
Covariance and Contravariance 1

Variance in Generic Interfaces 4

Creating Variant Generic Interfaces 7

Using Variance in Interfaces for Generic Collections 13

Variance in Delegates 16

Using Variance in Delegates 22

Using Variance for Func and Action Generic Delegates 24

Covariance and Contravariance (Visual Basic)

In Visual Basic, covariance and contravariance enable implicit reference conversion for array types, delegate types, and

generic type arguments. Covariance preserves assignment compatibility and contravariance reverses it.

The following code demonstrates the difference between assignment compatibility, covariance, and contravariance.

Covariance for arrays enables implicit conversion of an array of a more derived type to an array of a less derived type. But

this operation is not type safe, as shown in the following code example.

Covariance and contravariance support for method groups allows for matching method signatures with delegate types. This

enables you to assign to delegates not only methods that have matching signatures, but also methods that return more

derived types (covariance) or that accept parameters that have less derived types (contravariance) than that specified by the

delegate type. For more information, see Variance in Delegates (Visual Basic) and Using Variance in Delegates (Visual Basic).

Visual Studio 2015

' Assignment compatibility.

Dim str As String = "test"

' An object of a more derived type is assigned to an object of a less derived type.

Dim obj As Object = str

' Covariance.

Dim strings As IEnumerable(Of String) = New List(Of String)()

' An object that is instantiated with a more derived type argument

' is assigned to an object instantiated with a less derived type argument.

' Assignment compatibility is preserved.

Dim objects As IEnumerable(Of Object) = strings

' Contravariance.

' Assume that there is the following method in the class:

' Shared Sub SetObject(ByVal o As Object)

' End Sub

Dim actObject As Action(Of Object) = AddressOf SetObject

' An object that is instantiated with a less derived type argument

' is assigned to an object instantiated with a more derived type argument.

' Assignment compatibility is reversed.

Dim actString As Action(Of String) = actObject

Dim array() As Object = New String(10) {}

' The following statement produces a run‐time exception.

' array(0) = 10

VB

VB

Covariance and Contravariance (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654065(d=printer).aspx

1 of 3 02.09.2016 0:44

The following code example shows covariance and contravariance support for method groups.

In .NET Framework 4 or later Visual Basic support covariance and contravariance in generic interfaces and delegates and

allow for implicit conversion of generic type parameters. For more information, see Variance in Generic Interfaces (Visual

Basic) and Variance in Delegates (Visual Basic).

The following code example shows implicit reference conversion for generic interfaces.

A generic interface or delegate is called variant if its generic parameters are declared covariant or contravariant. Visual Basic

enables you to create your own variant interfaces and delegates. For more information, see Creating Variant Generic

Interfaces (Visual Basic) and Variance in Delegates (Visual Basic).

Related Topics

Title Description

Shared Function GetObject() As Object

Return Nothing

End Function

Shared Sub SetObject(ByVal obj As Object)

End Sub

Shared Function GetString() As String

Return ""

End Function

Shared Sub SetString(ByVal str As String)

End Sub

Shared Sub Test()

' Covariance. A delegate specifies a return type as object,

' but you can assign a method that returns a string.

Dim del As Func(Of Object) = AddressOf GetString

' Contravariance. A delegate specifies a parameter type as string,

' but you can assign a method that takes an object.

Dim del2 As Action(Of String) = AddressOf SetObject

End Sub

Dim strings As IEnumerable(Of String) = New List(Of String)

Dim objects As IEnumerable(Of Object) = strings

VB

VB

Covariance and Contravariance (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654065(d=printer).aspx

2 of 3 02.09.2016 0:44

Variance in Generic Interfaces (Visual

Basic)

Discusses covariance and contravariance in generic interfaces and provides a

list of variant generic interfaces in the .NET Framework.

Creating Variant Generic Interfaces

(Visual Basic)

Shows how to create custom variant interfaces.

Using Variance in Interfaces for

Generic Collections (Visual Basic)

Shows how covariance and contravariance support in the IEnumerable(Of T)

and IComparable(Of T) interfaces can help you reuse code.

Variance in Delegates (Visual Basic) Discusses covariance and contravariance in generic and non-generic

delegates and provides a list of variant generic delegates in the .NET

Framework.

Using Variance in Delegates (Visual

Basic)

Shows how to use covariance and contravariance support in non-generic

delegates to match method signatures with delegate types.

