
Language-Integrated Query 1

LINQ to ADO.NET 2

LINQ to Entities 4

Entity SQL Reference 7

LINQ and Strings 13

LINQ and File Directories 15

LINQ and Reflection 17

Query an ArrayList with LINQ 19

Add Custom Methods for LINQ Queries 21

Language-Integrated Query (LINQ) (Visual
Basic)

LINQ is a set of features that extends powerful query capabilities to the language syntax of Visual Basic. LINQ introduces

standard, easily-learned patterns for querying and updating data, and the technology can be extended to support

potentially any kind of data store. The .NET Framework includes LINQ provider assemblies that enable the use of LINQ with

.NET Framework collections, SQL Server databases, ADO.NET Datasets, and XML documents.

In This Section

Introduction to LINQ (Visual Basic)

Provides a general introduction to the kinds of applications that you can write and the kinds of problems that you

can solve with LINQ queries.

Getting Started with LINQ in Visual Basic

Describes the basic facts you should know in order to understand the Visual Basic documentation and samples.

Visual Studio IDE and Tools Support for LINQ (Visual Basic)

Describes Visual Studio's Object Relational Designer, debugger support for queries, and other IDE features related

to LINQ.

Standard Query Operators Overview (Visual Basic)

Provides an introduction to the standard query operators. It also provides links to topics that have more

information about each type of query operation.

LINQ to Objects (Visual Basic)

Includes links to topics that explain how to use LINQ to Objects to access in-memory data structures,

LINQ to XML (Visual Basic)

Includes links to topics that explain how to use LINQ to XML, which provides the in-memory document

modification capabilities of the Document Object Model (DOM), and supports LINQ query expressions.

LINQ to ADO.NET (Portal Page)

Provides an entry point for documentation about LINQ to DataSet, LINQ to SQL, and LINQ to Entities. LINQ to

DataSet enables you to build richer query capabilities into DataSet by using the same query functionality that is

available for other data sources. LINQ to SQL provides a run-time infrastructure for managing relational data as

objects. LINQ to Entities enables developers to write queries against the Entity Framework conceptual model by

using C#.

Enabling a Data Source for LINQ Querying

Provides an introduction to custom LINQ providers, LINQ expression trees, and other ways to extend LINQ.

© 2016 Microsoft

Visual Studio 2015

Language-Integrated Query (LINQ) (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692774(d=printer).aspx

1 of 1 02.09.2016 1:38

LINQ to ADO.NET (Portal Page)

LINQ to ADO.NET enables you to query over any enumerable object in ADO.NET by using the Language-Integrated Query

(LINQ) programming model.

Note

The LINQ to ADO.NET documentation is located in the ADO.NET section of the .NET Framework SDK: LINQ and ADO.NET.

There are three separate ADO.NET Language-Integrated Query (LINQ) technologies: LINQ to DataSet, LINQ to SQL, and LINQ

to Entities. LINQ to DataSet provides richer, optimized querying over the DataSet, LINQ to SQL enables you to directly query

SQL Server database schemas, and LINQ to Entities allows you to query an Entity Data Model.

LINQ to DataSet
The DataSet is one of the most widely used components in ADO.NET, and is a key element of the disconnected

programming model that ADO.NET is built on. Despite this prominence, however, the DataSet has limited query

capabilities.

LINQ to DataSet enables you to build richer query capabilities into DataSet by using the same query functionality that is

available for many other data sources.

For more information, see LINQ to DataSet.

LINQ to SQL
LINQ to SQL provides a run-time infrastructure for managing relational data as objects. In LINQ to SQL, the data model of

a relational database is mapped to an object model expressed in the programming language of the developer. When you

execute the application, LINQ to SQL translates language-integrated queries in the object model into SQL and sends them

to the database for execution. When the database returns the results, LINQ to SQL translates them back into objects that

you can manipulate.

LINQ to SQL includes support for stored procedures and user-defined functions in the database, and for inheritance in the

object model.

For more information, see LINQ to SQL.

LINQ to Entities
Through the Entity Data Model, relational data is exposed as objects in the .NET environment. This makes the object layer

Visual Studio 2015

LINQ to ADO.NET (Portal Page) https://msdn.microsoft.com/en-us/library/mt693012(d=printer).aspx

1 of 2 02.09.2016 1:38

an ideal target for LINQ support, allowing developers to formulate queries against the database from the language used

to build the business logic. This capability is known as LINQ to Entities. See LINQ to Entities for more information.

