
Graphics and Drawing in Windows Forms 1

Overview of Graphics 3

Three Categories of Graphics Services 4

Structure of the Graphics Interface 6

About GDI+ Managed Code 7

Lines, Curves, and Shapes 9

Vector Graphics Overview 10

Pens, Lines, and Rectangles in GDI+ 12

Ellipses and Arcs in GDI+ 15

Polygons in GDI+ 17

Cardinal Splines in GDI+ 19

Bézier Splines in GDI+ 21

Graphics Paths in GDI+ 23

Brushes and Filled Shapes in GDI+ 26

Open and Closed Curves in GDI+ 29

Regions in GDI+ 31

Restricting the Drawing Surface in GDI+ 33

Restricting the Drawing Surface in GDI+ 34

Images, Bitmaps, and Metafiles 35

Types of Bitmaps 36

Metafiles in GDI+ 40

Drawing, Positioning, and Cloning Images in GDI+ 41

Cropping and Scaling Images in GDI+ 43

Coordinate Systems and Transformations 45

Types of Coordinate Systems 46

Matrix Representation of Transformations 50

Global and Local Transformations 55

Graphics and Drawing in Windows Forms

The common language runtime uses an advanced implementation of the Windows Graphics Device Interface (GDI) called

GDI+. With GDI+ you can create graphics, draw text, and manipulate graphical images as objects. GDI+ is designed to offer

performance and ease of use. You can use GDI+ to render graphical images on Windows Forms and controls. Although you

cannot use GDI+ directly on Web Forms, you can display graphical images through the Image Web Server control.

In this section, you will find topics that introduce the fundamentals of GDI+ programming. Although not intended to be a

comprehensive reference, this section includes information about the Graphics, Pen, Brush, and Color objects, and explains

how to perform such tasks as drawing shapes, drawing text, or displaying images. For more information, see "GDI+

Reference" in the MSDN library at http://msdn.microsoft.com/library.

In This Section

Graphics Overview (Windows Forms)

Provides an introduction to the graphics-related managed classes.

About GDI+ Managed Code

Provides information about the managed GDI+ classes.

Using Managed Graphics Classes

Demonstrates how to complete a variety of tasks using the GDI+ managed classes.

Reference

System.Drawing

Provides access to GDI+ basic graphics functionality.

System.Drawing.Drawing2D

Provides advanced two-dimensional and vector graphics functionality.

System.Drawing.Imaging

Provides advanced GDI+ imaging functionality.

System.Drawing.Text

Provides advanced GDI+ typography functionality. The classes in this namespace can be used to create and use

collections of fonts.

System.Drawing.Printing

Provides printing functionality.

Related Sections

Custom Control Painting and Rendering

.NET Framework (current version)

Graphics and Drawing in Windows Forms https://msdn.microsoft.com/en-us/library/a36fascx(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:21

Details how to provide code for painting controls.

© 2016 Microsoft

Graphics and Drawing in Windows Forms https://msdn.microsoft.com/en-us/library/a36fascx(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:21

Overview of Graphics

GDI+ is an application programming interface (API) that forms the subsystem of the Microsoft Windows operating

system. GDI+ is responsible for displaying information on screens and printers. As its name suggests, GDI+ is the successor

to GDI, the Graphics Device Interface included with earlier versions of Windows.

Managed Class Interface
The GDI+ API is exposed through a set of classes deployed as managed code. This set of classes is called the managed

class interface to GDI+. The following namespaces make up the managed class interface:

System.Drawing

System.Drawing.Drawing2D

System.Drawing.Imaging

System.Drawing.Text

System.Drawing.Printing

With a Graphics Device Interface, such as GDI+, you can display information on a screen or printer without having to be

concerned about the details of a particular display device. The programmer makes calls to methods provided by GDI+

classes. Those methods, in turn, make the appropriate calls to specific device drivers. GDI+ insulates the application from

the graphics hardware. It is this insulation that enables a programmer to create device-independent applications.

See Also
Graphics Overview (Windows Forms)

© 2016 Microsoft

.NET Framework (current version)

Overview of Graphics https://msdn.microsoft.com/en-us/library/d0ezbwf0(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:22

Three Categories of Graphics Services

The graphics offerings in Windows Forms fall into the following three broad categories:

Two-dimensional (2-D) vector graphics

Imaging

Typography

2-D Vector Graphics
Two-dimensional vector graphics are primitives; such as lines, curves, and figures; that are specified by sets of points on a

coordinate system. For example, a straight line is specified by its two endpoints, and a rectangle is specified by a point

giving the location of its upper-left corner and a pair of numbers giving its width and height. A simple path is specified by

an array of points that are connected by straight lines. A Bézier spline is a sophisticated curve specified by four control

points.

GDI+ provides classes and structures that store information about the primitives themselves, classes that store

information about how the primitives will be drawn, and classes that actually do the drawing. For example, the Rectangle

structure stores the location and size of a rectangle; the Pen class stores information about line color, line width, and line

style; and the Graphics class has methods for drawing lines, rectangles, paths, and other figures. There are also several

Brush classes that store information about how closed figures and paths will be filled with colors or patterns.

You can record a vector image, which is a sequence of graphics commands, in a metafile. GDI+ provides the Metafile class

for recording, displaying, and saving metafiles. With the MetafileHeader and MetaHeader classes, you can inspect the

data stored in a metafile header.

Imaging
Certain kinds of pictures are difficult or impossible to display with the techniques of vector graphics. For example, the

pictures on toolbar buttons and the pictures that appear as icons are difficult to specify as collections of lines and curves.

A high-resolution digital photograph of a crowded baseball stadium is even more difficult to create with vector

techniques. Images of this type are stored as bitmaps, which are arrays of numbers that represent the colors of individual

dots on the screen. GDI+ provides the Bitmap class for displaying, manipulating, and saving bitmaps.

Typography
Typography is the display of text in a variety of fonts, sizes, and styles. GDI+ provides extensive support for this complex

task. One of the new features in GDI+ is subpixel antialiasing, which gives text rendered on an LCD screen a smoother

appearance.

.NET Framework (current version)

Three Categories of Graphics Services https://msdn.microsoft.com/en-us/library/zccx11ha(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:22

In addition, Windows Forms offers the option to draw text with GDI capabilities in its TextRenderer class.

See Also
Graphics Overview (Windows Forms)

About GDI+ Managed Code

Using Managed Graphics Classes

© 2016 Microsoft

Three Categories of Graphics Services https://msdn.microsoft.com/en-us/library/zccx11ha(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:22

Structure of the Graphics Interface

The managed class interface to GDI+ contains about 60 classes, 50 enumerations, and 8 structures. The Graphics class is at

the core of GDI+ functionality; it is the class that actually draws lines, curves, figures, images, and text.

Important Classes
Many classes work together with the Graphics class. For example, the DrawLine method receives a Pen object, which holds

attributes (color, width, dash style, and the like) of the line to be drawn. The FillRectangle method can receive a pointer to

a LinearGradientBrush object, which works with the Graphics object to fill a rectangle with a gradually changing color.

Font and StringFormat objects influence the way a Graphics object draws text. A Matrix object stores and manipulates the

world transformation of a Graphics object, which is used to rotate, scale, and flip images.

GDI+ provides several structures (for example, Rectangle, Point, and Size) for organizing graphics data. Also, certain

classes serve primarily as structured data types. For example, the BitmapData class is a helper for the Bitmap class, and the

PathData class is a helper for the GraphicsPath class.

GDI+ defines several enumerations, which are collections of related constants. For example, the LineJoin enumeration

contains the elements Bevel, Miter, and Round, which specify styles that can be used to join two lines.

See Also
Graphics Overview (Windows Forms)

About GDI+ Managed Code

Using Managed Graphics Classes

© 2016 Microsoft

.NET Framework (current version)

Structure of the Graphics Interface https://msdn.microsoft.com/en-us/library/3fkkbac9(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:22

About GDI+ Managed Code

GDI+ is the portion of the Windows operating system that provides two-dimensional vector graphics, imaging, and

typography. GDI+ improves on GDI (the Graphics Device Interface included with earlier versions of Windows) by adding new

features and by optimizing existing features.

The GDI+ managed class interface (a set of wrappers) is part of the .NET Framework, an environment for building, deploying,

and running XML Web services and other applications.

This section provides information about the GDI+ API for programmers using managed code.

In This Section

Lines, Curves, and Shapes

Discusses vector graphics.

Images, Bitmaps, and Metafiles

Discusses the type of images available and how to work with them.

Coordinate Systems and Transformations

Discusses how to transform graphics with GDI+.

Reference

System.Drawing.Graphics

Describes this class and has links to all its members.

System.Drawing.Image

Describes this class and has links to all its members.

System.Drawing.Bitmap,

Describes this class and has links to all its members.

System.Drawing.Imaging.Metafile,

Describes this class and has links to all its members.

System.Drawing.Font,

Describes this class and has links to all its members.

System.Drawing.Brush,

Describes this class and has links to all its members.