Using Variance for Func and Action

Generic Delegates (Visual Basic)

Shows how covariance and contravariance support in the Func and Action

delegates can help you reuse code.

© 2016 Microsoft

Covariance and Contravariance (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654065(d=printer).aspx

3 of 3 02.09.2016 0:44

Variance in Generic Interfaces (Visual Basic)

.NET Framework 4 introduced variance support for several existing generic interfaces. Variance support enables implicit

conversion of classes that implement these interfaces. The following interfaces are now variant:

IEnumerable(Of T) (T is covariant)

IEnumerator(Of T) (T is covariant)

IQueryable(Of T) (T is covariant)

IGrouping(Of TKey, TElement) (TKey and TElement are covariant)

IComparer(Of T) (T is contravariant)

IEqualityComparer(Of T) (T is contravariant)

IComparable(Of T) (T is contravariant)

Covariance permits a method to have a more derived return type than that defined by the generic type parameter of the

interface. To illustrate the covariance feature, consider these generic interfaces: IEnumerable(Of Object) and

IEnumerable(Of String). The IEnumerable(Of String) interface does not inherit the IEnumerable(Of Object)

interface. However, the String type does inherit the Object type, and in some cases you may want to assign objects of

these interfaces to each other. This is shown in the following code example.

In earlier versions of the .NET Framework, this code causes a compilation error in Visual Basic with Option Strict On. But

now you can use strings instead of objects, as shown in the previous example, because the IEnumerable(Of T) interface is

covariant.

Contravariance permits a method to have argument types that are less derived than that specified by the generic parameter

of the interface. To illustrate contravariance, assume that you have created a BaseComparer class to compare instances of

the BaseClass class. The BaseComparer class implements the IEqualityComparer(Of BaseClass) interface. Because the

IEqualityComparer(Of T) interface is now contravariant, you can use BaseComparer to compare instances of classes that

inherit the BaseClass class. This is shown in the following code example.

Visual Studio 2015

Dim strings As IEnumerable(Of String) = New List(Of String)

Dim objects As IEnumerable(Of Object) = strings

' Simple hierarchy of classes.

Class BaseClass

End Class

VB

VB

Variance in Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654071(d=printer).aspx

1 of 3 02.09.2016 1:56

For more examples, see Using Variance in Interfaces for Generic Collections (Visual Basic).

Variance in generic interfaces is supported for reference types only. Value types do not support variance. For example,

IEnumerable(Of Integer) cannot be implicitly converted to IEnumerable(Of Object), because integers are

represented by a value type.

It is also important to remember that classes that implement variant interfaces are still invariant. For example, although

List(Of T) implements the covariant interface IEnumerable(Of T), you cannot implicitly convert List(Of Object) to

List(Of String). This is illustrated in the following code example.

Class DerivedClass

Inherits BaseClass

End Class

' Comparer class.

Class BaseComparer

Implements IEqualityComparer(Of BaseClass)

Public Function Equals1(ByVal x As BaseClass,

ByVal y As BaseClass) As Boolean _

Implements IEqualityComparer(Of BaseClass).Equals

Return (x.Equals(y))

End Function

Public Function GetHashCode1(ByVal obj As BaseClass) As Integer _

Implements IEqualityComparer(Of BaseClass).GetHashCode

Return obj.GetHashCode

End Function

End Class

Sub Test()

Dim baseComparer As IEqualityComparer(Of BaseClass) = New BaseComparer

' Implicit conversion of IEqualityComparer(Of BaseClass) to

' IEqualityComparer(Of DerivedClass).

Dim childComparer As IEqualityComparer(Of DerivedClass) = baseComparer

End Sub

Dim integers As IEnumerable(Of Integer) = New List(Of Integer)

' The following statement generates a compiler error

' with Option Strict On, because Integer is a value type.

' Dim objects As IEnumerable(Of Object) = integers

' The following statement generates a compiler error

' because classes are invariant.

' Dim list As List(Of Object) = New List(Of String)

' You can use the interface object instead.