See Also
LINQ and ADO.NET

Language-Integrated Query (LINQ) (Visual Basic)

© 2016 Microsoft

LINQ to ADO.NET (Portal Page) https://msdn.microsoft.com/en-us/library/mt693012(d=printer).aspx

2 of 2 02.09.2016 1:38

LINQ to Entities

LINQ to Entities provides Language-Integrated Query (LINQ) support that enables developers to write queries against the

Entity Framework conceptual model using Visual Basic or Visual C#. Queries against the Entity Framework are represented by

command tree queries, which execute against the object context. LINQ to Entities converts Language-Integrated Queries

(LINQ) queries to command tree queries, executes the queries against the Entity Framework, and returns objects that can be

used by both the Entity Framework and LINQ. The following is the process for creating and executing a LINQ to Entities

query:

Construct an ObjectQuery(Of T) instance from ObjectContext.1.

Compose a LINQ to Entities query in C# or Visual Basic by using the ObjectQuery(Of T) instance.2.

Convert LINQ standard query operators and expressions to command trees.3.

Execute the query, in command tree representation, against the data source. Any exceptions thrown on the data

source during execution are passed directly up to the client.

4.

Return query results back to the client.5.

Constructing an ObjectQuery Instance
The ObjectQuery(Of T) generic class represents a query that returns a collection of zero or more typed entities. An object

query is typically constructed from an existing object context, instead of being manually constructed, and always belongs

to that object context. This context provides the connection and metadata information that is required to compose and

execute the query. The ObjectQuery(Of T) generic class implements the IQueryable(Of T) generic interface, whose builder

methods enable LINQ queries to be incrementally built. You can also let the compiler infer the type of entities by using

the C# var keyword (Dim in Visual Basic, with local type inference enabled).

Composing the Queries
Instances of the ObjectQuery(Of T) generic class, which implements the generic IQueryable(Of T) interface, serve as the

data source for LINQ to Entities queries. In a query, you specify exactly the information that you want to retrieve from the

data source. A query can also specify how that information should be sorted, grouped, and shaped before it is returned. In

LINQ, a query is stored in a variable. This query variable takes no action and returns no data; it only stores the query

information. After you create a query you must execute that query to retrieve any data.

LINQ to Entities queries can be composed in two different syntaxes: query expression syntax and method-based query

syntax. Query expression syntax and method-based query syntax are new in C# 3.0 and Visual Basic 9.0.

For more information, see Queries in LINQ to Entities.

.NET Framework (current version)

LINQ to Entities https://msdn.microsoft.com/en-us/library/bb386964(d=printer).aspx

1 of 3 02.09.2016 1:39

Query Conversion
To execute a LINQ to Entities query against the Entity Framework, the LINQ query must be converted to a command tree

representation that can be executed against the Entity Framework.

LINQ to Entities queries are comprised of LINQ standard query operators (such as Select, Where, and GroupBy) and

expressions (x > 10, Contact.LastName, and so on). LINQ operators are not defined by a class, but rather are methods on a

class. In LINQ, expressions can contain anything allowed by types within the System.Linq.Expressions namespace and, by

extension, anything that can be represented in a lambda function. This is a superset of the expressions that are allowed by

the Entity Framework, which are by definition restricted to operations allowed on the database, and supported by

ObjectQuery(Of T).

In the Entity Framework, both operators and expressions are represented by a single type hierarchy, which are then placed

in a command tree. The command tree is used by the Entity Framework to execute the query. If the LINQ query cannot be

expressed as a command tree, an exception will be thrown when the query is being converted. The conversion of LINQ to

Entities queries involves two sub-conversions: the conversion of the standard query operators, and the conversion of the

expressions.

There are a number of LINQ standard query operators that do not have a valid translation in LINQ to Entities. Attempts to

use these operators will result in an exception at query translation time. For a list of supported LINQ to Entities operators,

see Supported and Unsupported LINQ Methods (LINQ to Entities).

For more information about using the standard query operators in LINQ to Entities, see Standard Query Operators in

LINQ to Entities Queries.

In general, expressions in LINQ to Entities are evaluated on the server, so the behavior of the expression should not be

expected to follow CLR semantics. For more information, see Expressions in LINQ to Entities Queries.

For information about how CLR method calls are mapped to canonical functions in the data source, see CLR Method to

Canonical Function Mapping.

For information about how to call canonical, database, and custom functions from within LINQ to Entities queries, see

Calling Functions in LINQ to Entities Queries.