System.Drawing.Color,

Describes this class and has links to all its members.

System.Drawing.Drawing2D.Matrix

.NET Framework (current version)

About GDI+ Managed Code https://msdn.microsoft.com/en-us/library/d420az6e(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:23

Describes this class and has links to all its members.

System.Windows.Forms.TextRenderer

Describes this class and has links to all its members.

Related Sections

Using Managed Graphics Classes.

Contains links to topics that demonstrate how to use the Graphics programming interface.

© 2016 Microsoft

About GDI+ Managed Code https://msdn.microsoft.com/en-us/library/d420az6e(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:23

Lines, Curves, and Shapes

The vector graphics portion of GDI+ is used to draw lines, draw curves, and to draw and fill shapes.

In This Section

Vector Graphics Overview

Discusses vector graphics.

Pens, Lines, and Rectangles in GDI+

Discusses drawing lines and rectangles.

Ellipses and Arcs in GDI+

Defines arcs and ellipses and identifies the classes needed to draw them.

Polygons in GDI+

Defines polygons and identifies the classes needed to draw them.

Cardinal Splines in GDI+

Defines cardinal splines and identifies the classes needed to draw them.

Bézier Splines in GDI+

Defines Bezier splines and identifies the classes needed to draw them.

Graphics Paths in GDI+

Describes paths and how to create and draw them.

Brushes and Filled Shapes in GDI+

Describes brush types and how to use them.

Open and Closed Curves in GDI+

Defines open and closed curves and how to draw and fill them.

Regions in GDI+

Describes the methods associated with regions.

Restricting the Drawing Surface in GDI+

Describes clipping and how to use it.

Antialiasing with Lines and Curves

Defines antialiasing and how use antialiasing when drawing lines and curves.

© 2016 Microsoft

.NET Framework (current version)

Lines, Curves, and Shapes https://msdn.microsoft.com/en-us/library/7f4d4txw(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:23

Vector Graphics Overview

GDI+ draws lines, rectangles, and other shapes on a coordinate system. You can choose from a variety of coordinate

systems, but the default coordinate system has the origin in the upper-left corner with the x-axis pointing to the right and

the y-axis pointing down. The unit of measure in the default coordinate system is the pixel.

The Building Blocks of GDI+

A computer monitor creates its display on a rectangular array of dots called picture elements or pixels. The number of

pixels that appear on the screen varies from one monitor to the next, and the number of pixels that appear on an

individual monitor can usually be configured to some extent by the user.

When you use GDI+ to draw a line, rectangle, or curve, you provide certain key information about the item to be drawn.

For example, you can specify a line by providing two points, and you can specify a rectangle by providing a point, a

height, and a width. GDI+ works in conjunction with the display driver software to determine which pixels must be turned

on to show the line, rectangle, or curve. The following illustration shows the pixels that are turned on to display a line

from the point (4, 2) to the point (12, 8).

Over time, certain basic building blocks have proven to be the most useful for creating two-dimensional pictures. These

.NET Framework (current version)

Vector Graphics Overview https://msdn.microsoft.com/en-us/library/t5c9b4dt(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:24

building blocks, which are all supported by GDI+, are given in the following list:

Lines

Rectangles

Ellipses

Arcs

Polygons

Cardinal splines

Bezier splines

Methods For Drawing with a Graphics Object
The Graphics class in GDI+ provides the following methods for drawing the items in the previous list: DrawLine,

DrawRectangle, DrawEllipse, DrawPolygon, DrawArc, DrawCurve (for cardinal splines), and DrawBezier. Each of these

methods is overloaded; that is, each method supports several different parameter lists. For example, one variation of the

DrawLine method receives a Pen object and four integers, while another variation of the DrawLine method receives a Pen

object and two Point objects.

The methods for drawing lines, rectangles, and Bézier splines have plural companion methods that draw several items in a

single call: DrawLines, DrawRectangles, and DrawBeziers. Also, the DrawCurve method has a companion method,

DrawClosedCurve, that closes a curve by connecting the ending point of the curve to the starting point.

All of the drawing methods of the Graphics class work in conjunction with a Pen object. To draw anything, you must

create at least two objects: a Graphics object and a Pen object. The Pen object stores attributes, such as line width and

color, of the item to be drawn. The Pen object is passed as one of the arguments to the drawing method. For example,

one variation of the DrawLine method receives a Pen object and four integers as shown in the following example, which

draws a rectangle with a width of 100, a height of 50 and an upper-left corner of (20, 10):

See Also
System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

© 2016 Microsoft

myGraphics.DrawRectangle(myPen, 20, 10, 100, 50)

VB

Vector Graphics Overview https://msdn.microsoft.com/en-us/library/t5c9b4dt(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:24

Pens, Lines, and Rectangles in GDI+

To draw lines with GDI+ you need to create a Graphics object and a Pen object. The Graphics object provides the methods

that actually do the drawing, and the Pen object stores attributes, such as line color, width, and style.

Drawing a Line
To draw a line, call the DrawLine method of the Graphics object. The Pen object is passed as one of the arguments to the

DrawLine method. The following example draws a line from the point (4, 2) to the point (12, 6):

DrawLine is an overloaded method of the Graphics class, so there are several ways you can supply it with arguments. For

example, you can construct two Point objects and pass the Point objects as arguments to the DrawLine method:

Constructing a Pen
You can specify certain attributes when you construct a Pen object. For example, one Pen constructor allows you to

specify color and width. The following example draws a blue line of width 2 from (0, 0) to (60, 30):

Dashed Lines and Line Caps
The Pen object also exposes properties, such as DashStyle, that you can use to specify features of the line. The following

.NET Framework (current version)

myGraphics.DrawLine(myPen, 4, 2, 12, 6)

Dim myStartPoint As New Point(4, 2)

Dim myEndPoint As New Point(12, 6)

myGraphics.DrawLine(myPen, myStartPoint, myEndPoint)

Dim myPen As New Pen(Color.Blue, 2)

myGraphics.DrawLine(myPen, 0, 0, 60, 30)

VB

VB

VB

Pens, Lines, and Rectangles in GDI+ https://msdn.microsoft.com/en-us/library/8z5dw491(d=printer,v=vs.110).aspx

1 of 3 04.09.2016 22:25

example draws a dashed line from (100, 50) to (300, 80):

You can use the properties of the Pen object to set many more attributes of the line. The StartCap and EndCap properties

specify the appearance of the ends of the line; the ends can be flat, square, rounded, triangular, or a custom shape. The

LineJoin property lets you specify whether connected lines are mitered (joined with sharp corners), beveled, rounded, or

clipped. The following illustration shows lines with various cap and join styles.

Drawing a Rectangle
Drawing rectangles with GDI+ is similar to drawing lines. To draw a rectangle, you need a Graphics object and a Pen

object. The Graphics object provides a DrawRectangle method, and the Pen object stores attributes, such as line width

and color. The Pen object is passed as one of the arguments to the DrawRectangle method. The following example draws

a rectangle with its upper-left corner at (100, 50), a width of 80, and a height of 40:

DrawRectangle is an overloaded method of the Graphics class, so there are several ways you can supply it with arguments.

For example, you can construct a Rectangle object and pass the Rectangle object to the DrawRectangle method as an

argument:

A Rectangle object has methods and properties for manipulating and gathering information about the rectangle. For

example, the Inflate and Offset methods change the size and position of the rectangle. The IntersectsWith method tells

you whether the rectangle intersects another given rectangle, and the Contains method tells you whether a given point is

inside the rectangle.

See Also
System.Drawing.Graphics

myPen.DashStyle = DashStyle.Dash

myGraphics.DrawLine(myPen, 100, 50, 300, 80)

myGraphics.DrawRectangle(myPen, 100, 50, 80, 40)

Dim myRectangle As New Rectangle(100, 50, 80, 40)

myGraphics.DrawRectangle(myPen, myRectangle)

VB

VB

VB

Pens, Lines, and Rectangles in GDI+ https://msdn.microsoft.com/en-us/library/8z5dw491(d=printer,v=vs.110).aspx

2 of 3 04.09.2016 22:25

System.Drawing.Pen

System.Drawing.Rectangle

How to: Create a Pen

How to: Draw a Line on a Windows Form

How to: Draw an Outlined Shape

© 2016 Microsoft

Pens, Lines, and Rectangles in GDI+ https://msdn.microsoft.com/en-us/library/8z5dw491(d=printer,v=vs.110).aspx

3 of 3 04.09.2016 22:25

Ellipses and Arcs in GDI+

You can easily draw ellipses and arcs using the DrawEllipse and DrawArc methods of the Graphics class.

Drawing an Ellipse
To draw an ellipse, you need a Graphics object and a Pen object. The Graphics object provides the DrawEllipse method,

and the Pen object stores attributes, such as width and color, of the line used to render the ellipse. The Pen object is

passed as one of the arguments to the DrawEllipse method. The remaining arguments passed to the DrawEllipse method

specify the bounding rectangle for the ellipse. The following illustration shows an ellipse along with its bounding

rectangle.