Dim listObjects As IEnumerable(Of Object) = New List(Of String)

VB

VB

Variance in Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654071(d=printer).aspx

2 of 3 02.09.2016 1:56

See Also

Using Variance in Interfaces for Generic Collections (Visual Basic)

Creating Variant Generic Interfaces (Visual Basic)

Generic Interfaces

Variance in Delegates (Visual Basic)

© 2016 Microsoft

Variance in Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654071(d=printer).aspx

3 of 3 02.09.2016 1:56

Creating Variant Generic Interfaces (Visual
Basic)

You can declare generic type parameters in interfaces as covariant or contravariant. Covariance allows interface methods to

have more derived return types than that defined by the generic type parameters. Contravariance allows interface methods

to have argument types that are less derived than that specified by the generic parameters. A generic interface that has

covariant or contravariant generic type parameters is called variant.

Note

.NET Framework 4 introduced variance support for several existing generic interfaces. For the list of the variant interfaces

in the .NET Framework, see Variance in Generic Interfaces (Visual Basic).

Declaring Variant Generic Interfaces
You can declare variant generic interfaces by using the in and out keywords for generic type parameters.

Important

ByRef parameters in Visual Basic cannot be variant. Value types also do not support variance.

You can declare a generic type parameter covariant by using the out keyword. The covariant type must satisfy the

following conditions:

The type is used only as a return type of interface methods and not used as a type of method arguments. This is

illustrated in the following example, in which the type R is declared covariant.

There is one exception to this rule. If you have a contravariant generic delegate as a method parameter, you can

use the type as a generic type parameter for the delegate. This is illustrated by the type R in the following example.

For more information, see Variance in Delegates (Visual Basic) and Using Variance for Func and Action Generic

Visual Studio 2015

Interface ICovariant(Of Out R)

Function GetSomething() As R

' The following statement generates a compiler error.

' Sub SetSomething(ByVal sampleArg As R)

End Interface

VB

Creating Variant Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654068(d=printer).aspx

1 of 6 02.09.2016 1:57

Delegates (Visual Basic).

The type is not used as a generic constraint for the interface methods. This is illustrated in the following code.

You can declare a generic type parameter contravariant by using the in keyword. The contravariant type can be used only

as a type of method arguments and not as a return type of interface methods. The contravariant type can also be used for

generic constraints. The following code shows how to declare a contravariant interface and use a generic constraint for

one of its methods.

It is also possible to support both covariance and contravariance in the same interface, but for different type parameters,

as shown in the following code example.

In Visual Basic, you can't declare events in variant interfaces without specifying the delegate type. Also, a variant interface

can't have nested classes, enums, or structures, but it can have nested interfaces. This is illustrated in the following code.

Interface ICovariant(Of Out R)

Sub DoSomething(ByVal callback As Action(Of R))

End Interface

Interface ICovariant(Of Out R)

' The following statement generates a compiler error

' because you can use only contravariant or invariant types

' in generic contstraints.

' Sub DoSomething(Of T As R)()

End Interface

Interface IContravariant(Of In A)

Sub SetSomething(ByVal sampleArg As A)

Sub DoSomething(Of T As A)()

' The following statement generates a compiler error.

' Function GetSomething() As A

End Interface

Interface IVariant(Of Out R, In A)

Function GetSomething() As R

Sub SetSomething(ByVal sampleArg As A)

Function GetSetSomething(ByVal sampleArg As A) As R

End Interface

Interface ICovariant(Of Out R)

' The following statement generates a compiler error.

VB

VB

VB

VB

VB

Creating Variant Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654068(d=printer).aspx

2 of 6 02.09.2016 1:57

Implementing Variant Generic Interfaces
You implement variant generic interfaces in classes by using the same syntax that is used for invariant interfaces. The

following code example shows how to implement a covariant interface in a generic class.

Classes that implement variant interfaces are invariant. For example, consider the following code.

' Event SampleEvent()

' The following statement specifies the delegate type and

' does not generate an error.

Event AnotherEvent As EventHandler

' The following statements generate compiler errors,

' because a variant interface cannot have

' nested enums, classes, or structures.

'Enum SampleEnum : test : End Enum

'Class SampleClass : End Class

'Structure SampleStructure : Dim value As Integer : End Structure

' Variant interfaces can have nested interfaces.

Interface INested : End Interface

End Interface

Interface ICovariant(Of Out R)

Function GetSomething() As R

End Interface

Class SampleImplementation(Of R)

Implements ICovariant(Of R)

Public Function GetSomething() As R _

Implements ICovariant(Of R).GetSomething

' Some code.