Query Execution
After the LINQ query is created by the user, it is converted to a representation that is compatible with the Entity

Framework (in the form of command trees), which is then executed against the data source. At query execution time, all

query expressions (or components of the query) are evaluated on the client or on the server. This includes expressions that

are used in result materialization or entity projections. For more information, see Query Execution. For information on

how to improve performance by compiling a query once and then executing it several times with different parameters,

see Compiled Queries (LINQ to Entities).

Materialization
Materialization is the process of returning query results back to the client as CLR types. In LINQ to Entities, query results

data records are never returned; there is always a backing CLR type, defined by the user or by the Entity Framework, or

generated by the compiler (anonymous types). All object materialization is performed by the Entity Framework. Any

LINQ to Entities https://msdn.microsoft.com/en-us/library/bb386964(d=printer).aspx

2 of 3 02.09.2016 1:39

errors that result from an inability to map between the Entity Framework and the CLR will cause exceptions to be thrown

during object materialization.

Query results are usually returned as one of the following:

A collection of zero or more typed entity objects or a projection of complex types defined in the conceptual

model.

CLR types that are supported by the Entity Framework.

Inline collections.

Anonymous types.

For more information, see Query Results.

In This Section
Queries in LINQ to Entities

Expressions in LINQ to Entities Queries

Calling Functions in LINQ to Entities Queries

Compiled Queries (LINQ to Entities)

Query Execution

Query Results

Standard Query Operators in LINQ to Entities Queries

CLR Method to Canonical Function Mapping

Supported and Unsupported LINQ Methods (LINQ to Entities)

Known Issues and Considerations in LINQ to Entities

See Also
Known Issues and Considerations in LINQ to Entities

LINQ (Language-Integrated Query)

LINQ and ADO.NET

ADO.NET Entity Framework

© 2016 Microsoft

LINQ to Entities https://msdn.microsoft.com/en-us/library/bb386964(d=printer).aspx

3 of 3 02.09.2016 1:39

Entity SQL Reference

This section contains Entity SQL reference topics. This topic summarizes and groups the Entity SQL operators by category.

Arithmetic Operators
Arithmetic operators perform mathematical operations on two expressions of one or more numeric data types. The

following table lists the Entity SQL arithmetic operators.

Operator Use

+ (Add) Addition.

/ (Divide) Division.

% (Modulo) Returns the remainder of a division.

* (Multiply) Multiplication.

- (Negative) Negation.

- (Subtract) Subtraction.

Canonical Functions
Canonical functions are supported by all data providers and can be used by all querying technologies. The following table

lists the canonical functions.

Function Type

Aggregate Entity SQL Canonical

Functions

Discusses aggregate Entity SQL canonical functions.

Math Canonical Functions Discusses math Entity SQL canonical functions.

String Canonical Functions Discusses string Entity SQL canonical functions.

Date and Time Canonical Functions Discusses date and time Entity SQL canonical functions.

.NET Framework (current version)

Entity SQL Reference https://msdn.microsoft.com/en-us/library/bb387118(d=printer,v=vs.110).aspx

1 of 6 02.09.2016 1:41

Bitwise Canonical Functions Discusses bitwise Entity SQL canonical functions.

Other Canonical Functions Discusses functions not classified as bitwise, date/time, string, math, or

aggregate.

Comparison Operators
Comparison operators are defined for the following types: Byte, Int16, Int32, Int64, Double, Single, Decimal, String,

DateTime, Date, Time, DateTimeOffset. Implicit type promotion occurs for the operands before the comparison

operator is applied. Comparison operators always yield Boolean values. When at least one of the operands is null, the

result is null.

Equality and inequality are defined for any object type that has identity, such as the Boolean type. Non-primitive objects

with identity are considered equal if they share the same identity. The following table lists the Entity SQL comparison

operators.

Operator Description

= (Equals) Compares the equality of two expressions.

> (Greater Than) Compares two expressions to determine whether the left expression has a value greater

than the right expression.

>= (Greater Than or

Equal To)

Compares two expressions to determine whether the left expression has a value greater

than or equal to the right expression.

IS [NOT] NULL Determines if a query expression is null.

< (Less Than) Compares two expressions to determine whether the left expression has a value less than

the right expression.

<= (Less Than or Equal

To)

Compares two expressions to determine whether the left expression has a value less than

or equal to the right expression.

[NOT] BETWEEN Determines whether an expression results in a value in a specified range.

