, Bitmaps, Icons, and Metafiles 34

Alpha Blending Lines and Fills 36

Using Fonts and Text 37

Constructing and Drawing Curves 39

Constructing and Drawing Paths 40

Using Transformations in Managed GDI+ 41

Using Graphics Containers 42

Using Regions 43

Recoloring Images 44

Using Image Encoders and Decoders in Managed GDI+ 46

Using Double Buffering 48

Using Managed Graphics Classes

The following topics describe how to use the GDI+ API in the managed class framework.

In This Section

Getting Started with Graphics Programming

Describes how to accomplish basic tasks with GDI+.

Using a Pen to Draw Lines and Shapes

Demonstrates how to construct a pen and use it to draw a variety of lines and shapes.

Using a Brush to Fill Shapes

Demonstrates how to construct a brush and fill shapes with a variety of effects.

Using a Gradient Brush to Fill Shapes

Shows how to create and use different types of gradient brushes.

Working with Images, Bitmaps, Icons, and Metafiles

Demonstrates how to construct and manipulate images.

Alpha Blending Lines and Fills

Demonstrates how to achieve transparency for shapes and lines.

Using Fonts and Text

Shows how to draw text and use fonts and font families.

Constructing and Drawing Curves

Shows how to draw Cardinal and Bezier splines.

Constructing and Drawing Paths

Shows how to create figures using paths.

Using Transformations in Managed GDI+

Demonstrates matrix transformations.

Using Graphics Containers

Shows how to manage graphics object state and nested graphics containers.

Using Regions

Demonstrates hit testing and clipping with regions.

Recoloring Images

Demonstrates various aspects of manipulating colors.

Using Image Encoders and Decoders in Managed GDI+

Show how to use image encoders and decoders to manipulate images.

Double Buffered Graphics

.NET Framework (current version)

Using Managed Graphics Classes https://msdn.microsoft.com/en-us/library/yhez825d(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:35

Demonstrates how to reduce flicker with double buffering.

© 2016 Microsoft

Using Managed Graphics Classes https://msdn.microsoft.com/en-us/library/yhez825d(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:35

Control.OnPaint Method (PaintEventArgs)

Raises the Paint event.

Namespace: System.Windows.Forms

Assembly: System.Windows.Forms (in System.Windows.Forms.dll)

Syntax

Parameters

e

Type: System.Windows.Forms.PaintEventArgs

A PaintEventArgs that contains the event data.

Remarks
Raising an event invokes the event handler through a delegate. For more information, see Handling and Raising Events.

The OnPaint method also enables derived classes to handle the event without attaching a delegate. This is the preferred

technique for handling the event in a derived class.

Notes to Inheritors:
When overriding OnPaint in a derived class, be sure to call the base class's OnPaint method so that registered delegates

receive the event.

Examples
The following code example enables the user to drag an image or image file onto the form, and have it be displayed at

the point on which it is dropped. The OnPaint method is overridden to repaint the image each time the form is painted;

otherwise the image would only persist until the next repainting. The DragEnter event-handling method determines the

type of data being dragged into the form and provides the appropriate feedback. The DragDrop event-handling method

displays the image on the form, if an Image can be created from the data. Because the DragEventArgs.X and

.NET Framework (current version)

Protected Overridable Sub OnPaint (

e As PaintEventArgs

)

VB

Control.OnPaint Method (PaintEventArgs) (System.Windows.Forms) https://msdn.microsoft.com/en-us/library/system.windows.forms.control....

1 of 4 04.09.2016 22:52

DragEventArgs.Y values are screen coordinates, the example uses the PointToClient method to convert them to client

coordinates.

Private picture As Image

Private pictureLocation As Point

Public Sub New()

' Enable drag‐and‐drop operations.

Me.AllowDrop = True

End Sub

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

MyBase.OnPaint(e)

' If there is an image and it has a location,

' paint it when the Form is repainted.

If (Me.picture IsNot Nothing) And _

Not (Me.pictureLocation.Equals(Point.Empty)) Then

 e.Graphics.DrawImage(Me.picture, Me.pictureLocation)

End If

End Sub

Private Sub Form1_DragDrop(ByVal sender As Object, _

ByVal e As DragEventArgs) Handles MyBase.DragDrop

' Handle FileDrop data.

If e.Data.GetDataPresent(DataFormats.FileDrop) Then

' Assign the file names to a string array, in

' case the user has selected multiple files.

Dim files As String() = CType(e.Data.GetData(DataFormats.FileDrop), String())

Try

' Assign the first image to the 'picture' variable.

Me.picture = Image.FromFile(files(0))

' Set the picture location equal to the drop point.

Me.pictureLocation = Me.PointToClient(New Point(e.X, e.Y))

Catch ex As Exception

 MessageBox.Show(ex.Message)

Return

End Try

End If

' Handle Bitmap data.

If e.Data.GetDataPresent(DataFormats.Bitmap) Then

Try

' Create an Image and assign it to the picture variable.

Me.picture = CType(e.Data.GetData(DataFormats.Bitmap), Image)

' Set the picture location equal to the drop point.

Me.pictureLocation = Me.PointToClient(New Point(e.X, e.Y))

Catch ex As Exception

 MessageBox.Show(ex.Message)

Return

End Try

End If

VB

Control.OnPaint Method (PaintEventArgs) (System.Windows.Forms) https://msdn.microsoft.com/en-us/library/system.windows.forms.control....

2 of 4 04.09.2016 22:52

Version Information

' Force the form to be redrawn with the image.

Me.Invalidate()

End Sub

Private Sub Form1_DragEnter(ByVal sender As Object, _

ByVal e As DragEventArgs) Handles MyBase.DragEnter

' If the data is a file or a bitmap, display the copy cursor.