End Function

End Class

 The interface is covariant.

Dim ibutton As ICovariant(Of Button) =

New SampleImplementation(Of Button)

Dim iobj As ICovariant(Of Object) = ibutton

' The class is invariant.

Dim button As SampleImplementation(Of Button) =

New SampleImplementation(Of Button)

' The following statement generates a compiler error

' because classes are invariant.

VB

VB

Creating Variant Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654068(d=printer).aspx

3 of 6 02.09.2016 1:57

Extending Variant Generic Interfaces
When you extend a variant generic interface, you have to use the in and out keywords to explicitly specify whether the

derived interface supports variance. The compiler does not infer the variance from the interface that is being extended.

For example, consider the following interfaces.

In the Invariant(Of T) interface, the generic type parameter T is invariant, whereas in IExtCovariant (Of Out T)the

type parameter is covariant, although both interfaces extend the same interface. The same rule is applied to contravariant

generic type parameters.

You can create an interface that extends both the interface where the generic type parameter T is covariant and the

interface where it is contravariant if in the extending interface the generic type parameter T is invariant. This is illustrated

in the following code example.

However, if a generic type parameter T is declared covariant in one interface, you cannot declare it contravariant in the

extending interface, or vice versa. This is illustrated in the following code example.

' Dim obj As SampleImplementation(Of Object) = button

Interface ICovariant(Of Out T)

End Interface

Interface IInvariant(Of T)

Inherits ICovariant(Of T)

End Interface

Interface IExtCovariant(Of Out T)

Inherits ICovariant(Of T)

End Interface

Interface ICovariant(Of Out T)

End Interface

Interface IContravariant(Of In T)

End Interface

Interface IInvariant(Of T)

Inherits ICovariant(Of T), IContravariant(Of T)

End Interface

Interface ICovariant(Of Out T)

End Interface

VB

VB

VB

Creating Variant Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654068(d=printer).aspx

4 of 6 02.09.2016 1:57

Avoiding Ambiguity

When you implement variant generic interfaces, variance can sometimes lead to ambiguity. This should be avoided.

For example, if you explicitly implement the same variant generic interface with different generic type parameters in

one class, it can create ambiguity. The compiler does not produce an error in this case, but it is not specified which

interface implementation will be chosen at runtime. This could lead to subtle bugs in your code. Consider the following

code example.

Note

With Option Strict Off, Visual Basic generates a compiler warning when there is an ambiguous interface

implementation. With Option Strict On, Visual Basic generates a compiler error.

' The following statements generate a compiler error.

' Interface ICoContraVariant(Of In T)

' Inherits ICovariant(Of T)

' End Interface

' Simple class hierarchy.

Class Animal

End Class

Class Cat

Inherits Animal

End Class

Class Dog

Inherits Animal

End Class

' This class introduces ambiguity

' because IEnumerable(Of Out T) is covariant.

Class Pets

Implements IEnumerable(Of Cat), IEnumerable(Of Dog)

Public Function GetEnumerator() As IEnumerator(Of Cat) _

Implements IEnumerable(Of Cat).GetEnumerator

 Console.WriteLine("Cat")

' Some code.

End Function

Public Function GetEnumerator1() As IEnumerator(Of Dog) _

Implements IEnumerable(Of Dog).GetEnumerator

 Console.WriteLine("Dog")

' Some code.

End Function

VB

Creating Variant Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654068(d=printer).aspx

5 of 6 02.09.2016 1:57

In this example, it is unspecified how the pets.GetEnumerator method chooses between Cat and Dog. This could

cause problems in your code.

See Also
Variance in Generic Interfaces (Visual Basic)

Using Variance for Func and Action Generic Delegates (Visual Basic)

© 2016 Microsoft

Public Function GetEnumerator2() As IEnumerator _

Implements IEnumerable.GetEnumerator

' Some code.

End Function

End Class

Sub Main()

Dim pets As IEnumerable(Of Animal) = New Pets()

 pets.GetEnumerator()

End Sub

Creating Variant Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654068(d=printer).aspx

6 of 6 02.09.2016 1:57

Using Variance in Interfaces for Generic
Collections (Visual Basic)

A covariant interface allows its methods to return more derived types than those specified in the interface. A contravariant

interface allows its methods to accept parameters of less derived types than those specified in the interface.