!= (Not Equal To) Compares two expressions to determine whether the left expression is not equal to the

right expression.

[NOT] LIKE Determines whether a specific character string matches a specified pattern.

Logical and Case Expression Operators

Entity SQL Reference https://msdn.microsoft.com/en-us/library/bb387118(d=printer,v=vs.110).aspx

2 of 6 02.09.2016 1:41

Logical operators test for the truth of a condition. The CASE expression evaluates a set of Boolean expressions to

determine the result. The following table lists the logical and CASE expression operators.

Operator Description

&& (Logical AND) Logical AND.

! (Logical NOT) Logical NOT.

|| (Logical OR) Logical OR.

CASE Evaluates a set of Boolean expressions to determine the result.

THEN The result of a WHEN clause when it evaluates to true.

Query Operators
Query operators are used to define query expressions that return entity data. The following table lists query operators.

Operator Use

FROM Specifies the collection that is used in SELECT statements.

GROUP BY Specifies groups into which objects that are returned by a query (SELECT) expression are to be

placed.

GroupPartition Returns a collection of argument values, projected off the group partition to which the aggregate is

related.

HAVING Specifies a search condition for a group or an aggregate.

LIMIT Used with the ORDER BY clause to performed physical paging.

ORDER BY Specifies the sort order that is used on objects returned in a SELECT statement.

SELECT Specifies the elements in the projection that are returned by a query.

SKIP Used with the ORDER BY clause to performed physical paging.

TOP Specifies that only the first set of rows will be returned from the query result.

WHERE Conditionally filters data that is returned by a query.

Entity SQL Reference https://msdn.microsoft.com/en-us/library/bb387118(d=printer,v=vs.110).aspx

3 of 6 02.09.2016 1:41

Reference Operators
A reference is a logical pointer (foreign key) to a specific entity in a specific entity set. Entity SQL supports the following

operators to construct, deconstruct, and navigate through references.

Operator Use

CREATEREF Creates references to an entity in an entity set.

DEREF Dereferences a reference value and produces the result of that dereference.

KEY Extracts the key of a reference or of an entity expression.

NAVIGATE Allows you to navigate over the relationship from one entity type to another

REF Returns a reference to an entity instance.

Set Operators
Entity SQL provides various powerful set operations. This includes set operators similar to Transact-SQL operators such as

UNION, INTERSECT, EXCEPT, and EXISTS. Entity SQL also supports operators for duplicate elimination (SET), membership

testing (IN), and joins (JOIN). The following table lists the Entity SQL set operators.

Operator Use

ANYELEMENT Extracts an element from a multivalued collection.

EXCEPT Returns a collection of any distinct values from the query expression to the left of the EXCEPT

operand that are not also returned from the query expression to the right of the EXCEPT operand.

[NOT] EXISTS Determines if a collection is empty.

FLATTEN Converts a collection of collections into a flattened collection.

[NOT] IN Determines whether a value matches any value in a collection.

INTERSECT Returns a collection of any distinct values that are returned by both the query expressions on the left

and right sides of the INTERSECT operand.

OVERLAPS Determines whether two collections have common elements.

SET Used to convert a collection of objects into a set by yielding a new collection with all duplicate

elements removed.

Entity SQL Reference https://msdn.microsoft.com/en-us/library/bb387118(d=printer,v=vs.110).aspx

4 of 6 02.09.2016 1:41

UNION Combines the results of two or more queries into a single collection.

Type Operators
Entity SQL provides operations that allow the type of an expression (value) to be constructed, queried, and manipulated.

The following table lists operators that are used to work with types.

Operator Use

CAST Converts an expression of one data type to another.

COLLECTION Used in a FUNCTION operation to declare a collection of entity types or complex types.

IS [NOT] OF Determines whether the type of an expression is of the specified type or one of its

subtypes.

OFTYPE Returns a collection of objects from a query expression that is of a specific type.

Named Type

Constructor

Used to create instances of entity types or complex types.

MULTISET Creates an instance of a multiset from a list of values.

ROW Constructs anonymous, structurally typed records from one or more values.

TREAT Treats an object of a particular base type as an object of the specified derived type.

Other Operators
The following table lists other Entity SQL operators.

Operator Use

+ (String

Concatenation)

Used to concatenate strings in Entity SQL.

. (Member Access) Used to access the value of a property or field of an instance of structural conceptual

model type.

-- (Comment) Include Entity SQL comments.

