
Embedded Expressions in XML 1

How to Embed Expressions in XML Literals 4

XML Literals 7

XML Element Literal 8

XML Document Literal 14

XML CDATA Literal 17

XML Comment Literal 19

XML Processing Instruction Literal 21

XML Axis Properties 23

XML Attribute Axis Property 24

XML Child Axis Property 28

XML Descendant Axis Property 31

Extension Indexer Property 34

XML Value Property 36

Embedded Expressions in XML (Visual Basic)

Embedded expressions enable you to create XML literals that contain expressions that are evaluated at run time. The syntax

for an embedded expression is <%= expression %>, which is the same as the syntax used in ASP.NET.

For example, you can create an XML element literal, combining embedded expressions with literal text content.

If isbnNumber contains the integer 12345 and modifiedDate contains the date 3/5/2006, when this code executes, the

value of book is:

Embedded Expression Location and Validation
Embedded expressions can appear only at certain locations within XML literal expressions. The expression location

controls which types the expression can return and how Nothing is handled. The following table describes the allowed

locations and types of embedded expressions.

Location in literal Type of expression Handling of Nothing

XML element

name

XName Error

XML element

content

Object or array of Object Ignored

XML element

attribute name

XName Error, unless the attribute

value is also Nothing

Visual Studio 2015

Dim isbnNumber As String = "12345"

Dim modifiedDate As String = "3/5/2006"

Dim book As XElement =

 <book category="fiction" isbn=<%= isbnNumber %>>

 <modifiedDate><%= modifiedDate %></modifiedDate>

 </book>

<book category="fiction" isbn="12345">

 <modifiedDate>3/5/2006</modifiedDate>

</book>

VB

Embedded Expressions in XML (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384964(d=printer).aspx

1 of 3 04.09.2016 11:02

XML element

attribute value

Object Attribute declaration

ignored

XML element

attribute

XAttribute or a collection of XAttribute Ignored

XML document

root element

XElement or a collection of one XElement object and an arbitrary

number of XProcessingInstruction and XComment objects

Ignored

Example of an embedded expression in an XML element name:

Example of an embedded expression in the content of an XML element:

Example of an embedded expression in an XML element attribute name:

Example of an embedded expression in an XML element attribute value:

Example of an embedded expression in an XML element attribute:

Dim elementName As String = "contact"

Dim contact1 As XElement = <<%= elementName %>/>

Dim contactName As String = "Patrick Hines"

Dim contact2 As XElement =

 <contact><%= contactName %></contact>

Dim phoneType As String = "home"

Dim contact3 As XElement =

 <contact <%= phoneType %>="206‐555‐0144"/>

Dim phoneNumber As String = "206‐555‐0144"

Dim contact4 As XElement =

 <contact home=<%= phoneNumber %>/>

Dim phoneAttribute As XAttribute =

New XAttribute(XName.Get(phoneType), phoneNumber)

Dim contact5 As XElement =

 <contact <%= phoneAttribute %>/>

VB

VB

VB

VB

VB

Embedded Expressions in XML (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384964(d=printer).aspx

2 of 3 04.09.2016 11:02

Example of an embedded expression in an XML document root element:

If you enable Option Strict, the compiler checks that the type of each embedded expression widens to the required type.

The only exception is for the root element of an XML document, which is verified when the code runs. If you compile

without Option Strict, you can embed expressions of type Object and their type is verified at run time.

In locations where content is optional, embedded expressions that contain Nothing are ignored. This means you do not

have to check that element content, attribute values, and array elements are not Nothing before you use an XML literal.

Required values, such as element and attribute names, cannot be Nothing.

For more information about using an embedded expression in a particular type of literal, see XML Document Literal

(Visual Basic), XML Element Literal (Visual Basic).

Scoping Rules
The compiler converts each XML literal into a constructor call for the appropriate literal type. The literal content and

embedded expressions in an XML literal are passed as arguments to the constructor. This means that all Visual Basic

programming elements available to an XML literal are also available to its embedded expressions.

Within an XML literal, you can access the XML namespace prefixes declared with the Imports statement. You can declare a

new XML namespace prefix, or shadow an existing XML namespace prefix, in an element by using the xmlns attribute. The

new namespace is available to the child nodes of that element, but not to XML literals in embedded expressions.

Note

When you declare an XML namespace prefix by using the xmlns namespace attribute, the attribute value must be a

constant string. In this regard, using the xmlns attribute is like using the Imports statement to declare an XML

namespace. You cannot use an embedded expression to specify the XML namespace value.