The following example draws an ellipse; the bounding rectangle has a width of 80, a height of 40, and an upper-left corner

of (100, 50):

DrawEllipse is an overloaded method of the Graphics class, so there are several ways you can supply it with arguments.

For example, you can construct a Rectangle and pass the Rectangle to the DrawEllipse method as an argument:

Drawing an Arc
An arc is a portion of an ellipse. To draw an arc, you call the DrawArc method of the Graphics class. The parameters of the

DrawArc method are the same as the parameters of the DrawEllipse method, except that DrawArc requires a starting angle

and sweep angle. The following example draws an arc with a starting angle of 30 degrees and a sweep angle of 180

degrees:

.NET Framework (current version)

myGraphics.DrawEllipse(myPen, 100, 50, 80, 40)

Dim myRectangle As New Rectangle(100, 50, 80, 40)

myGraphics.DrawEllipse(myPen, myRectangle)

VB

VB

VB

Ellipses and Arcs in GDI+ https://msdn.microsoft.com/en-us/library/hk087c6d(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:30

The following illustration shows the arc, the ellipse, and the bounding rectangle.

See Also
System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

How to: Create a Pen

How to: Draw an Outlined Shape

© 2016 Microsoft

myGraphics.DrawArc(myPen, 100, 50, 140, 70, 30, 180)

Ellipses and Arcs in GDI+ https://msdn.microsoft.com/en-us/library/hk087c6d(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:30

Polygons in GDI+

A polygon is a closed shape with three or more straight sides. For example, a triangle is a polygon with three sides, a

rectangle is a polygon with four sides, and a pentagon is a polygon with five sides. The following illustration shows several

polygons.

Drawing a Polygon
To draw a polygon, you need a Graphics object, a Pen object, and an array of Point (or PointF) objects. The Graphics

object provides the DrawPolygon method. The Pen object stores attributes, such as width and color, of the line used to

render the polygon, and the array of Point objects stores the points to be connected by straight lines. The Pen object and

the array of Point objects are passed as arguments to the DrawPolygon method. The following example draws a

three-sided polygon. Note that there are only three points in myPointArray: (0, 0), (50, 30), and (30, 60). The

DrawPolygon method automatically closes the polygon by drawing a line from (30, 60) back to the starting point (0, 0).

The following illustration shows the polygon.

See Also
System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

How to: Create a Pen

.NET Framework (current version)

Dim myPointArray As Point() = _

 {New Point(0, 0), New Point(50, 30), New Point(30, 60)}

myGraphics.DrawPolygon(myPen, myPointArray)

VB

Polygons in GDI+ https://msdn.microsoft.com/en-us/library/z72tccy0(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:30

© 2016 Microsoft

Polygons in GDI+ https://msdn.microsoft.com/en-us/library/z72tccy0(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:30

Cardinal Splines in GDI+

A cardinal spline is a sequence of individual curves joined to form a larger curve. The spline is specified by an array of points

and a tension parameter. A cardinal spline passes smoothly through each point in the array; there are no sharp corners and

no abrupt changes in the tightness of the curve. The following illustration shows a set of points and a cardinal spline that

passes through each point in the set.

Physical and Mathematical Splines
A physical spline is a thin piece of wood or other flexible material. Before the advent of mathematical splines, designers

used physical splines to draw curves. A designer would place the spline on a piece of paper and anchor it to a given set of

points. The designer could then create a curve by drawing along the spline with a pen or pencil. A given set of points

could yield a variety of curves, depending on the properties of the physical spline. For example, a spline with a high

resistance to bending would produce a different curve than an extremely flexible spline.

The formulas for mathematical splines are based on the properties of flexible rods, so the curves produced by

mathematical splines are similar to the curves that were once produced by physical splines. Just as physical splines of

different tension will produce different curves through a given set of points, mathematical splines with different values for

the tension parameter will produce different curves through a given set of points. The following illustration shows four

cardinal splines passing through the same set of points. The tension is shown for each spline. A tension of 0 corresponds

to infinite physical tension, forcing the curve to take the shortest way (straight lines) between points. A tension of 1

corresponds to no physical tension, allowing the spline to take the path of least total bend. With tension values greater

than 1, the curve behaves like a compressed spring, pushed to take a longer path.

The four splines in the preceding illustration share the same tangent line at the starting point. The tangent is the line

drawn from the starting point to the next point along the curve. Likewise, the shared tangent at the ending point is the

line drawn from the ending point to the previous point on the curve.

To draw a cardinal spline, you need an instance of the Graphics class, a Pen, and an array of Point objects The instance of

the Graphics class provides the DrawCurve method, which draws the spline, and the Pen stores attributes of the spline,

such as line width and color. The array of Point objects stores the points that the curve will pass through. The following

.NET Framework (current version)

Cardinal Splines in GDI+ https://msdn.microsoft.com/en-us/library/4cf6we5y(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:31

code example shows how to draw a cardinal spline that passes through the points in myPointArray. The third parameter

is the tension.

See Also
Lines, Curves, and Shapes

Constructing and Drawing Curves

© 2016 Microsoft

myGraphics.DrawCurve(myPen, myPointArray, 1.5F)

VB

Cardinal Splines in GDI+ https://msdn.microsoft.com/en-us/library/4cf6we5y(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:31

Bézier Splines in GDI+

A Bézier spline is a curve specified by four points: two end points (p1 and p2) and two control points (c1 and c2). The curve

begins at p1 and ends at p2. The curve does not pass through the control points, but the control points act as magnets,

pulling the curve in certain directions and influencing the way the curve bends. The following illustration shows a Bézier

curve along with its endpoints and control points.

The curve starts at p1 and moves toward the control point c1. The tangent line to the curve at p1 is the line drawn from p1

to c1. The tangent line at the endpoint p2 is the line drawn from c2 to p2.

Drawing Bézier Splines
To draw a Bézier spline, you need an instance of the Graphics class and a Pen. The instance of the Graphics class provides

the DrawBezier method, and the Pen stores attributes, such as width and color, of the line used to render the curve. The

Pen is passed as one of the arguments to the DrawBezier method. The remaining arguments passed to the DrawBezier

method are the endpoints and the control points. The following example draws a Bézier spline with starting point (0, 0),

control points (40, 20) and (80, 150), and ending point (100, 10):

The following illustration shows the curve, the control points, and two tangent lines.

Bézier splines were originally developed by Pierre Bézier for design in the automotive industry. They have since proven to

be useful in many types of computer-aided design and are also used to define the outlines of fonts. Bézier splines can

yield a wide variety of shapes, some of which are shown in the following illustration.

.NET Framework (current version)

myGraphics.DrawBezier(myPen, 0, 0, 40, 20, 80, 150, 100, 10)

VB

Bézier Splines in GDI+ https://msdn.microsoft.com/en-us/library/xt9t4wah(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:31

See Also
System.Drawing.Graphics

System.Drawing.Pen

Lines, Curves, and Shapes

Constructing and Drawing Curves

How to: Create Graphics Objects for Drawing

How to: Create a Pen

© 2016 Microsoft

Bézier Splines in GDI+ https://msdn.microsoft.com/en-us/library/xt9t4wah(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:31

Graphics Paths in GDI+

Paths are formed by combining lines, rectangles, and simple curves. Recall from the Vector Graphics Overview that the

following basic building blocks have proven to be the most useful for drawing pictures:

Lines

Rectangles

Ellipses

Arcs

Polygons

Cardinal splines

Bézier splines

In GDI+, the GraphicsPath object allows you to collect a sequence of these building blocks into a single unit. The entire

sequence of lines, rectangles, polygons, and curves can then be drawn with one call to the DrawPath method of the Graphics

class. The following illustration shows a path created by combining a line, an arc, a Bézier spline, and a cardinal spline.

Using a Path
The GraphicsPath class provides the following methods for creating a sequence of items to be drawn: AddLine,

AddRectangle, AddEllipse, AddArc, AddPolygon, AddCurve (for cardinal splines), and AddBezier. Each of these methods is

overloaded; that is, each method supports several different parameter lists. For example, one variation of the AddLine

method receives four integers, and another variation of the AddLine method receives two Point objects.

The methods for adding lines, rectangles, and Bézier splines to a path have plural companion methods that add several

items to the path in a single call: AddLines, AddRectangles, and AddBeziers. Also, the AddCurve and AddArc methods

have companion methods, AddClosedCurve and AddPie, that add a closed curve or pie to the path.

To draw a path, you need a Graphics object, a Pen object, and a GraphicsPath object. The Graphics object provides the

DrawPath method, and the Pen object stores attributes, such as width and color, of the line used to render the path. The

GraphicsPath object stores the sequence of lines and curves that make up the path. The Pen object and the GraphicsPath

object are passed as arguments to the DrawPath method. The following example draws a path that consists of a line, an

ellipse, and a Bézier spline:

.NET Framework (current version)

Graphics Paths in GDI+ https://msdn.microsoft.com/en-us/library/530a2kct(d=printer,v=vs.110).aspx

1 of 3 04.09.2016 22:32

The following illustration shows the path.