Entity SQL Reference https://msdn.microsoft.com/en-us/library/bb387118(d=printer,v=vs.110).aspx

5 of 6 02.09.2016 1:41

FUNCTION Defines an inline function that can be executed in an Entity SQL query.

See Also
Entity SQL Language

© 2016 Microsoft

Entity SQL Reference https://msdn.microsoft.com/en-us/library/bb387118(d=printer,v=vs.110).aspx

6 of 6 02.09.2016 1:41

LINQ and Strings (Visual Basic)

LINQ can be used to query and transform strings and collections of strings. It can be especially useful with semi-structured

data in text files. LINQ queries can be combined with traditional string functions and regular expressions. For example, you

can use the Split or Split method to create an array of strings that you can then query or modify by using LINQ. You can use

the IsMatch method in the where clause of a LINQ query. And you can use LINQ to query or modify the

MatchCollection results returned by a regular expression.

You can also use the techniques described in this section to transform semi-structured text data to XML. For more

information, see How to: Generate XML from CSV Files.

The examples in this section fall into two categories:

Querying a Block of Text
You can query, analyze, and modify text blocks by splitting them into a queryable array of smaller strings by using the

Split method or the Split method. You can split the source text into words, sentences, paragraphs, pages, or any other

criteria, and then perform additional splits if they are required in your query.

How to: Count Occurrences of a Word in a String (LINQ) (Visual Basic)

Shows how to use LINQ for simple querying over text.

How to: Query for Sentences that Contain a Specified Set of Words (LINQ) (Visual Basic)

Shows how to split text files on arbitrary boundaries and how to perform queries against each part.

How to: Query for Characters in a String (LINQ) (Visual Basic)

Demonstrates that a string is a queryable type.

How to: Combine LINQ Queries with Regular Expressions (Visual Basic)

Shows how to use regular expressions in LINQ queries for complex pattern matching on filtered query results.

Querying Semi-Structured Data in Text Format
Many different types of text files consist of a series of lines, often with similar formatting, such as tab- or comma-

delimited files or fixed-length lines. After you read such a text file into memory, you can use LINQ to query and/or modify

the lines. LINQ queries also simplify the task of combining data from multiple sources.

How to: Find the Set Difference Between Two Lists (LINQ) (Visual Basic)

Shows how to find all the strings that are present in one list but not the other.

How to: Sort or Filter Text Data by Any Word or Field (LINQ) (Visual Basic)

Shows how to sort text lines based on any word or field.

How to: Reorder the Fields of a Delimited File (LINQ) (Visual Basic)

Visual Studio 2015

LINQ and Strings (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692781(d=printer).aspx

1 of 2 02.09.2016 1:44

Shows how to reorder fields in a line in a .csv file.

How to: Combine and Compare String Collections (LINQ) (Visual Basic)

Shows how to combine string lists in various ways.

How to: Populate Object Collections from Multiple Sources (LINQ) (Visual Basic)

Shows how to create object collections by using multiple text files as data sources.

How to: Join Content from Dissimilar Files (LINQ) (Visual Basic)

Shows how to combine strings in two lists into a single string by using a matching key.

How to: Split a File Into Many Files by Using Groups (LINQ) (Visual Basic)

Shows how to create new files by using a single file as a data source.

How to: Compute Column Values in a CSV Text File (LINQ) (Visual Basic)

Shows how to perform mathematical computations on text data in .csv files.

See Also
Language-Integrated Query (LINQ) (Visual Basic)

How to: Generate XML from CSV Files

© 2016 Microsoft

LINQ and Strings (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692781(d=printer).aspx

2 of 2 02.09.2016 1:44

LINQ and File Directories (Visual Basic)

Many file system operations are essentially queries and are therefore well-suited to the LINQ approach.

Note that the queries in this section are non-destructive. They are not used to change the contents of the original files or

folders. This follows the rule that queries should not cause any side-effects. In general, any code (including queries that

perform create / update / delete operators) that modifies source data should be kept separate from the code that just

queries the data.

This section contains the following topics:

How to: Query for Files with a Specified Attribute or Name (Visual Basic)

Shows how to search for files by examining one or more properties of its FileInfo object.

How to: Group Files by Extension (LINQ) (Visual Basic)

Shows how to return groups of FileInfo object based on their file name extension.

How to: Query for the Total Number of Bytes in a Set of Folders (LINQ) (Visual Basic)

Shows how to return the total number of bytes in all the files in a specified directory tree.