See Also
Creating XML in Visual Basic

XML Document Literal (Visual Basic)

XML Element Literal (Visual Basic)

Option Strict Statement

Imports Statement (.NET Namespace and Type)

XML Literals Overview (Visual Basic)

© 2016 Microsoft

Dim document As XDocument =

 <?xml version="1.0"?><%= contact1 %>

VB

Embedded Expressions in XML (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384964(d=printer).aspx

3 of 3 04.09.2016 11:02

How to: Embed Expressions in XML Literals
(Visual Basic)

You can combine XML literals with embedded expressions to create an XML document, fragment, or element that contains

content created at run time. The following examples demonstrate how to use embedded expressions to populate element

content, attributes, and element names at run time.

The syntax for an embedded expression is <%= exp %>, which is the same syntax that ASP.NET uses. For more information,

see Embedded Expressions in XML (Visual Basic).

You can also use the LINQ to XML APIs to create LINQ to XML objects. For more information, see XElement.

Procedures

To insert text as element content

The following example shows how to insert the text that is contained in the contactName variable between the

opening and closing name elements.

This example produces the following output:

To insert text as an attribute value

The following example shows how to insert the text that is contained in the phoneType variable as the value of the

type attribute.

Visual Studio 2015

Dim contactName As String = "Patrick Hines"

Dim contact As XElement =

 <contact>

 <name><%= contactName %></name>

 </contact>

Console.WriteLine(contact)

<contact>

 <name>Patrick Hines</name>

</contact>

VB

VB

How to: Embed Expressions in XML Literals (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384752(d=printer).aspx

1 of 3 04.09.2016 11:03

This example produces the following output:

To insert text for an element name

The following example shows how to insert the text that is contained in the elementName variable as the name of

an element.

When creating elements by using this technique, you must close them with the </> tag.

This example produces the following output:

See Also

How to: Create XML Literals (Visual Basic)

Embedded Expressions in XML (Visual Basic)

Creating XML in Visual Basic

XML in Visual Basic

Dim phoneType As String = "home"

Dim contact2 As XElement =

 <contact>

 <phone type=<%= phoneType %>>206‐555‐0144</phone>

 </contact>

Console.WriteLine(contact2)

<contact>

 <phone type="home">206‐555‐0144</phone>

</contact>

Dim elementName As String = "contact"

Dim contact3 As XElement =

 <<%= elementName %>>

 <name>Patrick Hines</name>

 </>

Console.WriteLine(contact3)

<contact>

 <name>Patrick Hines</name>

</contact>

VB

How to: Embed Expressions in XML Literals (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384752(d=printer).aspx

2 of 3 04.09.2016 11:03

© 2016 Microsoft

How to: Embed Expressions in XML Literals (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384752(d=printer).aspx

3 of 3 04.09.2016 11:03

XML Literals (Visual Basic)

The topics in this section document the syntax of XML literals in Visual Basic. The XML literal syntax enables you to

incorporate XML directly in your code.

In This Section

Topic Description

XML Element Literal (Visual Basic) Describes the syntax for literals that represent XElement objects.

XML Document Literal (Visual Basic) Describes the syntax for literals that represent XDocument objects.

XML CDATA Literal (Visual Basic) Describes the syntax for literals that represent XCData objects.

XML Comment Literal (Visual Basic) Describes the syntax for literals that represent XComment objects.

XML Processing Instruction Literal (Visual

Basic)

Describes the syntax for literals that represent XProcessingInstruction

objects.

See Also

XML in Visual Basic

© 2016 Microsoft

Visual Studio 2015

XML Literals (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384563(d=printer).aspx

1 of 1 04.09.2016 11:09

XML Element Literal (Visual Basic)

A literal that represents an XElement object.

Syntax

Parts

<

Required. Opens the starting element tag.

name

Required. Name of the element. The format is one of the following:

Literal text for the element name, of the form [ePrefix:]eName, where:

Part Description

ePrefix Optional. XML namespace prefix for the element. Must be a global XML namespace that is

defined with an Imports statement in the file or at the project level, or a local XML namespace

that is defined in this element or a parent element.

eName Required. Name of the element. The format is one of the following:

Literal text. See Names of Declared XML Elements and Attributes (Visual Basic).

Embedded expression of the form <%= eNameExp %>. The type of eNameExp must be

String or a type that is implicitly convertible to XName.

Embedded expression of the form <%= nameExp %>. The type of nameExp must be String or a type

implicitly convertible to XName. An embedded expression is not allowed in a closing tag of an element.

attributeList

Visual Studio 2015

<name [attributeList] />

‐or‐

<name [attributeList] > [elementContents] </[name]>

XML Element Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384832(d=printer).aspx

1 of 6 04.09.2016 11:10

Optional. List of attributes declared in the literal.

attribute [attribute ...]