If e.Data.GetDataPresent(DataFormats.Bitmap) _

Or e.Data.GetDataPresent(DataFormats.FileDrop) Then

 e.Effect = DragDropEffects.Copy

Else

 e.Effect = DragDropEffects.None

End If

End Sub

' This example creates a PictureBox control on the form and draws to it.

' This example assumes that the Form_Load event handler method is connected

' to the Load event of the form.

Private pictureBox1 As New PictureBox()

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

MyBase.Load

' Dock the PictureBox to the form and set its background to white.

 pictureBox1.Dock = DockStyle.Fill

 pictureBox1.BackColor = Color.White

' Connect the Paint event of the PictureBox to the event handler method.

AddHandler pictureBox1.Paint, AddressOf Me.pictureBox1_Paint

' Add the PictureBox control to the Form.

Me.Controls.Add(pictureBox1)

End Sub 'Form1_Load

Private Sub pictureBox1_Paint(ByVal sender As Object, ByVal e As

System.Windows.Forms.PaintEventArgs)

' Create a local version of the graphics object for the PictureBox.

Dim g As Graphics = e.Graphics

' Draw a string on the PictureBox.

 g.DrawString("This is a diagonal line drawn on the control", _

New Font("Arial", 10), Brushes.Red, New PointF(30.0F, 30.0F))

' Draw a line in the PictureBox.

 g.DrawLine(System.Drawing.Pens.Red, pictureBox1.Left, _

 pictureBox1.Top, pictureBox1.Right, pictureBox1.Bottom)

End Sub 'pictureBox1_Paint

VB

Control.OnPaint Method (PaintEventArgs) (System.Windows.Forms) https://msdn.microsoft.com/en-us/library/system.windows.forms.control....

3 of 4 04.09.2016 22:52

.NET Framework

Available since 1.1

See Also
Paint

Control Class

System.Windows.Forms Namespace

Return to top

© 2016 Microsoft

Control.OnPaint Method (PaintEventArgs) (System.Windows.Forms) https://msdn.microsoft.com/en-us/library/system.windows.forms.control....

4 of 4 04.09.2016 22:52

Getting Started with Graphics Programming

This section shows how to get started using GDI+ in a Windows Forms application. The following topics show how to

complete several GDI+ tasks such as drawing and filling shapes and text.

In This Section

How to: Create Graphics Objects for Drawing

Shows how to create a Graphics object for drawing.

How to: Create a Pen

Shows how to create a pen.

How to: Set the Color of a Pen

Demonstrates how to set the color of a pen.

How to: Create a Solid Brush

Describes how to create a solid brush.

How to: Draw a Line on a Windows Form

Demonstrates how to draw a line.

How to: Draw an Outlined Shape

Describes how to draw a shape.

How to: Draw a Filled Rectangle on a Windows Form

Explains how to draw a rectangle.

How to: Draw a Filled Ellipse on a Windows Form

Shows how to draw a filled ellipse.

How to: Draw Text on a Windows Form

Describes how to draw text.

How to: Draw Vertical Text on a Windows Form

Shows how to draw vertical text.

How to: Render Images with GDI+

Demonstrates how to draw images.

How to: Create a Shaped Windows Form

Explains how to change the shape of a form.

How to: Copy Pixels for Reducing Flicker in Windows Forms

Explains how to copy pixels from one area to another.

Reference

.NET Framework (current version)

Getting Started with Graphics Programming https://msdn.microsoft.com/en-us/library/da0f23z7(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:41

System.Drawing

Describes this namespace and has links to all its members.

System.Windows.Forms

Describes this namespace and has links to all of its members.

© 2016 Microsoft

Getting Started with Graphics Programming https://msdn.microsoft.com/en-us/library/da0f23z7(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:41

How to: Create Graphics Objects for Drawing

Before you can draw lines and shapes, render text, or display and manipulate images with GDI+, you need to create a

Graphics object. The Graphics object represents a GDI+ drawing surface, and is the object that is used to create graphical

images.

There are two steps in working with graphics:

Creating a Graphics object.1.

Using the Graphics object to draw lines and shapes, render text, or display and manipulate images.2.

Creating a Graphics Object
A graphics object can be created in a variety of ways.

To create a graphics object

Receive a reference to a graphics object as part of the PaintEventArgs in the Paint event of a form or control. This is

usually how you obtain a reference to a graphics object when creating painting code for a control. Similarly, you

can also obtain a graphics object as a property of the PrintPageEventArgs when handling the PrintPage event for a

PrintDocument.

-or-

Call the CreateGraphics method of a control or form to obtain a reference to a Graphics object that represents the

drawing surface of that control or form. Use this method if you want to draw on a form or control that already

exists.

-or-

Create a Graphics object from any object that inherits from Image. This approach is useful when you want to alter

an already existing image.

The following sections give details about each of these processes.

PaintEventArgs in the Paint Event Handler
When programming the PaintEventHandler for controls or the PrintPage for a PrintDocument, a graphics object is

provided as one of the properties of PaintEventArgs or PrintPageEventArgs.

To obtain a reference to a Graphics object from the PaintEventArgs in the Paint event

.NET Framework (current version)

How to: Create Graphics Objects for Drawing https://msdn.microsoft.com/en-us/library/5y289054(d=printer,v=vs.110).aspx

1 of 4 04.09.2016 22:41

Declare the Graphics object.1.

Assign the variable to refer to the Graphics object passed as part of the PaintEventArgs.2.

Insert code to paint the form or control.

The following example shows how to reference a Graphics object from the PaintEventArgs in the Paint event:

3.

CreateGraphics Method
You can also use the CreateGraphics method of a control or form to obtain a reference to a Graphics object that

represents the drawing surface of that control or form.

To create a Graphics object with the CreateGraphics method

Call the CreateGraphics method of the form or control upon which you want to render graphics.

Create from an Image Object
Additionally, you can create a graphics object from any object that derives from the Image class.

To create a Graphics object from an Image

Call the Graphics.FromImage method, supplying the name of the Image variable from which you want to create a

Graphics object.