In .NET Framework 4, several existing interfaces became covariant and contravariant. These include IEnumerable(Of T) and

IComparable(Of T). This enables you to reuse methods that operate with generic collections of base types for collections of

derived types.

For a list of variant interfaces in the .NET Framework, see Variance in Generic Interfaces (Visual Basic).

Converting Generic Collections
The following example illustrates the benefits of covariance support in the IEnumerable(Of T) interface. The

PrintFullName method accepts a collection of the IEnumerable(Of Person) type as a parameter. However, you can

reuse it for a collection of the IEnumerable(Of Person) type because Employee inherits Person.

Visual Studio 2015

' Simple hierarchy of classes.

Public Class Person

Public Property FirstName As String

Public Property LastName As String

End Class

Public Class Employee

Inherits Person

End Class

' The method has a parameter of the IEnumerable(Of Person) type.

Public Sub PrintFullName(ByVal persons As IEnumerable(Of Person))

For Each person As Person In persons

 Console.WriteLine(

"Name: " & person.FirstName & " " & person.LastName)

Next

End Sub

Sub Main()

Dim employees As IEnumerable(Of Employee) = New List(Of Employee)

' You can pass IEnumerable(Of Employee),

' although the method expects IEnumerable(Of Person).

 PrintFullName(employees)

VB

Using Variance in Interfaces for Generic Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654072(d=printer).aspx

1 of 3 02.09.2016 1:57

Comparing Generic Collections
The following example illustrates the benefits of contravariance support in the IComparer(Of T) interface. The

PersonComparer class implements the IComparer(Of Person) interface. However, you can reuse this class to compare

a sequence of objects of the Employee type because Employee inherits Person.

End Sub

' Simple hierarhcy of classes.

Public Class Person

Public Property FirstName As String

Public Property LastName As String

End Class

Public Class Employee

Inherits Person

End Class

' The custom comparer for the Person type

' with standard implementations of Equals()

' and GetHashCode() methods.

Class PersonComparer

Implements IEqualityComparer(Of Person)

Public Function Equals1(

ByVal x As Person,

ByVal y As Person) As Boolean _

Implements IEqualityComparer(Of Person).Equals

If x Is y Then Return True

If x Is Nothing OrElse y Is Nothing Then Return False

Return (x.FirstName = y.FirstName) AndAlso

 (x.LastName = y.LastName)

End Function

Public Function GetHashCode1(

ByVal person As Person) As Integer _

Implements IEqualityComparer(Of Person).GetHashCode

If person Is Nothing Then Return 0

Dim hashFirstName =

If(person.FirstName Is Nothing,

 0, person.FirstName.GetHashCode())

Dim hashLastName = person.LastName.GetHashCode()

Return hashFirstName Xor hashLastName

End Function

End Class

Sub Main()

Dim employees = New List(Of Employee) From {

VB

Using Variance in Interfaces for Generic Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654072(d=printer).aspx

2 of 3 02.09.2016 1:57

See Also
Variance in Generic Interfaces (Visual Basic)

© 2016 Microsoft

New Employee With {.FirstName = "Michael", .LastName = "Alexander"},

New Employee With {.FirstName = "Jeff", .LastName = "Price"}

 }

' You can pass PersonComparer,

' which implements IEqualityComparer(Of Person),

' although the method expects IEqualityComparer(Of Employee)

Dim noduplicates As IEnumerable(Of Employee) = employees.Distinct(New

PersonComparer())

For Each employee In noduplicates

 Console.WriteLine(employee.FirstName & " " & employee.LastName)

Next

End Sub

Using Variance in Interfaces for Generic Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654072(d=printer).aspx

3 of 3 02.09.2016 1:57

Variance in Delegates (Visual Basic)

.NET Framework 3.5 introduced variance support for matching method signatures with delegate types in all delegates in C#

and Visual Basic. This means that you can assign to delegates not only methods that have matching signatures, but also

methods that return more derived types (covariance) or that accept parameters that have less derived types (contravariance)

than that specified by the delegate type. This includes both generic and non-generic delegates.

For example, consider the following code, which has two classes and two delegates: generic and non-generic.

When you create delegates of the SampleDelegate or SampleDelegate(Of A, R) types, you can assign any one of the

following methods to those delegates.