In addition to adding lines, rectangles, and curves to a path, you can add paths to a path. This allows you to combine

existing paths to form large, complex paths.

There are two other items you can add to a path: strings and pies. A pie is a portion of the interior of an ellipse. The

following example creates a path from an arc, a cardinal spline, a string, and a pie:

The following illustration shows the path. Note that a path does not have to be connected; the arc, cardinal spline, string,

myGraphicsPath.AddLine(0, 0, 30, 20)

myGraphicsPath.AddEllipse(20, 20, 20, 40)

myGraphicsPath.AddBezier(30, 60, 70, 60, 50, 30, 100, 10)

myGraphics.DrawPath(myPen, myGraphicsPath)

myGraphicsPath.AddPath(graphicsPath1, False)

myGraphicsPath.AddPath(graphicsPath2, False)

Dim myGraphicsPath As New GraphicsPath()

Dim myPointArray As Point() = { _

New Point(5, 30), _

New Point(20, 40), _

New Point(50, 30)}

Dim myFontFamily As New FontFamily("Times New Roman")

Dim myPointF As New PointF(50, 20)

Dim myStringFormat As New StringFormat()

myGraphicsPath.AddArc(0, 0, 30, 20, ‐90, 180)

myGraphicsPath.StartFigure()

myGraphicsPath.AddCurve(myPointArray)

myGraphicsPath.AddString("a string in a path", myFontFamily, _

 0, 24, myPointF, myStringFormat)

myGraphicsPath.AddPie(230, 10, 40, 40, 40, 110)

myGraphics.DrawPath(myPen, myGraphicsPath)

VB

VB

VB

Graphics Paths in GDI+ https://msdn.microsoft.com/en-us/library/530a2kct(d=printer,v=vs.110).aspx

2 of 3 04.09.2016 22:32

and pie are separated.

See Also
System.Drawing.Drawing2D.GraphicsPath

System.Drawing.Point

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

Constructing and Drawing Paths

© 2016 Microsoft

Graphics Paths in GDI+ https://msdn.microsoft.com/en-us/library/530a2kct(d=printer,v=vs.110).aspx

3 of 3 04.09.2016 22:32

Brushes and Filled Shapes in GDI+

A closed shape, such as a rectangle or an ellipse, consists of an outline and an interior. The outline is drawn with a pen and

the interior is filled with a brush. GDI+ provides several brush classes for filling the interiors of closed shapes: SolidBrush,

HatchBrush, TextureBrush, LinearGradientBrush, and PathGradientBrush. All of these classes inherit from the Brush class. The

following illustration shows a rectangle filled with a solid brush and an ellipse filled with a hatch brush.

Solid Brushes

To fill a closed shape, you need an instance of the Graphics class and a Brush. The instance of the Graphics class provides

methods, such as FillRectangle and FillEllipse, and the Brush stores attributes of the fill, such as color and pattern. The

Brush is passed as one of the arguments to the fill method. The following code example shows how to fill an ellipse with a

solid red color.

Note

In the preceding example, the brush is of type SolidBrush, which inherits from Brush.

Hatch Brushes

When you fill a shape with a hatch brush, you specify a foreground color, a background color, and a hatch style. The

foreground color is the color of the hatching.

GDI+ provides more than 50 hatch styles; the three styles shown in the following illustration are Horizontal,

.NET Framework (current version)

Dim mySolidBrush As New SolidBrush(Color.Red)

myGraphics.FillEllipse(mySolidBrush, 0, 0, 60, 40)

Dim myHatchBrush As _

New HatchBrush(HatchStyle.Vertical, Color.Blue, Color.Green)

VB

VB

Brushes and Filled Shapes in GDI+ https://msdn.microsoft.com/en-us/library/cwka53ef(d=printer,v=vs.110).aspx

1 of 3 04.09.2016 22:32

ForwardDiagonal, and Cross.

Texture Brushes

With a texture brush, you can fill a shape with a pattern stored in a bitmap. For example, suppose the following picture is

stored in a disk file named MyTexture.bmp.

The following code example shows how to fill an ellipse by repeating the picture stored in MyTexture.bmp.

The following illustration shows the filled ellipse.

Gradient Brushes

GDI+ provides two kinds of gradient brushes: linear and path. You can use a linear gradient brush to fill a shape with color

that changes gradually as you move across the shape horizontally, vertically, or diagonally. The following code example

shows how to fill an ellipse with a horizontal gradient brush that changes from blue to green as you move from the left

edge of the ellipse to the right edge.

The following illustration shows the filled ellipse.

Dim myImage As Image = Image.FromFile("MyTexture.bmp")

Dim myTextureBrush As New TextureBrush(myImage)

myGraphics.FillEllipse(myTextureBrush, 0, 0, 100, 50)

Dim myLinearGradientBrush As New LinearGradientBrush(_

 myRectangle, _

 Color.Blue, _

 Color.Green, _

 LinearGradientMode.Horizontal)

myGraphics.FillEllipse(myLinearGradientBrush, myRectangle)

VB

VB

Brushes and Filled Shapes in GDI+ https://msdn.microsoft.com/en-us/library/cwka53ef(d=printer,v=vs.110).aspx

2 of 3 04.09.2016 22:32

A path gradient brush can be configured to change color as you move from the center of a shape toward the edge.

Path gradient brushes are quite flexible. The gradient brush used to fill the triangle in the following illustration changes

gradually from red at the center to each of three different colors at the vertices.

See Also

System.Drawing.SolidBrush

System.Drawing.Drawing2D.HatchBrush

System.Drawing.TextureBrush

System.Drawing.Drawing2D.LinearGradientBrush

Lines, Curves, and Shapes

How to: Draw a Filled Rectangle on a Windows Form

How to: Draw a Filled Ellipse on a Windows Form

© 2016 Microsoft

Brushes and Filled Shapes in GDI+ https://msdn.microsoft.com/en-us/library/cwka53ef(d=printer,v=vs.110).aspx

3 of 3 04.09.2016 22:32

Open and Closed Curves in GDI+

The following illustration shows two curves: one open and one closed.

Managed Interface for Curves
Closed curves have an interior and therefore can be filled with a brush. The Graphics class in GDI+ provides the following

methods for filling closed shapes and curves: FillRectangle, FillEllipse, FillPie, FillPolygon, FillClosedCurve, FillPath, and

FillRegion. Whenever you call one of these methods, you must pass one of the specific brush types (SolidBrush,

HatchBrush, TextureBrush, LinearGradientBrush, or PathGradientBrush) as an argument.

The FillPie method is a companion to the DrawArc method. Just as the DrawArc method draws a portion of the outline of

an ellipse, the FillPie method fills a portion of the interior of an ellipse. The following example draws an arc and fills the

corresponding portion of the interior of the ellipse:

The following illustration shows the arc and the filled pie.

The FillClosedCurve method is a companion to the DrawClosedCurve method. Both methods automatically close the

curve by connecting the ending point to the starting point. The following example draws a curve that passes through (0,

0), (60, 20), and (40, 50). Then, the curve is automatically closed by connecting (40, 50) to the starting point (0, 0), and the

interior is filled with a solid color.

The FillPath method fills the interiors of the separate pieces of a path. If a piece of a path doesn't form a closed curve or

.NET Framework (current version)

myGraphics.FillPie(mySolidBrush, 0, 0, 140, 70, 0, 120)

myGraphics.DrawArc(myPen, 0, 0, 140, 70, 0, 120)

Dim myPointArray As Point() = _

 {New Point(0, 0), New Point(60, 20), New Point(40, 50)}

myGraphics.DrawClosedCurve(myPen, myPointArray)

myGraphics.FillClosedCurve(mySolidBrush, myPointArray)

VB

VB

Open and Closed Curves in GDI+ https://msdn.microsoft.com/en-us/library/3fwa38ts(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:32

shape, the FillPath method automatically closes that piece of the path before filling it. The following example draws and

fills a path that consists of an arc, a cardinal spline, a string, and a pie:

The following illustration shows the path with and without the solid fill. Note that the text in the string is outlined, but not

filled, by the DrawPath method. It is the FillPath method that paints the interiors of the characters in the string.

See Also
System.Drawing.Drawing2D.GraphicsPath

System.Drawing.Pen

System.Drawing.Point

Lines, Curves, and Shapes

How to: Create Graphics Objects for Drawing

Constructing and Drawing Paths

© 2016 Microsoft

Dim mySolidBrush As New SolidBrush(Color.Aqua)

Dim myGraphicsPath As New GraphicsPath()

Dim myPointArray As Point() = { _

New Point(15, 20), _

New Point(20, 40), _

New Point(50, 30)}

Dim myFontFamily As New FontFamily("Times New Roman")

Dim myPointF As New PointF(50, 20)

Dim myStringFormat As New StringFormat()

myGraphicsPath.AddArc(0, 0, 30, 20, ‐90, 180)

myGraphicsPath.AddCurve(myPointArray)

myGraphicsPath.AddString("a string in a path", myFontFamily, _

 0, 24, myPointF, myStringFormat)

myGraphicsPath.AddPie(230, 10, 40, 40, 40, 110)

myGraphics.FillPath(mySolidBrush, myGraphicsPath)

myGraphics.DrawPath(myPen, myGraphicsPath)

VB

Open and Closed Curves in GDI+ https://msdn.microsoft.com/en-us/library/3fwa38ts(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:32

Regions in GDI+

A region is a portion of the display area of an output device. Regions can be simple (a single rectangle) or complex (a

combination of polygons and closed curves). The following illustration shows two regions: one constructed from a rectangle,

and the other constructed from a path.