Private Sub Form1_Paint(sender As Object, pe As PaintEventArgs) Handles _

MyBase.Paint

' Declares the Graphics object and sets it to the Graphics object

' supplied in the PaintEventArgs.

Dim g As Graphics = pe.Graphics

' Insert code to paint the form here.

End Sub

Dim g as Graphics

' Sets g to a Graphics object representing the drawing surface of the

' control or form g is a member of.

g = Me.CreateGraphics

VB

VB

How to: Create Graphics Objects for Drawing https://msdn.microsoft.com/en-us/library/5y289054(d=printer,v=vs.110).aspx

2 of 4 04.09.2016 22:41

The following example shows how to use a Bitmap object:

Note

You can only create Graphics objects from nonindexed .bmp files, such as 16-bit, 24-bit, and 32-bit .bmp files. Each

pixel of nonindexed .bmp files holds a color, in contrast to pixels of indexed .bmp files, which hold an index to a color

table.

Drawing and Manipulating Shapes and Images

Dim myBitmap as New Bitmap("C:\Documents and Settings\Joe\Pics\myPic.bmp")

Dim g as Graphics = Graphics.FromImage(myBitmap)

VB

How to: Create Graphics Objects for Drawing https://msdn.microsoft.com/en-us/library/5y289054(d=printer,v=vs.110).aspx

3 of 4 04.09.2016 22:41

After it is created, a Graphics object may be used to draw lines and shapes, render text, or display and manipulate images.

The principal objects that are used with the Graphics object are:

The Pen class—Used for drawing lines, outlining shapes, or rendering other geometric representations.

The Brush class—Used for filling areas of graphics, such as filled shapes, images, or text.

The Font class—Provides a description of what shapes to use when rendering text.

The Color structure—Represents the different colors to display.

To use the Graphics object you have created

Work with the appropriate object listed above to draw what you need.

For more information, see the following topics:

To render See

Lines How to: Draw a Line on a Windows Form

Shapes How to: Draw an Outlined Shape

Text How to: Draw Text on a Windows Form

Images How to: Render Images with GDI+

See Also
Getting Started with Graphics Programming

Graphics and Drawing in Windows Forms

Lines, Curves, and Shapes

How to: Render Images with GDI+

© 2016 Microsoft

How to: Create Graphics Objects for Drawing https://msdn.microsoft.com/en-us/library/5y289054(d=printer,v=vs.110).aspx

4 of 4 04.09.2016 22:41

How to: Create a Pen

This example creates a Pen object.

Example

Robust Programming
After you have finished using objects that consume system resources, such as Pen objects, you should call Dispose on them.

See Also
Pen

Getting Started with Graphics Programming

Pens, Lines, and Rectangles in GDI+

© 2016 Microsoft

.NET Framework (current version)

Dim myPen As System.Drawing.Pen

myPen = New System.Drawing.Pen(System.Drawing.Color.Tomato)

VB

How to: Create a Pen https://msdn.microsoft.com/en-us/library/1903x50d(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:49

How to: Set the Color of a Pen

This example changes the color of a pre-existing Pen object

Example

Compiling the Code
This example requires:

A Pen object named myPen.

Robust Programming
You should call Dispose on objects that consume system resources (such as Pen objects) after you are finished using them.

See Also
Pen

Getting Started with Graphics Programming

How to: Create a Pen

Using a Pen to Draw Lines and Shapes

Pens, Lines, and Rectangles in GDI+

© 2016 Microsoft

.NET Framework (current version)

myPen.Color = System.Drawing.Color.PeachPuff

VB

How to: Set the Color of a Pen https://msdn.microsoft.com/en-us/library/yw54xck3(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:50

How to: Create a Solid Brush

This example creates a SolidBrush object that can be used by a Graphics object for filling shapes.

Example

Robust Programming
After you have finished using them, you should call Dispose on objects that consume system resources, such as brush

objects.

See Also
SolidBrush

Brush

Getting Started with Graphics Programming

Brushes and Filled Shapes in GDI+

Using a Brush to Fill Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim myBrush As New System.Drawing.SolidBrush(System.Drawing.Color.Red)

Dim formGraphics As System.Drawing.Graphics

formGraphics = Me.CreateGraphics()

formGraphics.FillEllipse(myBrush, New Rectangle(0, 0, 200, 300))

myBrush.Dispose()

formGraphics.Dispose()

VB

How to: Create a Solid Brush https://msdn.microsoft.com/en-us/library/sk9tw65x(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:50

How to: Draw a Line on a Windows Form

This example draws a line on a form. Typically, when you draw on a form, you handle the form’s Paint event and perform the

drawing using the Graphics property of the PaintEventArgs, as shown in this example

Example

Compiling the Code
The preceding example is designed for use with Windows Forms, and it requires PaintEventArgs e, which is a parameter of

the Paint event handler.

Robust Programming
You should always call Dispose on any objects that consume system resources, such as Pen objects.

See Also
DrawLine

OnPaint

Getting Started with Graphics Programming

Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

© 2016 Microsoft

.NET Framework (current version)

Dim pen As New Pen(Color.FromArgb(255, 0, 0, 0))

e.Graphics.DrawLine(pen, 20, 10, 300, 100)

VB

How to: Draw a Line on a Windows Form https://msdn.microsoft.com/en-us/library/cyh3c8h8(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:51

How to: Draw an Outlined Shape

This example draws outlined ellipses and rectangles on a form.

Example

Compiling the Code
You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is resized or

obscured by another form. To make your content automatically repaint, you should override the OnPaint method.

Robust Programming
You should always call Dispose on any objects that consume system resources, such as Pen and Graphics objects.