How to: Compare the Contents of Two Folders (LINQ) (Visual Basic)s

Shows how to return all the files that are present in two specified folders, and also all the files that are present in one

folder but not the other.

How to: Query for the Largest File or Files in a Directory Tree (LINQ) (Visual Basic)

Shows how to return the largest or smallest file, or a specified number of files, in a directory tree.

How to: Query for Duplicate Files in a Directory Tree (LINQ) (Visual Basic)

Shows how to group for all file names that occur in more than one location in a specified directory tree. Also shows

how to perform more complex comparisons based on a custom comparer.

How to: Query the Contents of Files in a Folder (LINQ) (Visual Basic)

Shows how to iterate through folders in a tree, open each file, and query the file's contents.

Comments

Visual Studio 2015

LINQ and File Directories (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692818(d=printer).aspx

1 of 2 02.09.2016 1:45

There is some complexity involved in creating a data source that accurately represents the contents of the file system and

handles exceptions gracefully. The examples in this section create a snapshot collection of FileInfo objects that represents

all the files under a specified root folder and all its subfolders. The actual state of each FileInfo may change in the time

between when you begin and end executing a query. For example, you can create a list of FileInfo objects to use as a data

source. If you try to access the Length property in a query, the FileInfo object will try to access the file system to update

the value of Length. If the file no longer exists, you will get a FileNotFoundException in your query, even though you are

not querying the file system directly. Some queries in this section use a separate method that consumes these particular

exceptions in certain cases. Another option is to keep your data source updated dynamically by using the

FileSystemWatcher.

See Also

LINQ to Objects (Visual Basic)

© 2016 Microsoft

LINQ and File Directories (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692818(d=printer).aspx

2 of 2 02.09.2016 1:45

How to: Query An Assembly's Metadata with
Reflection (LINQ) (Visual Basic)

The following example shows how LINQ can be used with reflection to retrieve specific metadata about methods that match

a specified search criterion. In this case, the query will find the names of all the methods in the assembly that return

enumerable types such as arrays.

Example

The example uses the GetTypes method to return an array of types in the specified assembly. The Where Clause (Visual Basic)

filter is applied so that only public types are returned. For each public type, a subquery is generated by using the

Visual Studio 2015

Imports System.Reflection

Imports System.IO

Imports System.Linq

Module Module1

Sub Main()

Dim asmbly As Assembly =

Assembly.Load("System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=

b77a5c561934e089")

Dim pubTypesQuery = From type In asmbly.GetTypes()

Where type.IsPublic

From method In type.GetMethods()

Where method.ReturnType.IsArray = True

Let name = method.ToString()

Let typeName = type.ToString()

Group name By typeName Into methodNames = Group

 Console.WriteLine("Getting ready to iterate")

For Each item In pubTypesQuery

 Console.WriteLine(item.methodNames)

For Each type In item.methodNames

 Console.WriteLine(" " & type)

Next

Next

 Console.ReadKey()

End Sub

End Module

VB

How to: Query An Assembly's Metadata with Reflection (LINQ) (Visual ... https://msdn.microsoft.com/en-us/library/mt692787(d=printer).aspx

1 of 2 02.09.2016 1:46

MethodInfo array that is returned from the GetMethods call. These results are filtered to return only those methods whose

return type is an array or else a type that implements IEnumerable(Of T). Finally, these results are grouped by using the type

name as a key.

Compiling the Code
Create a project that targets the .NET Framework version 3.5 or higher with a reference to System.Core.dll and a Imports

statement for the System.Linq namespace.

See Also
LINQ to Objects (Visual Basic)

© 2016 Microsoft

How to: Query An Assembly's Metadata with Reflection (LINQ) (Visual ... https://msdn.microsoft.com/en-us/library/mt692787(d=printer).aspx

2 of 2 02.09.2016 1:46

How to: Query an ArrayList with LINQ (Visual
Basic)

When using LINQ to query non-generic IEnumerable collections such as ArrayList, you must explicitly declare the type of the

range variable to reflect the specific type of the objects in the collection. For example, if you have an ArrayList of Student

objects, your From Clause (Visual Basic) should look like this:

By specifying the type of the range variable, you are casting each item in the ArrayList to a Student.

The use of an explicitly typed range variable in a query expression is equivalent to calling the Cast(Of TResult) method.

Cast(Of TResult) throws an exception if the specified cast cannot be performed. Cast(Of TResult) and OfType(Of TResult) are

the two Standard Query Operator methods that operate on non-generic IEnumerable types. In Visual Basic, you must

explicitly call the Cast(Of TResult) method on the data source to ensure a specific range variable type. For more information,

seeType Relationships in Query Operations (Visual Basic).