Each attribute has one of the following syntaxes:

Attribute assignment, of the form [aPrefix:]aName=aValue, where:

Part Description

aPrefix Optional. XML namespace prefix for the attribute. Must be a global XML namespace that is

defined with an Imports statement, or a local XML namespace that is defined in this element

or a parent element.

aName Required. Name of the attribute. The format is one of the following:

Literal text. See Names of Declared XML Elements and Attributes (Visual Basic).

Embedded expression of the form <%= aNameExp %>. The type of aNameExp must be

String or a type that is implicitly convertible to XName.

aValue Optional. Value of the attribute. The format is one of the following:

Literal text, enclosed in quotation marks.

Embedded expression of the form <%= aValueExp %>. Any type is allowed.

Embedded expression of the form <%= aExp %>.

/>

Optional. Indicates that the element is an empty element, without content.

>

Required. Ends the beginning or empty element tag.

elementContents

Optional. Content of the element.

content [content ...]

Each content can be one of the following:

Literal text. All the white space in elementContents becomes significant if there is any literal text.

Embedded expression of the form <%= contentExp %>.

XML element literal.

XML comment literal. See XML Comment Literal (Visual Basic).

XML processing instruction literal. See XML Processing Instruction Literal (Visual Basic).

XML Element Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384832(d=printer).aspx

2 of 6 04.09.2016 11:10

XML CDATA literal. See XML CDATA Literal (Visual Basic).

</[name]>

Optional. Represents the closing tag for the element. The optional name parameter is not allowed when it is the

result of an embedded expression.

Return Value
An XElement object.

Remarks
You can use the XML element literal syntax to create XElement objects in your code.

Note

An XML literal can span multiple lines without using line continuation characters. This feature enables you to copy

content from an XML document and paste it directly into a Visual Basic program.

Embedded expressions of the form <%= exp %> enable you to add dynamic information to an XML element literal. For

more information, see Embedded Expressions in XML (Visual Basic).

The Visual Basic compiler converts the XML element literal into calls to the XElement constructor and, if it is required, the

XAttribute constructor.

XML Namespaces

XML namespace prefixes are useful when you have to create XML literals with elements from the same namespace many

times in code. You can use global XML namespace prefixes, which you define by using the Imports statement, or local

prefixes, which you define by using the xmlns:xmlPrefix="xmlNamespace" attribute syntax. For more information, see

Imports Statement (XML Namespace).

In accordance with the scoping rules for XML namespaces, local prefixes take precedence over global prefixes. However,

if an XML literal defines an XML namespace, that namespace is not available to expressions that appear in an

embedded expression. The embedded expression can access only the global XML namespace.

The Visual Basic compiler converts each global XML namespace that is used by an XML literal into a one local

namespace definition in the generated code. Global XML namespaces that are not used do not appear in the generated

code.

Example

XML Element Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384832(d=printer).aspx

3 of 6 04.09.2016 11:10

The following example shows how to create a simple XML element that has two nested empty elements.

The example displays the following text. Notice that the literal preserves the structure of the empty elements.

Example
The following example shows how to use embedded expressions to name an element and create attributes.

This code displays the following text:

Dim test1 As XElement =

<outer>

 <inner1></inner1>

 <inner2/>

</outer>

Console.WriteLine(test1)

<outer>

 <inner1></inner1>

 <inner2 />

</outer>

Dim elementType = "book"

Dim authorName = "My Author"

Dim attributeName1 = "year"

Dim attributeValue1 = 1999

Dim attributeName2 = "title"

Dim attributeValue2 = "My Book"

Dim book As XElement =

<<%= elementType %>

 isbn="1234"

 author=<%= authorName %>

 <%= attributeName1 %>=<%= attributeValue1 %>

 <%= New XAttribute(attributeName2, attributeValue2) %>

/>

Console.WriteLine(book)

<book isbn="1234" author="My Author" year="1999" title="My Book" />

VB

VB

XML Element Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384832(d=printer).aspx

4 of 6 04.09.2016 11:10

Example
The following example declares ns as an XML namespace prefix. It then uses the prefix of the namespace to create an XML

literal and displays the element's final form.

This code displays the following text:

Notice that the compiler converted the prefix of the global XML namespace into a prefix definition for the XML namespace.

The <ns:middle> element redefines the XML namespace prefix for the <ns:inner1> element. However, the <ns:inner2>

element uses the namespace defined by the Imports statement.

See Also
XElement

Names of Declared XML Elements and Attributes (Visual Basic)

XML Comment Literal (Visual Basic)

' Place Imports statements at the top of your program.