See Also
DrawEllipse

OnPaint

DrawRectangle

Getting Started with Graphics Programming

Using a Pen to Draw Lines and Shapes

Graphics and Drawing in Windows Forms

.NET Framework (current version)

Private Sub DrawEllipse()

Dim myPen As New System.Drawing.Pen(System.Drawing.Color.Red)

Dim formGraphics As System.Drawing.Graphics

 formGraphics = Me.CreateGraphics()

 formGraphics.DrawEllipse(myPen, New Rectangle(0, 0, 200, 300))

 myPen.Dispose()

 formGraphics.Dispose()

End Sub

Private Sub DrawRectangle()

Dim myPen As New System.Drawing.Pen(System.Drawing.Color.Red)

Dim formGraphics As System.Drawing.Graphics

 formGraphics = Me.CreateGraphics()

 formGraphics.DrawRectangle(myPen, New Rectangle(0, 0, 200, 300))

 myPen.Dispose()

 formGraphics.Dispose()

End Sub

VB

How to: Draw an Outlined Shape https://msdn.microsoft.com/en-us/library/785scy3c(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:53

© 2016 Microsoft

How to: Draw an Outlined Shape https://msdn.microsoft.com/en-us/library/785scy3c(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:53

How to: Draw a Filled Rectangle on a
Windows Form

This example draws a filled rectangle on a form.

Example

Compiling the Code
You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is resized or

obscured by another form. To make your content automatically repaint, you should override the OnPaint method.

Robust Programming
You should always call Dispose on any objects that consume system resources, such as Brush and Graphics objects.

See Also
FillRectangle

OnPaint

Getting Started with Graphics Programming

Graphics and Drawing in Windows Forms

Using a Pen to Draw Lines and Shapes

Brushes and Filled Shapes in GDI+

© 2016 Microsoft

.NET Framework (current version)

Dim myBrush As New System.Drawing.SolidBrush(System.Drawing.Color.Red)

Dim formGraphics As System.Drawing.Graphics

formGraphics = Me.CreateGraphics()

formGraphics.FillRectangle(myBrush, New Rectangle(0, 0, 200, 300))

myBrush.Dispose()

formGraphics.Dispose()

VB

How to: Draw a Filled Rectangle on a Windows Form https://msdn.microsoft.com/en-us/library/ztxk24yx(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:53

How to: Draw a Filled Ellipse on a Windows
Form

This example draws a filled ellipse on a form.

Example

Compiling the Code
You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is resized or

obscured by another form. To make your content automatically repaint, you should override the OnPaint method.

Robust Programming
You should always call Dispose on any objects that consume system resources, such as Brush and Graphics objects.

See Also
Graphics and Drawing in Windows Forms

Getting Started with Graphics Programming

Alpha Blending Lines and Fills

Using a Brush to Fill Shapes

© 2016 Microsoft

.NET Framework (current version)

Dim myBrush As New System.Drawing.SolidBrush(System.Drawing.Color.Red)

Dim formGraphics As System.Drawing.Graphics

formGraphics = Me.CreateGraphics()

formGraphics.FillEllipse(myBrush, New Rectangle(0, 0, 200, 300))

myBrush.Dispose()

formGraphics.Dispose()

VB

How to: Draw a Filled Ellipse on a Windows Form https://msdn.microsoft.com/en-us/library/h34kh0x2(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:53

How to: Draw Text on a Windows Form

The following code example shows how to use the DrawString method of the Graphics to draw text on a form. Alternatively,

you can use TextRenderer for drawing text on a form. For more information, see How to: Draw Text with GDI.

Example

Compiling the Code
You cannot call the DrawString method in the Load event handler. The drawn content will not be redrawn if the form is

resized or obscured by another form. To make your content automatically repaint, you should override the OnPaint method.

Robust Programming
The following conditions may cause an exception:

The Arial font is not installed.

See Also
DrawString

DrawText

FormatFlags

StringFormatFlags

.NET Framework (current version)

Public Sub DrawString()

Dim formGraphics As System.Drawing.Graphics = Me.CreateGraphics()

Dim drawString As String = "Sample Text"

Dim drawFont As New System.Drawing.Font("Arial", 16)

Dim drawBrush As New _

 System.Drawing.SolidBrush(System.Drawing.Color.Black)

Dim x As Single = 150.0

Dim y As Single = 50.0

Dim drawFormat As New System.Drawing.StringFormat

 formGraphics.DrawString(drawString, drawFont, drawBrush, _

 x, y, drawFormat)

 drawFont.Dispose()

 drawBrush.Dispose()

 formGraphics.Dispose()

End Sub

VB

How to: Draw Text on a Windows Form https://msdn.microsoft.com/en-us/library/9why95hd(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:54

TextFormatFlags

OnPaint

Getting Started with Graphics Programming

How to: Draw Text with GDI

© 2016 Microsoft

How to: Draw Text on a Windows Form https://msdn.microsoft.com/en-us/library/9why95hd(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:54

How to: Draw Vertical Text on a Windows
Form

The following code example shows how to draw vertical text on a form by using the DrawString method of Graphics.

Example

Compiling the Code
You cannot call this method in the Load event handler. The drawn content will not be redrawn if the form is resized or

obscured by another form. To make your content automatically repaint, you should override the OnPaint method.

Robust Programming
The following conditions may cause an exception:

The Arial font is not installed.