Visual Studio 2015

Public Class First

End Class

Public Class Second

Inherits First

End Class

Public Delegate Function SampleDelegate(ByVal a As Second) As First

Public Delegate Function SampleGenericDelegate(Of A, R)(ByVal a As A) As R

' Matching signature.

Public Shared Function ASecondRFirst(

ByVal second As Second) As First

Return New First()

End Function

' The return type is more derived.

Public Shared Function ASecondRSecond(

ByVal second As Second) As Second

Return New Second()

End Function

' The argument type is less derived.

Public Shared Function AFirstRFirst(

ByVal first As First) As First

Return New First()

End Function

' The return type is more derived

' and the argument type is less derived.

Public Shared Function AFirstRSecond(

VB

VB

Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654070(d=printer).aspx

1 of 6 02.09.2016 1:58

The following code example illustrates the implicit conversion between the method signature and the delegate type.

For more examples, see Using Variance in Delegates (Visual Basic) and Using Variance for Func and Action Generic Delegates

(Visual Basic).

Variance in Generic Type Parameters
In .NET Framework 4 and later you can enable implicit conversion between delegates, so that generic delegates that have

different types specified by generic type parameters can be assigned to each other, if the types are inherited from each

other as required by variance.

To enable implicit conversion, you must explicitly declare generic parameters in a delegate as covariant or contravariant

by using the in or out keyword.

The following code example shows how you can create a delegate that has a covariant generic type parameter.

If you use only variance support to match method signatures with delegate types and do not use the in and out

ByVal first As First) As Second

Return New Second()

End Function

' Assigning a method with a matching signature

' to a non‐generic delegate. No conversion is necessary.

Dim dNonGeneric As SampleDelegate = AddressOf ASecondRFirst

' Assigning a method with a more derived return type

' and less derived argument type to a non‐generic delegate.

' The implicit conversion is used.

Dim dNonGenericConversion As SampleDelegate = AddressOf AFirstRSecond

' Assigning a method with a matching signature to a generic delegate.

' No conversion is necessary.

Dim dGeneric As SampleGenericDelegate(Of Second, First) = AddressOf ASecondRFirst

' Assigning a method with a more derived return type

' and less derived argument type to a generic delegate.

' The implicit conversion is used.

Dim dGenericConversion As SampleGenericDelegate(Of Second, First) = AddressOf

AFirstRSecond

' Type T is declared covariant by using the out keyword.

Public Delegate Function SampleGenericDelegate(Of Out T)() As T

Sub Test()

Dim dString As SampleGenericDelegate(Of String) = Function() " "

' You can assign delegates to each other,

' because the type T is declared covariant.

Dim dObject As SampleGenericDelegate(Of Object) = dString

End Sub

VB

VB

Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654070(d=printer).aspx

2 of 6 02.09.2016 1:58

keywords, you may find that sometimes you can instantiate delegates with identical lambda expressions or methods, but

you cannot assign one delegate to another.

In the following code example, SampleGenericDelegate(Of String) can't be explicitly converted to

SampleGenericDelegate(Of Object), although String inherits Object. You can fix this problem by marking the

generic parameter T with the out keyword.

Generic Delegates That Have Variant Type Parameters in the .NET Framework

.NET Framework 4 introduced variance support for generic type parameters in several existing generic delegates:

Action delegates from the System namespace, for example, Action(Of T) and Action(Of T1, T2)

Func delegates from the System namespace, for example, Func(Of TResult) and Func(Of T, TResult)

The Predicate(Of T) delegate

The Comparison(Of T) delegate

The Converter(Of TInput, TOutput) delegate

For more information and examples, see Using Variance for Func and Action Generic Delegates (Visual Basic).

Declaring Variant Type Parameters in Generic Delegates

If a generic delegate has covariant or contravariant generic type parameters, it can be referred to as a variant generic

delegate.

You can declare a generic type parameter covariant in a generic delegate by using the out keyword. The covariant type

can be used only as a method return type and not as a type of method arguments. The following code example shows

Public Delegate Function SampleGenericDelegate(Of T)() As T

Sub Test()

Dim dString As SampleGenericDelegate(Of String) = Function() " "

' You can assign the dObject delegate

' to the same lambda expression as dString delegate

' because of the variance support for

' matching method signatures with delegate types.

Dim dObject As SampleGenericDelegate(Of Object) = Function() " "

' The following statement generates a compiler error

' because the generic type T is not marked as covariant.