Example
The following example shows a simple query over an ArrayList. Note that this example uses object initializers when the code

calls the Add method, but this is not a requirement.

Visual Studio 2015

Dim query = From student As Student In arrList

...

Imports System.Collections

Imports System.Linq

Module Module1

Public Class Student

Public Property FirstName As String

Public Property LastName As String

Public Property Scores As Integer()

End Class

Sub Main()

Dim student1 As New Student With {.FirstName = "Svetlana",

 .LastName = "Omelchenko",

 .Scores = New Integer() {98, 92, 81, 60}}

VB

How to: Query an ArrayList with LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692817(d=printer).aspx

1 of 2 02.09.2016 1:47

See Also
LINQ to Objects (Visual Basic)

© 2016 Microsoft

Dim student2 As New Student With {.FirstName = "Claire",

 .LastName = "O'Donnell",

 .Scores = New Integer() {75, 84, 91, 39}}

Dim student3 As New Student With {.FirstName = "Cesar",

 .LastName = "Garcia",

 .Scores = New Integer() {97, 89, 85, 82}}

Dim student4 As New Student With {.FirstName = "Sven",

 .LastName = "Mortensen",

 .Scores = New Integer() {88, 94, 65, 91}}

Dim arrList As New ArrayList()

 arrList.Add(student1)

 arrList.Add(student2)

 arrList.Add(student3)

 arrList.Add(student4)

' Use an explicit type for non‐generic collections

Dim query = From student As Student In arrList

Where student.Scores(0) > 95

Select student

For Each student As Student In query

 Console.WriteLine(student.LastName & ": " & student.Scores(0))

Next

' Keep the console window open in debug mode.

 Console.WriteLine("Press any key to exit.")

 Console.ReadKey()

End Sub

End Module

' Output:

' Omelchenko: 98

' Garcia: 97

How to: Query an ArrayList with LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692817(d=printer).aspx

2 of 2 02.09.2016 1:47

How to: Add Custom Methods for LINQ
Queries (Visual Basic)

You can extend the set of methods that you can use for LINQ queries by adding extension methods to the IEnumerable(Of 

T) interface. For example, in addition to the standard average or maximum operations, you can create a custom aggregate

method to compute a single value from a sequence of values. You can also create a method that works as a custom filter or a

specific data transform for a sequence of values and returns a new sequence. Examples of such methods are Distinct(Of 

TSource), Skip(Of TSource), and Reverse(Of TSource).

When you extend the IEnumerable(Of T) interface, you can apply your custom methods to any enumerable collection. For

more information, see Extension Methods (Visual Basic).

Adding an Aggregate Method
An aggregate method computes a single value from a set of values. LINQ provides several aggregate methods, including

Average(Of TSource), Min(Of TSource), and Max(Of TSource). You can create your own aggregate method by adding an

extension method to the IEnumerable(Of T) interface.

The following code example shows how to create an extension method called Median to compute a median for a

sequence of numbers of type double.

Visual Studio 2015

Imports System.Runtime.CompilerServices

Module LINQExtension

' Extension method for the IEnumerable(of T) interface.

' The method accepts only values of the Double type.

 <Extension()>

Function Median(ByVal source As IEnumerable(Of Double)) As Double

If source.Count = 0 Then

Throw New InvalidOperationException("Cannot compute median for an empty

set.")

End If

Dim sortedSource = From number In source

Order By number

Dim itemIndex = sortedSource.Count \ 2

If sortedSource.Count Mod 2 = 0 Then

' Even number of items in list.

Return (sortedSource(itemIndex) + sortedSource(itemIndex ‐ 1)) / 2

Else

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

1 of 5 02.09.2016 1:47

You call this extension method for any enumerable collection in the same way you call other aggregate methods from the

IEnumerable(Of T) interface.

Note

 In Visual Basic, you can either use a method call or standard query syntax for the Aggregate or Group By clause. For

more information, see Aggregate Clause (Visual Basic) and Group By Clause (Visual Basic).

The following code example shows how to use the Median method for an array of type double.

Overloading an Aggregate Method to Accept Various Types

You can overload your aggregate method so that it accepts sequences of various types. The standard approach is to

create an overload for each type. Another approach is to create an overload that will take a generic type and convert it

to a specific type by using a delegate. You can also combine both approaches.