Using Regions
Regions are often used for clipping and hit testing. Clipping involves restricting drawing to a certain region of the display

area, usually the portion that needs to be updated. Hit testing involves checking to determine whether the cursor is in a

certain region of the screen when a mouse button is pressed.

You can construct a region from a rectangle or a path. You can also create complex regions by combining existing

regions. The Region class provides the following methods for combining regions: Intersect, Union, Xor, Exclude, and

Complement.

The intersection of two regions is the set of all points belonging to both regions. The union is the set of all points

belonging to one or the other or both regions. The complement of a region is the set of all points that are not in the

region. The following illustration shows the intersection and union of the two regions shown in the preceding illustration.

The Xor method, applied to a pair of regions, produces a region that contains all points that belong to one region or the

other, but not both. The Exclude method, applied to a pair of regions, produces a region that contains all points in the

first region that are not in the second region. The following illustration shows the regions that result from applying the

Xor and Exclude methods to the two regions shown at the beginning of this topic.

To fill a region, you need a Graphics object, a Brush object, and a Region object. The Graphics object provides the

FillRegion method, and the Brush object stores attributes of the fill, such as color or pattern. The following example fills a

region with a solid color.

.NET Framework (current version)

VB

Regions in GDI+ https://msdn.microsoft.com/en-us/library/4t53hf8d(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:33

See Also
System.Drawing.Region

Lines, Curves, and Shapes

Using Regions

© 2016 Microsoft

myGraphics.FillRegion(mySolidBrush, myRegion)

Regions in GDI+ https://msdn.microsoft.com/en-us/library/4t53hf8d(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:33

Restricting the Drawing Surface in GDI+

Clipping involves restricting drawing to a certain rectangle or region. The following illustration shows the string "Hello"

clipped to a heart-shaped region.

Clipping with Regions
Regions can be constructed from paths, and paths can contain the outlines of strings, so you can use outlined text for

clipping. The following illustration shows a set of concentric ellipses clipped to the interior of a string of text.

To draw with clipping, create a Graphics object, set its Clip property, and then call the drawing methods of that same

Graphics object:

See Also
System.Drawing.Graphics

System.Drawing.Region

Lines, Curves, and Shapes

Using Regions

© 2016 Microsoft

.NET Framework (current version)

myGraphics.Clip = myRegion

myGraphics.DrawLine(myPen, 0, 0, 200, 200)

VB

Restricting the Drawing Surface in GDI+ https://msdn.microsoft.com/en-us/library/79eytxt5(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:33

Restricting the Drawing Surface in GDI+

Clipping involves restricting drawing to a certain rectangle or region. The following illustration shows the string "Hello"

clipped to a heart-shaped region.

Clipping with Regions
Regions can be constructed from paths, and paths can contain the outlines of strings, so you can use outlined text for

clipping. The following illustration shows a set of concentric ellipses clipped to the interior of a string of text.

To draw with clipping, create a Graphics object, set its Clip property, and then call the drawing methods of that same

Graphics object:

See Also
System.Drawing.Graphics

System.Drawing.Region

Lines, Curves, and Shapes

Using Regions

© 2016 Microsoft

.NET Framework (current version)

myGraphics.Clip = myRegion

myGraphics.DrawLine(myPen, 0, 0, 200, 200)

VB

Restricting the Drawing Surface in GDI+ https://msdn.microsoft.com/en-us/library/79eytxt5(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:33

Images, Bitmaps, and Metafiles

The Image class is an abstract base class that provides methods for working with raster images (bitmaps) and vector images

(metafiles). The Bitmap class and the Metafile class both inherit from the Image class. The Bitmap class expands on the

capabilities of the Image class by providing additional methods for loading, saving, and manipulating raster images. The

Metafile class expands on the capabilities of the Image class by providing additional methods for recording and examining

vector images.

In This Section

Types of Bitmaps

Discusses the various image formats.

Metafiles in GDI+

Discusses GDI+ support for metafiles.

Drawing, Positioning, and Cloning Images in GDI+

Discusses methods for drawing vector and raster images with managed code.

Cropping and Scaling Images in GDI+

Discusses methods for cropping and scaling vector and raster images with managed code

Reference

Image

Describes this class and has links to all of its members.

Bitmap

Describes this class and has links to all of its members

Related Sections

Working with Images, Bitmaps, Icons, and Metafiles

Contains links to topics that demonstrate how to use images in your application.

© 2016 Microsoft

.NET Framework (current version)

Images, Bitmaps, and Metafiles https://msdn.microsoft.com/en-us/library/3ke1f63h(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:25

Types of Bitmaps

A bitmap is an array of bits that specify the color of each pixel in a rectangular array of pixels. The number of bits devoted to

an individual pixel determines the number of colors that can be assigned to that pixel. For example, if each pixel is

represented by 4 bits, then a given pixel can be assigned one of 16 different colors (2^4 = 16). The following table shows a

few examples of the number of colors that can be assigned to a pixel represented by a given number of bits.

Bits per pixel Number of colors that can be assigned to a pixel

1 2^1 = 2

2 2^2 = 4

4 2^4 = 16

8 2^8 = 256

16 2^16 = 65,536

24 2^24 = 16,777,216

Disk files that store bitmaps usually contain one or more information blocks that store information such as the number of

bits per pixel, number of pixels in each row, and number of rows in the array. Such a file might also contain a color table

(sometimes called a color palette). A color table maps numbers in the bitmap to specific colors. The following illustration

shows an enlarged image along with its bitmap and color table. Each pixel is represented by a 4-bit number, so there are

2^4 = 16 colors in the color table. Each color in the table is represented by a 24-bit number: 8 bits for red, 8 bits for green,

and 8 bits for blue. The numbers are shown in hexadecimal (base 16) form: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.

Look at the pixel in row 3, column 5 of the image. The corresponding number in the bitmap is 1. The color table tells us that

.NET Framework (current version)

Types of Bitmaps https://msdn.microsoft.com/en-us/library/at62haz6(d=printer,v=vs.110).aspx

1 of 4 04.09.2016 22:26

1 represents the color red so the pixel is red. All the entries in the top row of the bitmap are 3. The color table tells us that 3

represents blue, so all the pixels in the top row of the image are blue.

Note

Some bitmaps are stored in bottom-up format; the numbers in the first row of the bitmap correspond to the pixels in the

bottom row of the image.

A bitmap that stores indexes into a color table is called a palette-indexed bitmap. Some bitmaps have no need for a color

table. For example, if a bitmap uses 24 bits per pixel, that bitmap can store the colors themselves rather than indexes into a

color table. The following illustration shows a bitmap that stores colors directly (24 bits per pixel) rather than using a color

table. The illustration also shows an enlarged view of the corresponding image. In the bitmap, FFFFFF represents white,

FF0000 represents red, 00FF00 represents green, and 0000FF represents blue.

Graphics File Formats
There are many standard formats for saving bitmaps in disk files. GDI+ supports the graphics file formats described in the

following paragraphs.

BMP

BMP is a standard format used by Windows to store device-independent and application-independent images. The

number of bits per pixel (1, 4, 8, 15, 24, 32, or 64) for a given BMP file is specified in a file header. BMP files with 24 bits

per pixel are common. BMP files are usually not compressed and, therefore, are not well suited for transfer across the

Internet.

Graphics Interchange Format (GIF)

GIF is a common format for images that appear on Web pages. GIFs work well for line drawings, pictures with blocks of

solid color, and pictures with sharp boundaries between colors. GIFs are compressed, but no information is lost in the

compression process; a decompressed image is exactly the same as the original. One color in a GIF can be designated

as transparent, so that the image will have the background color of any Web page that displays it. A sequence of GIF

images can be stored in a single file to form an animated GIF. GIFs store at most 8 bits per pixel, so they are limited to

256 colors.

Joint Photographic Experts Group (JPEG)

JPEG is a compression scheme that works well for natural scenes such as scanned photographs. Some information is

Types of Bitmaps https://msdn.microsoft.com/en-us/library/at62haz6(d=printer,v=vs.110).aspx

2 of 4 04.09.2016 22:26

lost in the compression process, but often the loss is imperceptible to the human eye. JPEGs store 24 bits per pixel, so

they are capable of displaying more than 16 million colors. JPEGs do not support transparency or animation.