See Also
DrawString

FormatFlags

.NET Framework (current version)

Public Sub DrawVerticalString()

Dim formGraphics As System.Drawing.Graphics = Me.CreateGraphics()

Dim drawString As String = "Sample Text"

Dim drawFont As New System.Drawing.Font("Arial", 16)

Dim drawBrush As New _

 System.Drawing.SolidBrush(System.Drawing.Color.Black)

Dim x As Single = 150.0

Dim y As Single = 50.0

Dim drawFormat As New System.Drawing.StringFormat

 drawFormat.FormatFlags = StringFormatFlags.DirectionVertical

 formGraphics.DrawString(drawString, drawFont, drawBrush, _

 x, y, drawFormat)

 drawFont.Dispose()

 drawBrush.Dispose()

 formGraphics.Dispose()

End Sub

VB

How to: Draw Vertical Text on a Windows Form https://msdn.microsoft.com/en-us/library/k7282y7x(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:54

StringFormatFlags

OnPaint

Getting Started with Graphics Programming

Using Fonts and Text

© 2016 Microsoft

How to: Draw Vertical Text on a Windows Form https://msdn.microsoft.com/en-us/library/k7282y7x(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:54

How to: Render Images with GDI+

You can use GDI+ to render images that exist as files in your applications. You do this by creating a new object of an Image

class (such as Bitmap), creating a Graphics object that refers to the drawing surface you want to use, and calling the

DrawImage method of the Graphics object. The image will be painted onto the drawing surface represented by the graphics

class. You can use the Image Editor to create and edit image files at design time, and render them with GDI+ at run time. For

more information, see Image Editor for Icons.

To render an image with GDI+

Create an object representing the image you want to display. This object must be a member of a class that inherits

from Image, such as Bitmap or Metafile. An example is shown:

1.

Create a Graphics object that represents the drawing surface you want to use. For more information, see How to:

Create Graphics Objects for Drawing.

2.

Call the DrawImage of your graphics object to render the image. You must specify both the image to be drawn, and

the coordinates where it is to be drawn.

3.

.NET Framework (current version)

' Uses the System.Environment.GetFolderPath to get the path to the

' current user's MyPictures folder.

Dim myBitmap as New Bitmap _

 (System.Environment.GetFolderPath _

 (System.Environment.SpecialFolder.MyPictures))

' Creates a Graphics object that represents the drawing surface of

' Button1.

Dim g as Graphics = Button1.CreateGraphics

g.DrawImage(myBitmap, 1, 1)

VB

VB

VB

How to: Render Images with GDI+ https://msdn.microsoft.com/en-us/library/8802zys9(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:55

See Also
Getting Started with Graphics Programming

How to: Create Graphics Objects for Drawing

Pens, Lines, and Rectangles in GDI+

How to: Draw Text on a Windows Form

Graphics and Drawing in Windows Forms

Drawing Lines or Closed Figures (Image Editor for Icons)

Image Editor for Icons

© 2016 Microsoft

How to: Render Images with GDI+ https://msdn.microsoft.com/en-us/library/8802zys9(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:55

How to: Create a Shaped Windows Form

This example gives a form an elliptical shape that resizes with the form.

Example

Compiling the Code
This example requires:

References to the System.Windows.Forms and System.Drawing namespaces.

This example overrides the OnPaint method to change the shape of the form. To use this code, copy the method declaration

as well as the drawing code inside the method.

See Also
OnPaint

Region

System.Drawing

AddEllipse

Region

Getting Started with Graphics Programming

© 2016 Microsoft

.NET Framework (current version)

Protected Overrides Sub OnPaint(_

ByVal e As System.Windows.Forms.PaintEventArgs)

Dim shape As New System.Drawing.Drawing2D.GraphicsPath

 shape.AddEllipse(0, 0, Me.Width, Me.Height)

Me.Region = New System.Drawing.Region(shape)

End Sub

VB

How to: Create a Shaped Windows Form https://msdn.microsoft.com/en-us/library/f152hbx4(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:55

How to: Copy Pixels for Reducing Flicker in
Windows Forms

When you animate a simple graphic, users can sometimes encounter flicker or other undesirable visual effects. One way to

limit this problem is to use a "bitblt" process on the graphic. Bitblt is the "bit-block transfer" of the color data from an origin

rectangle of pixels to a destination rectangle of pixels.

With Windows Forms, bitblt is accomplished using the CopyFromScreen method of the Graphics class. In the parameters of

the method, you specify the source and destination (as points), the size of the area to be copied, and the graphics object

used to draw the new shape.

In the example below, a shape is drawn on the form in its Paint event handler. Then, the CopyFromScreen method is used to

duplicate the shape.

Note

Setting the form's DoubleBuffered property to true will make graphics-based code in the Paint event be double-

buffered. While this will not have any discernable performance gains when using the code below, it is something to keep

in mind when working with more complex graphics-manipulation code.

Example

Compiling the Code
The code above is run in the form's Paint event handler so that the graphics persist when the form is redrawn. As such, do

not call graphics-related methods in the Load event handler, because the drawn content will not be redrawn if the form is

resized or obscured by another form.

.NET Framework (current version)

Private Sub Form1_Paint(ByVal sender As Object, ByVal e As _

 System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

' Draw a circle with a bar on top.

 e.Graphics.FillEllipse(Brushes.DarkBlue, New Rectangle _

 (10, 10, 60, 60))

 e.Graphics.FillRectangle(Brushes.Khaki, New Rectangle _

 (20, 30, 60, 10))

' Copy the graphic to a new location.

 e.Graphics.CopyFromScreen(New Point(10, 10), New Point _

 (100, 100), New Size(70, 70))

End Sub

VB

How to: Copy Pixels for Reducing Flicker in Windows Forms https://msdn.microsoft.com/en-us/library/db8dsek8(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:55

See Also
CopyPixelOperation

Graphics.FillRectangle

Control.OnPaint

Graphics and Drawing in Windows Forms

Using a Pen to Draw Lines and Shapes

© 2016 Microsoft

How to: Copy Pixels for Reducing Flicker in Windows Forms https://msdn.microsoft.com/en-us/library/db8dsek8(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:55

Using a Pen to Draw Lines and Shapes

Use GDI+ Pen objects to draw line segments, curves, and the outlines of shapes. In this section, line refers to any of these,

unless specified to mean only a line segment. Set the properties of a pen to control the color, width, alignment, and style of

lines drawn with that pen.

In This Section

How to: Use a Pen to Draw Lines

Explains how to draw lines.

How to: Use a Pen to Draw Rectangles

Describes how to draw rectangles.