To create an overload for each type

You can create a specific overload for each type that you want to support. The following code example shows an

overload of the Median method for the integer type.

' Odd number of items in list.

Return sortedSource(itemIndex)

End If

End Function

End Module

Dim numbers1() As Double = {1.9, 2, 8, 4, 5.7, 6, 7.2, 0}

Dim query1 = Aggregate num In numbers1 Into Median()

Console.WriteLine("Double: Median = " & query1)

' This code produces the following output:

'

' Double: Median = 4.85

' Integer overload

<Extension()>

Function Median(ByVal source As IEnumerable(Of Integer)) As Double

Return Aggregate num In source Select CDbl(num) Into med = Median()

VB

VB

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

2 of 5 02.09.2016 1:47

You can now call the Median overloads for both integer and double types, as shown in the following code:

To create a generic overload

You can also create an overload that accepts a sequence of generic objects. This overload takes a delegate as a

parameter and uses it to convert a sequence of objects of a generic type to a specific type.

The following code shows an overload of the Median method that takes the Func(Of T, TResult) delegate as a

parameter. This delegate takes an object of generic type T and returns an object of type double.

You can now call the Median method for a sequence of objects of any type. If the type does not have its own

method overload, you have to pass a delegate parameter. In Visual Basic, you can use a lambda expression for this

purpose. Also, if you use the Aggregate or Group By clause instead of the method call, you can pass any value or

End Function

Dim numbers1() As Double = {1.9, 2, 8, 4, 5.7, 6, 7.2, 0}

Dim query1 = Aggregate num In numbers1 Into Median()

Console.WriteLine("Double: Median = " & query1)

Dim numbers2() As Integer = {1, 2, 3, 4, 5}

Dim query2 = Aggregate num In numbers2 Into Median()

Console.WriteLine("Integer: Median = " & query2)

' This code produces the following output:

'

' Double: Median = 4.85

' Integer: Median = 3

' Generic overload.

<Extension()>

Function Median(Of T)(ByVal source As IEnumerable(Of T),

ByVal selector As Func(Of T, Double)) As Double

Return Aggregate num In source Select selector(num) Into med = Median()

End Function

VB

VB

VB

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

3 of 5 02.09.2016 1:47

expression that is in the scope this clause.

The following example code shows how to call the Median method for an array of integers and an array of strings.

For strings, the median for the lengths of strings in the array is calculated. The example shows how to pass the

Func(Of T, TResult) delegate parameter to the Median method for each case.

Adding a Method That Returns a Collection
You can extend the IEnumerable(Of T) interface with a custom query method that returns a sequence of values. In this

case, the method must return a collection of type IEnumerable(Of T). Such methods can be used to apply filters or data

transforms to a sequence of values.

The following example shows how to create an extension method named AlternateElements that returns every other

element in a collection, starting from the first element.

Dim numbers3() As Integer = {1, 2, 3, 4, 5}

' You can use num as a parameter for the Median method

' so that the compiler will implicitly convert its value to double.

' If there is no implicit conversion, the compiler will

' display an error message.

Dim query3 = Aggregate num In numbers3 Into Median(num)

Console.WriteLine("Integer: Median = " & query3)

Dim numbers4() As String = {"one", "two", "three", "four", "five"}

' With the generic overload, you can also use numeric properties of objects.

Dim query4 = Aggregate str In numbers4 Into Median(str.Length)

Console.WriteLine("String: Median = " & query4)

' This code produces the following output:

'

' Integer: Median = 3

' String: Median = 4

' Extension method for the IEnumerable(of T) interface.

' The method returns every other element of a sequence.

<Extension()>

Function AlternateElements(Of T)(

VB

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

4 of 5 02.09.2016 1:47

You can call this extension method for any enumerable collection just as you would call other methods from the

IEnumerable(Of T) interface, as shown in the following code:

See Also
IEnumerable(Of T)

Extension Methods (Visual Basic)

© 2016 Microsoft

ByVal source As IEnumerable(Of T)

) As IEnumerable(Of T)

Dim list As New List(Of T)

Dim i = 0

For Each element In source

If (i Mod 2 = 0) Then

 list.Add(element)

End If

 i = i + 1

Next

Return list

End Function

Dim strings() As String = {"a", "b", "c", "d", "e"}

Dim query = strings.AlternateElements()

For Each element In query

 Console.WriteLine(element)

Next

' This code produces the following output:

'

' a

' c

' e

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

5 of 5 02.09.2016 1:47