The level of compression in JPEG images is configurable, but higher compression levels (smaller files) result in more loss

of information. A 20:1 compression ratio often produces an image that the human eye finds difficult to distinguish

from the original. The following illustration shows a BMP image and two JPEG images that were compressed from that

BMP image. The first JPEG has a compression ratio of 4:1 and the second JPEG has a compression ratio of about 8:1.

JPEG compression does not work well for line drawings, blocks of solid color, and sharp boundaries. The following

illustration shows a BMP along with two JPEGs and a GIF. The JPEGs and the GIF were compressed from the BMP. The

compression ratio is 4:1 for the GIF, 4:1 for the smaller JPEG, and 8:3 for the larger JPEG. Note that the GIF maintains

the sharp boundaries along the lines, but the JPEGs tend to blur the boundaries.

JPEG is a compression scheme, not a file format. JPEG File Interchange Format (JFIF) is a file format commonly used for

storing and transferring images that have been compressed according to the JPEG scheme. JFIF files displayed by Web

browsers use the .jpg extension.

Exchangeable Image File (EXIF)

EXIF is a file format used for photographs captured by digital cameras. An EXIF file contains an image that is

compressed according to the JPEG specification. An EXIF file also contains information about the photograph (date

taken, shutter speed, exposure time, and so on) and information about the camera (manufacturer, model, and so on).

Portable Network Graphics (PNG)

The PNG format retains many of the advantages of the GIF format but also provides capabilities beyond those of GIF.

Like GIF files, PNG files are compressed with no loss of information. PNG files can store colors with 8, 24, or 48 bits per

pixel and grayscales with 1, 2, 4, 8, or 16 bits per pixel. In contrast, GIF files can use only 1, 2, 4, or 8 bits per pixel. A

PNG file can also store an alpha value for each pixel, which specifies the degree to which the color of that pixel is

blended with the background color.

PNG improves on GIF in its ability to progressively display an image (that is, to display better and better

approximations of the image as it arrives over a network connection). PNG files can contain gamma correction and

Types of Bitmaps https://msdn.microsoft.com/en-us/library/at62haz6(d=printer,v=vs.110).aspx

3 of 4 04.09.2016 22:26

color correction information so that the images can be accurately rendered on a variety of display devices.

Tag Image File Format (TIFF)

TIFF is a flexible and extendable format that is supported by a wide variety of platforms and image-processing

applications. TIFF files can store images with an arbitrary number of bits per pixel and can employ a variety of

compression algorithms. Several images can be stored in a single, multiple-page TIFF file. Information related to the

image (scanner make, host computer, type of compression, orientation, samples per pixel, and so on) can be stored in

the file and arranged through the use of tags. The TIFF format can be extended as needed by the approval and addition

of new tags.

See Also
System.Drawing.Image

System.Drawing.Bitmap

System.Drawing.Imaging.PixelFormat

Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

Types of Bitmaps https://msdn.microsoft.com/en-us/library/at62haz6(d=printer,v=vs.110).aspx

4 of 4 04.09.2016 22:26

Metafiles in GDI+

GDI+ provides the Metafile class so that you can record and display metafiles. A metafile, also called a vector image, is an

image that is stored as a sequence of drawing commands and settings. The commands and settings recorded in a Metafile

object can be stored in memory or saved to a file or stream.

Metafile Formats

GDI+ can display metafiles that have been stored in the following formats:

Windows Metafile (WMF)

Enhanced Metafile (EMF)

EMF+

GDI+ can record metafiles in the EMF and EMF+ formats, but not in the WMF format.

EMF+ is an extension to EMF that allows GDI+ records to be stored. There are two variations on the EMF+ format: EMF+

Only and EMF+ Dual. EMF+ Only metafiles contain only GDI+ records. Such metafiles can be displayed by GDI+ but not

by GDI. EMF+ Dual metafiles contain GDI+ and GDI records. Each GDI+ record in an EMF+ Dual metafile is paired with an

alternate GDI record. Such metafiles can be displayed by GDI+ or by GDI.

The following example displays a metafile that was previously saved as a file. The metafile is displayed with its upper-left

corner at (100, 100).

See Also

Images, Bitmaps, and Metafiles

© 2016 Microsoft

.NET Framework (current version)

Public Sub Example_DisplayMetafile(ByVal e As PaintEventArgs)

Dim myGraphics As Graphics = e.Graphics

Dim myMetafile As New Metafile("SampleMetafile.emf")

 myGraphics.DrawImage(myMetafile, 100, 100)

End Sub

VB

Metafiles in GDI+ https://msdn.microsoft.com/en-us/library/zbk7dbtb(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:27

Drawing, Positioning, and Cloning Images in
GDI+

You can use the Bitmap class to load and display raster images, and you can use the Metafile class to load and display vector

images. The Bitmap and Metafile classes inherit from the Image class. To display a vector image, you need an instance of the

Graphics class and a Metafile. To display a raster image, you need an instance of the Graphics class and a Bitmap. The

instance of the Graphics class provides the DrawImage method, which receives the Metafile or Bitmap as an argument.

File Types and Cloning
The following code example shows how to construct a Bitmap from the file Climber.jpg and displays the bitmap. The

destination point for the upper-left corner of the image, (10, 10), is specified in the second and third parameters.

The following illustration shows the image.

You can construct Bitmap objects from a variety of graphics file formats: BMP, GIF, JPEG, EXIF, PNG, TIFF, and ICON.

The following code example shows how to construct Bitmap objects from a variety of file types and then displays the

bitmaps.

.NET Framework (current version)

Dim myBitmap As New Bitmap("Climber.jpg")

myGraphics.DrawImage(myBitmap, 10, 10)

Dim myBMP As New Bitmap("SpaceCadet.bmp")

Dim myGIF As New Bitmap("Soda.gif")

Dim myJPEG As New Bitmap("Mango.jpg")

Dim myPNG As New Bitmap("Flowers.png")

Dim myTIFF As New Bitmap("MS.tif")

VB

VB

Drawing, Positioning, and Cloning Images in GDI+ https://msdn.microsoft.com/en-us/library/sb2z5bb0(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:27

The Bitmap class provides a Clone method that you can use to make a copy of an existing Bitmap. The Clone method has

a source rectangle parameter that you can use to specify the portion of the original bitmap that you want to copy. The

following code example shows how to create a Bitmap by cloning the top half of an existing Bitmap. Then both images

are drawn.

The following illustration shows the two images.

See Also
Images, Bitmaps, and Metafiles

How to: Create Graphics Objects for Drawing

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

myGraphics.DrawImage(myBMP, 10, 10)

myGraphics.DrawImage(myGIF, 220, 10)

myGraphics.DrawImage(myJPEG, 280, 10)

myGraphics.DrawImage(myPNG, 150, 200)

myGraphics.DrawImage(myTIFF, 300, 200)

Dim originalBitmap As New Bitmap("Spiral.png")

Dim sourceRectangle As New Rectangle(0, 0, originalBitmap.Width, _

CType(originalBitmap.Height / 2, Integer))

Dim secondBitmap As Bitmap = originalBitmap.Clone(sourceRectangle, _

 PixelFormat.DontCare)

myGraphics.DrawImage(originalBitmap, 10, 10)

myGraphics.DrawImage(secondBitmap, 150, 10)

VB

Drawing, Positioning, and Cloning Images in GDI+ https://msdn.microsoft.com/en-us/library/sb2z5bb0(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:27

Cropping and Scaling Images in GDI+

You can use the DrawImage method of the Graphics class to draw and position vector images and raster images. DrawImage

is an overloaded method, so there are several ways you can supply it with arguments.

DrawImage Variations
One variation of the DrawImage method receives a Bitmap and a Rectangle. The rectangle specifies the destination for the

drawing operation; that is, it specifies the rectangle in which to draw the image. If the size of the destination rectangle is

different from the size of the original image, the image is scaled to fit the destination rectangle. The following code

example shows how to draw the same image three times: once with no scaling, once with an expansion, and once with a

compression:

The following illustration shows the three pictures.

Some variations of the DrawImage method have a source-rectangle parameter as well as a destination-rectangle

parameter. The source-rectangle parameter specifies the portion of the original image to draw. The destination rectangle

specifies the rectangle in which to draw that portion of the image. If the size of the destination rectangle is different from

the size of the source rectangle, the picture is scaled to fit the destination rectangle.

The following code example shows how to construct a Bitmap from the file Runner.jpg. The entire image is drawn with no

scaling at (0, 0). Then a small portion of the image is drawn twice: once with a compression and once with an expansion.

.NET Framework (current version)

Dim myBitmap As New Bitmap("Spiral.png")

Dim expansionRectangle As New Rectangle(135, 10, _

 myBitmap.Width, myBitmap.Height)

Dim compressionRectangle As New Rectangle(300, 10, _

CType(myBitmap.Width / 2, Integer), CType(myBitmap.Height / 2, Integer))

myGraphics.DrawImage(myBitmap, 10, 10)

myGraphics.DrawImage(myBitmap, expansionRectangle)

myGraphics.DrawImage(myBitmap, compressionRectangle)

VB

VB

Cropping and Scaling Images in GDI+ https://msdn.microsoft.com/en-us/library/e06tc8a5(d=printer,v=vs.110).aspx

1 of 2 04.09.2016 22:28

The following illustration shows the unscaled image, and the compressed and expanded image portions.