How to: Set Pen Width and Alignment

Explains how to change the width and alignment of a Pen object.

How to: Draw a Line with Line Caps

Describes how to add end caps when drawing a line.

How to: Join Lines

Shows how to join two lines.

How to: Draw a Custom Dashed Line

Describes how to draw a dashed line.

How to: Draw a Line Filled with a Texture

Explains how to draw a texture-filled line.

Reference

Pen

Describes this class and has links to all its members.

© 2016 Microsoft

.NET Framework (current version)

Using a Pen to Draw Lines and Shapes https://msdn.microsoft.com/en-us/library/bs15ezc5(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:42

Using a Brush to Fill Shapes

A GDI+ Brush object is used to fill the interior of a closed shape. GDI+ defines several fill styles: solid color, hatch pattern,

image texture, and color gradient.

In This Section

How to: Fill a Shape with a Solid Color

Describes how to use a solid-color brush to fill shapes.

How to: Fill a Shape with a Hatch Pattern

Shows how to use a hatch brush to fill shapes.

How to: Fill a Shape with an Image Texture

Explains how to use a texture brush to fill shapes.

How to: Tile a Shape with an Image

Describes how to tile an image in a shape.

Reference

System.Drawing.Brush

Describes this class and contains links to all of its members

System.Drawing.SolidBrush

Describes this class and contains links to all of its members

System.Drawing.TextureBrush

Describes this class and contains links to all of its members.

System.Drawing.Drawing2D.HatchBrush

Describes this class and contains links to all of its members.

System.Drawing.Drawing2D.PathGradientBrush

Describes this class and contains links to all of its members.

Related Sections

Using a Gradient Brush to Fill Shapes

Contains a list of topics that show how to use a gradient brush.

Using a Pen to Draw Lines and Shapes

Provides a list of topics that demonstrate how to draw outlined shapes.

Using Managed Graphics Classes

.NET Framework (current version)

Using a Brush to Fill Shapes https://msdn.microsoft.com/en-us/library/0sb14a48(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:43

Contains a list of topics describing how to use managed graphics classes.

© 2016 Microsoft

Using a Brush to Fill Shapes https://msdn.microsoft.com/en-us/library/0sb14a48(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:43

Using a Gradient Brush to Fill Shapes

You can use a gradient brush to fill a shape with a gradually changing color. For example, you can use a horizontal gradient

to fill a shape with color that changes gradually as you move from the left edge of the shape to the right edge. Imagine a

rectangle with a left edge that is black (represented by red, green, and blue components 0, 0, 0) and a right edge that is red

(represented by 255, 0, 0). If the rectangle is 256 pixels wide, the red component of a given pixel will be one greater than the

red component of the pixel to its left. The leftmost pixel in a row has color components (0, 0, 0), the second pixel has (1, 0, 0),

the third pixel has (2, 0, 0), and so on, until you get to the rightmost pixel, which has color components (255, 0, 0). These

interpolated color values make up the color gradient.

A linear gradient changes color as you move horizontally, vertically, or parallel to a specified slanted line. A path gradient

changes color as you move about the interior and boundary of a path. You can customize path gradients to achieve a wide

variety of effects.

The following illustration shows a rectangle filled with a linear gradient brush and an ellipse filled with a path gradient brush.

In This Section

How to: Create a Linear Gradient

Shows how to create a linear gradient using the LinearGradientBrush class.

How to: Create a Path Gradient

Describes how to create a path gradient using the PathGradientBrush class.

How to: Apply Gamma Correction to a Gradient

Explains how to use gamma correction with a gradient brush.

Reference

System.Drawing.Drawing2D.LinearGradientBrush

Contains a description of this class and has links to all of its members.

System.Drawing.Drawing2D.PathGradientBrush

Contains a description of this class and has links to all of its members.

© 2016 Microsoft

.NET Framework (current version)

Using a Gradient Brush to Fill Shapes https://msdn.microsoft.com/en-us/library/s6fxh562(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:43

Working with Images, Bitmaps, Icons, and
Metafiles

GDI+ provides the Bitmap class for working with raster images and the Metafile class for working with vector images. The

Bitmap and the Metafile classes both inherit from the Image class.

In This Section

How to: Draw an Existing Bitmap to the Screen

Describes how to load and draw bitmaps.

How to: Load and Display Metafiles

Shows how to load and draw metafiles.

Cropping and Scaling Images in GDI+

Explains how to crop and scale vector and raster images.

How to: Rotate, Reflect, and Skew Images

Describes how to draw rotated, reflected and skewed images.

How to: Use Interpolation Mode to Control Image Quality During Scaling

Shows how to use the InterpolationMode enumeration to change image quality.

How to: Create Thumbnail Images

Describes how to create thumbnail images.

How to: Improve Performance by Avoiding Automatic Scaling

Explains how to draw an image without automatic scaling.

How to: Read Image Metadata

Describes how to read metadata from an image.

How to: Create a Bitmap at Run Time

Shows how to draw a bitmap at runtime.

How to: Extract the Icon Associated with a File in Windows Forms

Describes how to extract an icon that is an embedded resource of a file.

Reference

Image

Describes this class and has links to all of its members.

Metafile

.NET Framework (current version)

Working with Images, Bitmaps, Icons, and Metafiles https://msdn.microsoft.com/en-us/library/a343dky2(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:43

Describes this class and has links to all of its members.

Bitmap

Describes this class and has links to all of its members.

Related Sections

Images, Bitmaps, and Metafiles

Contains links to topics that discuss different types of bitmaps and manipulating them in your applications.

© 2016 Microsoft

Working with Images, Bitmaps, Icons, and Metafiles https://msdn.microsoft.com/en-us/library/a343dky2(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:43

Alpha Blending Lines and Fills

In GDI+, a color is a 32-bit value with 8 bits each for alpha, red, green, and blue. The alpha value indicates the transparency

of the color — the extent to which the color is blended with the background color. Alpha values range from 0 through 255,

where 0 represents a fully transparent color, and 255 represents a fully opaque color.