' Dim dObject As SampleGenericDelegate(Of Object) = dString

End Sub

VB

Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654070(d=printer).aspx

3 of 6 02.09.2016 1:58

how to declare a covariant generic delegate.

You can declare a generic type parameter contravariant in a generic delegate by using the in keyword. The

contravariant type can be used only as a type of method arguments and not as a method return type. The following

code example shows how to declare a contravariant generic delegate.

Important

ByRef parameters in Visual Basic can't be marked as variant.

It is also possible to support both variance and covariance in the same delegate, but for different type parameters. This

is shown in the following example.

Instantiating and Invoking Variant Generic Delegates

You can instantiate and invoke variant delegates just as you instantiate and invoke invariant delegates. In the following

example, the delegate is instantiated by a lambda expression.

Combining Variant Generic Delegates

You should not combine variant delegates. The Combine method does not support variant delegate conversion and

expects delegates to be of exactly the same type. This can lead to a run-time exception when you combine delegates

either by using the Combine method (in C# and Visual Basic) or by using the + operator (in C#), as shown in the

following code example.

Public Delegate Function DCovariant(Of Out R)() As R

Public Delegate Sub DContravariant(Of In A)(ByVal a As A)

Public Delegate Function DVariant(Of In A, Out R)(ByVal a As A) As R

Dim dvariant As DVariant(Of String, String) = Function(str) str + " "

dvariant("test")

im actObj As Action(Of Object) = Sub(x) Console.WriteLine("object: {0}", x)

VB

VB

VB

VB

VB

Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654070(d=printer).aspx

4 of 6 02.09.2016 1:58

Variance in Generic Type Parameters for Value and Reference Types
Variance for generic type parameters is supported for reference types only. For example, DVariant(Of Int)can't be

implicitly converted to DVariant(Of Object) or DVariant(Of Long), because integer is a value type.

The following example demonstrates that variance in generic type parameters is not supported for value types.

Relaxed Delegate Conversion in Visual Basic
Relaxed delegate conversion enables more flexibility in matching method signatures with delegate types. For example, it

lets you omit parameter specifications and omit function return values when you assign a method to a delegate. For more

information, see Relaxed Delegate Conversion (Visual Basic).

See Also
Generics in the .NET Framework

Using Variance for Func and Action Generic Delegates (Visual Basic)

Dim actStr As Action(Of String) = Sub(x) Console.WriteLine("string: {0}", x)

' The following statement throws an exception at run time.

' Dim actCombine = [Delegate].Combine(actStr, actObj)

' The type T is covariant.

Public Delegate Function DVariant(Of Out T)() As T

' The type T is invariant.

Public Delegate Function DInvariant(Of T)() As T

Sub Test()

Dim i As Integer = 0

Dim dInt As DInvariant(Of Integer) = Function() i

Dim dVaraintInt As DVariant(Of Integer) = Function() i

' All of the following statements generate a compiler error

' because type variance in generic parameters is not supported

' for value types, even if generic type parameters are declared variant.

' Dim dObject As DInvariant(Of Object) = dInt

' Dim dLong As DInvariant(Of Long) = dInt

' Dim dVaraintObject As DInvariant(Of Object) = dInt

' Dim dVaraintLong As DInvariant(Of Long) = dInt

End Sub

VB

Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654070(d=printer).aspx

5 of 6 02.09.2016 1:58

© 2016 Microsoft

Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654070(d=printer).aspx

6 of 6 02.09.2016 1:58

Using Variance in Delegates (Visual Basic)

When you assign a method to a delegate, covariance and contravariance provide flexibility for matching a delegate type

with a method signature. Covariance permits a method to have return type that is more derived than that defined in the

delegate. Contravariance permits a method that has parameter types that are less derived than those in the delegate type.

Example 1: Covariance

Description

This example demonstrates how delegates can be used with methods that have return types that are derived from the

return type in the delegate signature. The data type returned by DogsHandler is of type Dogs, which derives from the

Mammals type that is defined in the delegate.

Code

Visual Studio 2015

Class Mammals

End Class

Class Dogs

Inherits Mammals

End Class

Class Test

Public Delegate Function HandlerMethod() As Mammals

Public Shared Function MammalsHandler() As Mammals

Return Nothing

End Function

Public Shared Function DogsHandler() As Dogs

Return Nothing

End Function

Sub Test()

Dim handlerMammals As HandlerMethod = AddressOf MammalsHandler

' Covariance enables this assignment.