See Also
Images, Bitmaps, and Metafiles

Working with Images, Bitmaps, Icons, and Metafiles

© 2016 Microsoft

Dim myBitmap As New Bitmap("Runner.jpg")

' One hand of the runner

Dim sourceRectangle As New Rectangle(80, 70, 80, 45)

' Compressed hand

Dim destRectangle1 As New Rectangle(200, 10, 20, 16)

' Expanded hand

Dim destRectangle2 As New Rectangle(200, 40, 200, 160)

' Draw the original image at (0, 0).

myGraphics.DrawImage(myBitmap, 0, 0)

' Draw the compressed hand.

myGraphics.DrawImage(_

 myBitmap, destRectangle1, sourceRectangle, GraphicsUnit.Pixel)

' Draw the expanded hand.

myGraphics.DrawImage(_

 myBitmap, destRectangle2, sourceRectangle, GraphicsUnit.Pixel)

Cropping and Scaling Images in GDI+ https://msdn.microsoft.com/en-us/library/e06tc8a5(d=printer,v=vs.110).aspx

2 of 2 04.09.2016 22:28

Coordinate Systems and Transformations

GDI+ provides a world transformation and a page transformation so that you can transform (rotate, scale, translate, and so

on) the items you draw. The two transformations also allow you to work in a variety of coordinate systems.

In This Section

Types of Coordinate Systems

Introduces coordinates systems and transformations.

Matrix Representation of Transformations

Discusses using matrices for coordinate transformations.

Global and Local Transformations

Discusses global and local transformations.

Reference

Matrix

Encapsulates a 3-by-3 affine matrix that represents a geometric transform.

Related Sections

Using Transformations in Managed GDI+

Provides a list of topics that provide more information about how to use matrix transformations.

About GDI+ Managed Code

Contains a list of topics describing the graphics constructs you can use in the .NET Framework.

© 2016 Microsoft

.NET Framework (current version)

Coordinate Systems and Transformations https://msdn.microsoft.com/en-us/library/3zxbwxch(d=printer,v=vs.110).aspx

1 of 1 04.09.2016 22:28

Types of Coordinate Systems

GDI+ uses three coordinate spaces: world, page, and device. World coordinates are the coordinates used to model a

particular graphic world and are the coordinates you pass to methods in the .NET Framework. Page coordinates refer to the

coordinate system used by a drawing surface, such as a form or control. Device coordinates are the coordinates used by the

physical device being drawn on, such as a screen or sheet of paper. When you make the call

myGraphics.DrawLine(myPen, 0, 0, 160, 80), the points that you pass to the DrawLine method—(0, 0) and (160,

80)—are in the world coordinate space. Before GDI+ can draw the line on the screen, the coordinates pass through a

sequence of transformations. One transformation, called the world transformation, converts world coordinates to page

coordinates, and another transformation, called the page transformation, converts page coordinates to device coordinates.

Transforms and Coordinate Systems
Suppose you want to work with a coordinate system that has its origin in the body of the client area rather than the

upper-left corner. Say, for example, that you want the origin to be 100 pixels from the left edge of the client area and 50

pixels from the top of the client area. The following illustration shows such a coordinate system.

When you make the call myGraphics.DrawLine(myPen, 0, 0, 160, 80), you get the line shown in the following

illustration.

The coordinates of the endpoints of your line in the three coordinate spaces are as follows:

.NET Framework (current version)

Types of Coordinate Systems https://msdn.microsoft.com/en-us/library/aa1hw2kk(d=printer,v=vs.110).aspx

1 of 4 04.09.2016 22:29

World (0, 0) to (160, 80)

Page (100, 50) to (260, 130)

Device (100, 50) to (260, 130)

Note that the page coordinate space has its origin at the upper-left corner of the client area; this will always be the case.

Also note that because the unit of measure is the pixel, the device coordinates are the same as the page coordinates. If

you set the unit of measure to something other than pixels (for example, inches), then the device coordinates will be

different from the page coordinates.

The world transformation, which maps world coordinates to page coordinates, is held in the Transform property of the

Graphics class. In the preceding example, the world transformation is a translation 100 units in the x direction and 50 units

in the y direction. The following example sets the world transformation of a Graphics object and then uses that Graphics

object to draw the line shown in the preceding figure:

The page transformation maps page coordinates to device coordinates. The Graphics class provides the PageUnit and

PageScale properties for manipulating the page transformation. The Graphics class also provides two read-only

properties, DpiX and DpiY, for examining the horizontal and vertical dots per inch of the display device.

You can use the PageUnit property of the Graphics class to specify a unit of measure other than the pixel.

Note

You cannot set the PageUnit property to World, as this is not a physical unit and will cause an exception.

The following example draws a line from (0, 0) to (2, 1), where the point (2, 1) is 2 inches to the right and 1 inch down from

the point (0, 0):

Note

If you don't specify a pen width when you construct your pen, the preceding example will draw a line that is one inch

wide. You can specify the pen width in the second argument to the Pen constructor:

myGraphics.TranslateTransform(100, 50)

myGraphics.DrawLine(myPen, 0, 0, 160, 80)

myGraphics.PageUnit = GraphicsUnit.Inch

myGraphics.DrawLine(myPen, 0, 0, 2, 1)

VB

VB

Types of Coordinate Systems https://msdn.microsoft.com/en-us/library/aa1hw2kk(d=printer,v=vs.110).aspx

2 of 4 04.09.2016 22:29

If we assume that the display device has 96 dots per inch in the horizontal direction and 96 dots per inch in the vertical

direction, the endpoints of the line in the preceding example have the following coordinates in the three coordinate

spaces:

World (0, 0) to (2, 1)

Page (0, 0) to (2, 1)

Device (0, 0, to (192, 96)

Note that because the origin of the world coordinate space is at the upper-left corner of the client area, the page

coordinates are the same as the world coordinates.

You can combine the world and page transformations to achieve a variety of effects. For example, suppose you want to

use inches as the unit of measure and you want the origin of your coordinate system to be 2 inches from the left edge of

the client area and 1/2 inch from the top of the client area. The following example sets the world and page

transformations of a Graphics object and then draws a line from (0, 0) to (2, 1):

The following illustration shows the line and coordinate system.

If we assume that the display device has 96 dots per inch in the horizontal direction and 96 dots per inch in the vertical

direction, the endpoints of the line in the preceding example have the following coordinates in the three coordinate

spaces:

Dim myPen As New Pen(Color.Black, 1 / myGraphics.DpiX)

myGraphics.TranslateTransform(2, 0.5F)

myGraphics.PageUnit = GraphicsUnit.Inch

myGraphics.DrawLine(myPen, 0, 0, 2, 1)

VB

VB

Types of Coordinate Systems https://msdn.microsoft.com/en-us/library/aa1hw2kk(d=printer,v=vs.110).aspx

3 of 4 04.09.2016 22:29

World (0, 0) to (2, 1)

Page (2, 0.5) to (4, 1.5)

Device (192, 48) to (384, 144)

See Also
Coordinate Systems and Transformations

Matrix Representation of Transformations

© 2016 Microsoft

Types of Coordinate Systems https://msdn.microsoft.com/en-us/library/aa1hw2kk(d=printer,v=vs.110).aspx

4 of 4 04.09.2016 22:29

Matrix Representation of Transformations

An m×n matrix is a set of numbers arranged in m rows and n columns. The following illustration shows several matrices.

You can add two matrices of the same size by adding individual elements. The following illustration shows two examples of

matrix addition.

An m×n matrix can be multiplied by an n×p matrix, and the result is an m×p matrix. The number of columns in the first

matrix must be the same as the number of rows in the second matrix. For example, a 4×2 matrix can be multiplied by a 2×3

matrix to produce a 4×3 matrix.

Points in the plane and rows and columns of a matrix can be thought of as vectors. For example, (2, 5) is a vector with two

components, and (3, 7, 1) is a vector with three components. The dot product of two vectors is defined as follows:

(a, b) • (c, d) = ac + bd

(a, b, c) • (d, e, f) = ad + be + cf

For example, the dot product of (2, 3) and (5, 4) is (2)(5) + (3)(4) = 22. The dot product of (2, 5, 1) and (4, 3, 1) is (2)(4) +

(5)(3) + (1)(1) = 24. Note that the dot product of two vectors is a number, not another vector. Also note that you can

calculate the dot product only if the two vectors have the same number of components.

Let A(i, j) be the entry in matrix A in the ith row and the jth column. For example A(3, 2) is the entry in matrix A in the 3rd row

and the 2nd column. Suppose A, B, and C are matrices, and AB = C. The entries of C are calculated as follows:

C(i, j) = (row i of A) • (column j of B)

The following illustration shows several examples of matrix multiplication.