Alpha blending is a pixel-by-pixel blending of source and background color data. Each of the three components (red, green,

blue) of a given source color is blended with the corresponding component of the background color according to the

following formula:

displayColor = sourceColor × alpha / 255 + backgroundColor × (255 – alpha) / 255

For example, suppose the red component of the source color is 150 and the red component of the background color is 100.

If the alpha value is 200, the red component of the resultant color is calculated as follows:

150 × 200 / 255 + 100 × (255 – 200) / 255 = 139

In This Section

How to: Draw Opaque and Semitransparent Lines

Shows how to draw alpha-blended lines.

How to: Draw with Opaque and Semitransparent Brushes

Explains how to alpha-blend with brushes.

How to: Use Compositing Mode to Control Alpha Blending

Describes how to control alpha blending using CompositingMode.

How to: Use a Color Matrix to Set Alpha Values in Images

Explains how to use a ColorMatrix object to control alpha blending.

© 2016 Microsoft

.NET Framework (current version)

Alpha Blending Lines and Fills https://msdn.microsoft.com/en-us/library/e3f5k4xc(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:44

Using Fonts and Text

There are several classes offered by GDI+ and GDI for drawing text on Windows Forms. The GDI+ Graphics class has several

DrawString methods that allow you to specify various features of text, such as location, bounding rectangle, font, and

format. In addition, you can draw and measure text with GDI using the static DrawText and MeasureText methods offered by

the TextRenderer class. The GDI methods also allow you to specify location, font, and format. You can choose either GDI or

GDI+ for text rendering; however, GDI generally offers better performance and more accurate text measuring. Other classes

that contribute to text rendering include FontFamily, Font, StringFormat, and TextFormatFlags.

In This Section

How to: Construct Font Families and Fonts

Shows how to create Font and FontFamily objects.

How to: Draw Text at a Specified Location

Describes how to draw text in a certain location using GDI+ and GDI.

How to: Draw Wrapped Text in a Rectangle

Explains how to draw text in a rectangle using GDI+ and GDI.

How to: Draw Text with GDI

Demonstrates how to use GDI for drawing text.

How to: Align Drawn Text

Shows how to format GDI+ and GDI text.

How to: Create Vertical Text

Describes how to draw vertically aligned text with GDI+.

How to: Set Tab Stops in Drawn Text

Shows how draw text with tab stops with GDI+.

How to: Enumerate Installed Fonts

Explains how to list the names of installed fonts.

How to: Create a Private Font Collection

Describes how to create a PrivateFontCollection object.

How to: Obtain Font Metrics

Shows how to obtain font metrics such as cell ascent and descent.

How to: Use Antialiasing with Text

Explains how to use antialiasing when drawing text.

Reference

Font

.NET Framework (current version)

Using Fonts and Text https://msdn.microsoft.com/en-us/library/a3a2bads(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:44

Describes this class and contains links to all of its members.

FontFamily

Describes this class and contains links to all of its members.

PrivateFontCollection

Describes this class and contains links to all of its members.

TextRenderer

Describes this class and contains links to all of its members.

TextFormatFlags

Describes this class and contains links to all of its members.

© 2016 Microsoft

Using Fonts and Text https://msdn.microsoft.com/en-us/library/a3a2bads(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:44

Constructing and Drawing Curves

GDI+ supports several types of curves: ellipses, arcs, cardinal splines, and Bézier splines. An ellipse is defined by its bounding

rectangle; an arc is a portion of an ellipse defined by a starting angle and a sweep angle. A cardinal spline is defined by an

array of points and a tension parameter — the curve passes smoothly through each point in the array, and the tension

parameter influences the way the curve bends. A Bézier spline is defined by two endpoints and two control points the curve

does not pass through the control points, but the control points influence the direction and bend as the curve goes from

one endpoint to the other.

In This Section

How to: Draw Cardinal Splines

Describes cardinal splines and how to draw them.

How to: Draw a Single Bézier Spline

Describes a Bézier spline and how to draw one.

How to: Draw a Sequence of Bézier Splines

Explains how to draw several Bézier splines in sequence.

© 2016 Microsoft

.NET Framework (current version)

Constructing and Drawing Curves https://msdn.microsoft.com/en-us/library/keca22y2(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:45

Constructing and Drawing Paths

A path is a sequence of graphics primitives (lines, rectangles, curves, text, and the like) that can be manipulated and drawn as

a single unit. A path can be divided into figures that are either open or closed. A figure can contain several primitives.

You can draw a path by calling the DrawPath method of the Graphics class, and you can fill a path by calling the FillPath

method of the Graphics class.

In This Section

How to: Create Figures from Lines, Curves, and Shapes

Shows how to use a GraphicsPath to create figures.

How to: Fill Open Figures

Explains how to fill a GraphicsPath.

How to: Flatten a Curved Path into a Line

Shows how to flatten a GraphicsPath.

Reference

GraphicsPath

Describes this class and contains links to all of its members.

© 2016 Microsoft

.NET Framework (current version)

Constructing and Drawing Paths https://msdn.microsoft.com/en-us/library/kz53wdz9(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:45

Using Transformations in Managed GDI+

Affine transformations include rotating, scaling, reflecting, shearing, and translating. In GDI+, the Matrix class provides the

foundation for performing affine transformations on vector drawings, images, and text.

In This Section

Using the World Transformation

Describes how to scale and rotate graphics using a world transformation matrix.

Why Transformation Order Is Significant

Demonstrates why the order of transform operations is important.

Reference

Matrix

Describes this class and contains links to all of its members.

© 2016 Microsoft

.NET Framework (current version)

Using Transformations in Managed GDI+ https://msdn.microsoft.com/en-us/library/7e1w5dhw(d=printer,v=vs.110)...