Dim handlerDogs As HandlerMethod = AddressOf DogsHandler

End Sub

End Class

VB

Using Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654069(d=printer).aspx

1 of 2 02.09.2016 1:58

Example 2: Contravariance

Description

This example demonstrates how delegates can be used with methods that have parameters of a type that are base

types of the delegate signature parameter type. With contravariance, you can use one event handler instead of

separate handlers. For example, you can create an event handler that accepts an EventArgs input parameter and use it

with a Button.MouseClick event that sends a MouseEventArgs type as a parameter, and also with a

TextBox.KeyDown event that sends a KeyEventArgs parameter.

Code

See Also
Variance in Delegates (Visual Basic)

Using Variance for Func and Action Generic Delegates (Visual Basic)

© 2016 Microsoft

' Event hander that accepts a parameter of the EventArgs type.

Private Sub MultiHandler(ByVal sender As Object,

ByVal e As System.EventArgs)

 Label1.Text = DateTime.Now

End Sub

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

' You can use a method that has an EventArgs parameter,

' although the event expects the KeyEventArgs parameter.

AddHandler Button1.KeyDown, AddressOf MultiHandler

' You can use the same method

' for the event that expects the MouseEventArgs parameter.

AddHandler Button1.MouseClick, AddressOf MultiHandler

End Sub

VB

Using Variance in Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654069(d=printer).aspx

2 of 2 02.09.2016 1:58

Using Variance for Func and Action Generic
Delegates (Visual Basic)

These examples demonstrate how to use covariance and contravariance in the Func and Action generic delegates to enable

reuse of methods and provide more flexibility in your code.

For more information about covariance and contravariance, see Variance in Delegates (Visual Basic).

Using Delegates with Covariant Type Parameters
The following example illustrates the benefits of covariance support in the generic Func delegates. The FindByTitle

method takes a parameter of the String type and returns an object of the Employee type. However, you can assign this

method to the Func(Of String, Person) delegate because Employee inherits Person.

Visual Studio 2015

' Simple hierarchy of classes.

Public Class Person

End Class

Public Class Employee

Inherits Person

End Class

Class Finder

Public Shared Function FindByTitle(

ByVal title As String) As Employee

' This is a stub for a method that returns

' an employee that has the specified title.

Return New Employee

End Function

Sub Test()

' Create an instance of the delegate without using variance.

Dim findEmployee As Func(Of String, Employee) =

AddressOf FindByTitle

' The delegate expects a method to return Person,

' but you can assign it a method that returns Employee.

Dim findPerson As Func(Of String, Person) =

AddressOf FindByTitle

' You can also assign a delegate

' that returns a more derived type to a delegate

' that returns a less derived type.

VB

Using Variance for Func and Action Generic Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654067(d=printer).aspx

1 of 3 02.09.2016 1:59

Using Delegates with Contravariant Type Parameters
The following example illustrates the benefits of contravariance support in the generic Action delegates. The

AddToContacts method takes a parameter of the Person type. However, you can assign this method to the Action(Of

Employee) delegate because Employee inherits Person.

See Also
Covariance and Contravariance (Visual Basic)

 findPerson = findEmployee

End Sub

End Class

Public Class Person

End Class

Public Class Employee

Inherits Person

End Class

Class AddressBook

Shared Sub AddToContacts(ByVal person As Person)

' This method adds a Person object

' to a contact list.

End Sub

Sub Test()

' Create an instance of the delegate without using variance.

Dim addPersonToContacts As Action(Of Person) =

AddressOf AddToContacts

' The Action delegate expects

' a method that has an Employee parameter,

' but you can assign it a method that has a Person parameter

' because Employee derives from Person.

Dim addEmployeeToContacts As Action(Of Employee) =

AddressOf AddToContacts

' You can also assign a delegate

' that accepts a less derived parameter

' to a delegate that accepts a more derived parameter.

 addEmployeeToContacts = addPersonToContacts

End Sub

End Class

VB

Using Variance for Func and Action Generic Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654067(d=printer).aspx

2 of 3 02.09.2016 1:59

Generics in the .NET Framework

© 2016 Microsoft

Using Variance for Func and Action Generic Delegates (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654067(d=printer).aspx

3 of 3 02.09.2016 1:59