.NET Framework (current version)

Matrix Representation of Transformations https://msdn.microsoft.com/en-us/library/8667dchf(d=printer,v=vs.110).aspx

1 of 5 04.09.2016 22:29

If you think of a point in a plane as a 1×2 matrix, you can transform that point by multiplying it by a 2×2 matrix. The

following illustration shows several transformations applied to the point (2, 1).

All of the transformations shown in the preceding figure are linear transformations. Certain other transformations, such as

translation, are not linear, and cannot be expressed as multiplication by a 2×2 matrix. Suppose you want to start with the

point (2, 1), rotate it 90 degrees, translate it 3 units in the x direction, and translate it 4 units in the y direction. You can

accomplish this by using a matrix multiplication followed by a matrix addition.

Matrix Representation of Transformations https://msdn.microsoft.com/en-us/library/8667dchf(d=printer,v=vs.110).aspx

2 of 5 04.09.2016 22:29

A linear transformation (multiplication by a 2×2 matrix) followed by a translation (addition of a 1×2 matrix) is called an

affine transformation. An alternative to storing an affine transformation in a pair of matrices (one for the linear part and one

for the translation) is to store the entire transformation in a 3×3 matrix. To make this work, a point in the plane must be

stored in a 1×3 matrix with a dummy 3rd coordinate. The usual technique is to make all 3rd coordinates equal to 1. For

example, the point (2, 1) is represented by the matrix [2 1 1]. The following illustration shows an affine transformation (rotate

90 degrees; translate 3 units in the x direction, 4 units in the y direction) expressed as multiplication by a single 3×3 matrix.

In the preceding example, the point (2, 1) is mapped to the point (2, 6). Note that the third column of the 3×3 matrix

contains the numbers 0, 0, 1. This will always be the case for the 3×3 matrix of an affine transformation. The important

numbers are the six numbers in columns 1 and 2. The upper-left 2×2 portion of the matrix represents the linear part of the

transformation, and the first two entries in the 3rd row represent the translation.

In GDI+ you can store an affine transformation in a Matrix object. Because the third column of a matrix that represents an

affine transformation is always (0, 0, 1), you specify only the six numbers in the first two columns when you construct a

Matrix object. The statement Matrix myMatrix = new Matrix(0, 1, ‐1, 0, 3, 4) constructs the matrix shown in the

preceding figure.

Composite Transformations
A composite transformation is a sequence of transformations, one followed by the other. Consider the matrices and

transformations in the following list:

Matrix A Rotate 90 degrees

Matrix Representation of Transformations https://msdn.microsoft.com/en-us/library/8667dchf(d=printer,v=vs.110).aspx

3 of 5 04.09.2016 22:29

Matrix B Scale by a factor of 2 in the x direction

Matrix C Translate 3 units in the y direction

If we start with the point (2, 1) — represented by the matrix [2 1 1] — and multiply by A, then B, then C, the point (2, 1)

will undergo the three transformations in the order listed.

[2 1 1]ABC = [-2 5 1]

Rather than store the three parts of the composite transformation in three separate matrices, you can multiply A, B, and C

together to get a single 3×3 matrix that stores the entire composite transformation. Suppose ABC = D. Then a point

multiplied by D gives the same result as a point multiplied by A, then B, then C.

[2 1 1]D = [-2 5 1]

The following illustration shows the matrices A, B, C, and D.

The fact that the matrix of a composite transformation can be formed by multiplying the individual transformation

matrices means that any sequence of affine transformations can be stored in a single Matrix object.

Caution

The order of a composite transformation is important. In general, rotate, then scale, then translate is not the same as

scale, then rotate, then translate. Similarly, the order of matrix multiplication is important. In general, ABC is not the

same as BAC.

The Matrix class provides several methods for building a composite transformation: Multiply, Rotate, RotateAt, Scale,

Shear, and Translate. The following example creates the matrix of a composite transformation that first rotates 30 degrees,

then scales by a factor of 2 in the y direction, and then translates 5 units in the x direction:

The following illustration shows the matrix.

Dim myMatrix As New Matrix()

myMatrix.Rotate(30)

myMatrix.Scale(1, 2, MatrixOrder.Append)

myMatrix.Translate(5, 0, MatrixOrder.Append)

VB

Matrix Representation of Transformations https://msdn.microsoft.com/en-us/library/8667dchf(d=printer,v=vs.110).aspx

4 of 5 04.09.2016 22:29

See Also
Coordinate Systems and Transformations

Using Transformations in Managed GDI+

© 2016 Microsoft

Matrix Representation of Transformations https://msdn.microsoft.com/en-us/library/8667dchf(d=printer,v=vs.110).aspx

5 of 5 04.09.2016 22:29

Global and Local Transformations

A global transformation is a transformation that applies to every item drawn by a given Graphics object. In contrast, a local

transformation is a transformation that applies to a specific item to be drawn.

Global Transformations

To create a global transformation, construct a Graphics object, and then manipulate its Transform property. The

Transform property is a Matrix object, so it can hold any sequence of affine transformations. The transformation stored in

the Transform property is called the world transformation. The Graphics class provides several methods for building up a

composite world transformation: MultiplyTransform, RotateTransform, ScaleTransform, and TranslateTransform. The

following example draws an ellipse twice: once before creating a world transformation and once after. The transformation

first scales by a factor of 0.5 in the y direction, then translates 50 units in the x direction, and then rotates 30 degrees.

The following illustration shows the matrices involved in the transformation.

Note

In the preceding example, the ellipse is rotated about the origin of the coordinate system, which is at the upper-left

corner of the client area. This produces a different result than rotating the ellipse about its own center.

Local Transformations

A local transformation applies to a specific item to be drawn. For example, a GraphicsPath object has a Transform method

that allows you to transform the data points of that path. The following example draws a rectangle with no

transformation and a path with a rotation transformation. (Assume that there is no world transformation.)

.NET Framework (current version)

myGraphics.DrawEllipse(myPen, 0, 0, 100, 50)

myGraphics.ScaleTransform(1, 0.5F)

myGraphics.TranslateTransform(50, 0, MatrixOrder.Append)

myGraphics.RotateTransform(30, MatrixOrder.Append)

myGraphics.DrawEllipse(myPen, 0, 0, 100, 50)

VB

VB

Global and Local Transformations https://msdn.microsoft.com/en-us/library/c499ats3(d=printer,v=vs.110).aspx

1 of 3 04.09.2016 22:29

You can combine the world transformation with local transformations to achieve a variety of results. For example, you can

use the world transformation to revise the coordinate system and use local transformations to rotate and scale objects

drawn on the new coordinate system.

Suppose you want a coordinate system that has its origin 200 pixels from the left edge of the client area and 150 pixels

from the top of the client area. Furthermore, assume that you want the unit of measure to be the pixel, with the x-axis

pointing to the right and the y-axis pointing up. The default coordinate system has the y-axis pointing down, so you need

to perform a reflection across the horizontal axis. The following illustration shows the matrix of such a reflection.

Next, assume you need to perform a translation 200 units to the right and 150 units down.

The following example establishes the coordinate system just described by setting the world transformation of a Graphics

object.

The following code (placed at the end of the preceding example) creates a path that consists of a single rectangle with its

lower-left corner at the origin of the new coordinate system. The rectangle is filled once with no local transformation and

once with a local transformation. The local transformation consists of a horizontal scaling by a factor of 2 followed by a

30-degree rotation.

Dim myMatrix As New Matrix()

myMatrix.Rotate(45)

myGraphicsPath.Transform(myMatrix)

myGraphics.DrawRectangle(myPen, 10, 10, 100, 50)

myGraphics.DrawPath(myPen, myGraphicsPath)

Dim myMatrix As New Matrix(1, 0, 0, ‐1, 0, 0)

myGraphics.Transform = myMatrix

myGraphics.TranslateTransform(200, 150, MatrixOrder.Append)

' Create the path.

Dim myGraphicsPath As New GraphicsPath()

Dim myRectangle As New Rectangle(0, 0, 60, 60)

myGraphicsPath.AddRectangle(myRectangle)

' Fill the path on the new coordinate system.

' No local transformation

myGraphics.FillPath(mySolidBrush1, myGraphicsPath)

' Set the local transformation of the GraphicsPath object.

Dim myPathMatrix As New Matrix()

myPathMatrix.Scale(2, 1)

myPathMatrix.Rotate(30, MatrixOrder.Append)

VB

VB

Global and Local Transformations https://msdn.microsoft.com/en-us/library/c499ats3(d=printer,v=vs.110).aspx

2 of 3 04.09.2016 22:29

The following illustration shows the new coordinate system and the two rectangles.

See Also

Coordinate Systems and Transformations

Using Transformations in Managed GDI+

© 2016 Microsoft

myGraphicsPath.Transform(myPathMatrix)

' Fill the transformed path on the new coordinate system.

myGraphics.FillPath(mySolidBrush2, myGraphicsPath)

Global and Local Transformations https://msdn.microsoft.com/en-us/library/c499ats3(d=printer,v=vs.110).aspx

3 of 3 04.09.2016 22:29