1 of 1 04.09.2016 22:45

Using Graphics Containers

A Graphics object provides methods such as DrawLine, DrawImage, and DrawString for displaying vector images, raster

images, and text. A Graphics object also has several properties that influence the quality and orientation of the items that are

drawn. For example, the smoothing mode property determines whether antialiasing is applied to lines and curves, and the

world transformation property influences the position and rotation of the items that are drawn.

A Graphics object is associated with a particular display device. When you use a Graphics object to draw in a window, the

Graphics object is also associated with that particular window.

A Graphics object can be thought of as a container because it holds a set of properties that influence drawing and it is linked

to device-specific information. You can create a secondary container within an existing Graphics object by calling the

BeginContainer method of that Graphics object.

In This Section

Managing the State of a Graphics Object

Describes how manage the quality settings, clipping area and transformations of a Graphics object.

Using Nested Graphics Containers

Shows how to use containers to control the state of the Graphics object.

© 2016 Microsoft

.NET Framework (current version)

Using Graphics Containers https://msdn.microsoft.com/en-us/library/2wsbae48(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:46

Using Regions

The GDI+ Region class allows you to define a custom shape. The shape can be made up of lines, polygons, and curves.

Two common uses for regions are hit testing and clipping. Hit testing is determining whether the mouse was clicked in a

certain region of the screen. Clipping is restricting drawing to a certain region.

In This Section

How to: Use Hit Testing with a Region

Shows how to use a Region to perform a hit test.

How to: Use Clipping with a Region

Explains how to set the clipping region for a Graphics object.

Reference

Region

Describes this class and contains links to all of its members.

Graphics

Describes this class and contains links to all of its members.

© 2016 Microsoft

.NET Framework (current version)

Using Regions https://msdn.microsoft.com/en-us/library/2s68e7w1(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:46

Recoloring Images

Recoloring is the process of adjusting image colors. Some examples of recoloring are changing one color to another,

adjusting a color's intensity relative to another color, adjusting the brightness or contrast of all colors, and converting colors

to shades of gray.

In This Section

How to: Use a Color Matrix to Transform a Single Color

Discusses using a color matrix to transform a color.

How to: Translate Image Colors

Shows how to translate colors using a color matrix.

Using Transformations to Scale Colors

Explains how to scale colors using a color matrix.

How to: Rotate Colors

Describes how to rotate a color using a color matrix.

How to: Shear Colors

Defines shearing and explains how to shear colors using a color matrix.

How to: Use a Color Remap Table

Defines remapping and shows how to use a color remap table.

Reference

ColorMatrix

Describes this class and contains links to all of its members.

ColorMap

Describes this class and contains links to all of its members.

Related Sections

Images, Bitmaps, and Metafiles

Provides a list of topics regarding the different types of images.

Working with Images, Bitmaps, Icons, and Metafiles

Contains a list of topics that show how to use different types of images.

Using Managed Graphics Classes

Contains a list of topics describing how to use managed graphics classes.

.NET Framework (current version)

Recoloring Images https://msdn.microsoft.com/en-us/library/a7xw19wh(d=printer,v=vs.110)...

1 of 2 04.09.2016 22:47

© 2016 Microsoft

Recoloring Images https://msdn.microsoft.com/en-us/library/a7xw19wh(d=printer,v=vs.110)...

2 of 2 04.09.2016 22:47

Using Image Encoders and Decoders in
Managed GDI+

The System.Drawing namespace provides the Image and Bitmap classes for storing and manipulating images. By using

image encoders in GDI+, you can write images from memory to disk. By using image decoders in GDI+, you can load images

from disk into memory. An encoder translates the data in an Image or Bitmap object into a designated disk file format. A

decoder translates the data in a disk file to the format required by the Image and Bitmap objects.

GDI+ has built-in encoders and decoders that support the following file types:

BMP

GIF

JPEG

PNG

TIFF

GDI+ also has built-in decoders that support the following file types:

WMF

EMF

ICON

The following topics discuss encoders and decoders in more detail:

In This Section

How to: List Installed Encoders

Describes how to list the encoders available on a computer.

How to: List Installed Decoders

Describes how to list the decoders available on a computer.

How to: Determine the Parameters Supported by an Encoder

Describes how to list the EncoderParameters supported by an encoder.

How to: Convert a BMP image to a PNG image

Describes how to save a image in a different image format.

How to: Set JPEG Compression Level

.NET Framework (current version)

Using Image Encoders and Decoders in Managed GDI+ https://msdn.microsoft.com/en-us/library/bb882579(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:47

Describes how to change the quality level of an image.

Reference

Image

Bitmap

ImageCodecInfo

EncoderParameter

Encoder

Related Sections

About GDI+ Managed Code

Images, Bitmaps, and Metafiles

© 2016 Microsoft

Using Image Encoders and Decoders in Managed GDI+ https://msdn.microsoft.com/en-us/library/bb882579(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:47

Using Double Buffering

You can use double-buffered graphics to reduce flicker in your applications that contain complex painting operations. The

.NET Framework contains built-in support for double-buffering or you can manage and render graphics manually.

In This Section

Double Buffered Graphics

Introduces double buffering concept and outlines .NET Framework support.

How to: Reduce Graphics Flicker with Double Buffering for Forms and Controls

Demonstrates how to use the default double buffering support in the .NET Framework.

How to: Manually Manage Buffered Graphics

Shows how to manage double buffering in applications.

How to: Manually Render Buffered Graphics

Demonstrates how to render double-buffered graphics.

Reference

SetStyle ,

Control method that enables double buffering.

BufferedGraphicsContext ,

Provides methods for creating graphics buffers.

BufferedGraphicsManager

Provides access to the buffered graphics context for a application domain.

© 2016 Microsoft

.NET Framework (current version)

Using Double Buffering https://msdn.microsoft.com/en-us/library/ms229622(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:48