Imports <xmlns:ns="http://SomeNamespace">

Class TestClass1

Shared Sub TestPrefix()

' Create test using a global XML namespace prefix.

Dim inner2 = <ns:inner2/>

Dim test =

 <ns:outer>

 <ns:middle xmlns:ns="http://NewNamespace">

 <ns:inner1/>

 <%= inner2 %>

 </ns:middle>

 </ns:outer>

' Display test to see its final form.

 Console.WriteLine(test)

End Sub

End Class

<ns:outer xmlns:ns="http://SomeNamespace">

 <ns:middle xmlns:ns="http://NewNamespace">

 <ns:inner1 />

 <inner2 xmlns="http://SomeNamespace" />

 </ns:middle>

</ns:outer>

VB

XML Element Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384832(d=printer).aspx

5 of 6 04.09.2016 11:10

XML CDATA Literal (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

Embedded Expressions in XML (Visual Basic)

Imports Statement (XML Namespace)

© 2016 Microsoft

XML Element Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384832(d=printer).aspx

6 of 6 04.09.2016 11:10

XML Document Literal (Visual Basic)

A literal representing an XDocument object.

Syntax

Parts

Term Definition

encoding Optional. Literal text declaring which encoding the document uses.

standalone Optional. Literal text. Must be "yes" or "no".

piCommentList Optional. List of XML processing instructions and XML comments. Takes the following format:

piComment [piComment ...]

Each piComment can be one of the following:

XML Processing Instruction Literal (Visual Basic).

XML Comment Literal (Visual Basic).

rootElement Required. Root element of the document. The format is one of the following:

XML Element Literal (Visual Basic).

Embedded expression of the form <%= elementExp %>. The elementExp returns one of the

following:

An XElement object.

A collection that contains one XElement object and any number of

XProcessingInstruction and XComment objects.

Visual Studio 2015

<?xml version="1.0" [encoding="encoding"] [standalone="standalone"] ?>

[piCommentList]

rootElement

[piCommentList]

XML Document Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385195(d=printer).aspx

1 of 3 04.09.2016 11:11

For more information, see Embedded Expressions in XML (Visual Basic).

Return Value
An XDocument object.

Remarks
An XML document literal is identified by the XML declaration at the start of the literal. Although each XML document

literal must have exactly one root XML element, it can have any number of XML processing instructions and XML

comments.

An XML document literal cannot appear in an XML element.

Note

An XML literal can span multiple lines without using line continuation characters. This enables you to copy content

from an XML document and paste it directly into a Visual Basic program.

The Visual Basic compiler converts the XML document literal into calls to the XDocument and XDeclaration constructors.

Example
The following example creates an XML document that has an XML declaration, a processing instruction, a comment, and an

element that contains another element.

See Also
XElement

XProcessingInstruction

XComment

Dim libraryRequest As XDocument =

 <?xml version="1.0" encoding="UTF‐8" standalone="yes"?>

 <?xml‐stylesheet type="text/xsl" href="show_book.xsl"?>

 <!‐‐ Tests that the application works. ‐‐>

 <books>

 <book/>

 </books>

Console.WriteLine(libraryRequest)

VB

XML Document Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385195(d=printer).aspx

2 of 3 04.09.2016 11:11

XDocument

XML Processing Instruction Literal (Visual Basic)

XML Comment Literal (Visual Basic)

XML Element Literal (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

Embedded Expressions in XML (Visual Basic)

© 2016 Microsoft

XML Document Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385195(d=printer).aspx

3 of 3 04.09.2016 11:11

XML CDATA Literal (Visual Basic)

A literal representing an XCData object.

Syntax

Parts

<![CDATA[

Required. Denotes the start of the XML CDATA section.

content

Required. Text content to appear in the XML CDATA section.

]]>

Required. Denotes the end of the section.

Return Value
An XCData object.

Remarks
XML CDATA sections contain raw text that should be included, but not parsed, with the XML that contains it. A XML

CDATA section can contain any text. This includes reserved XML characters. The XML CDATA section ends with the

sequence "]]>". This implies the following points:

You cannot use an embedded expression in an XML CDATA literal because the embedded expression delimiters are

valid XML CDATA content.

XML CDATA sections cannot be nested, because content cannot contain the value "]]>".

Visual Studio 2015

<![CDATA[content]]>

XML CDATA Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384869(d=printer).aspx

1 of 2 04.09.2016 11:12

You can assign an XML CDATA literal to a variable, or include it in an XML element literal.

Note

An XML literal can span multiple lines but does not use line continuation characters. This enables you to copy content

from an XML document and paste it directly into a Visual Basic program.

The Visual Basic compiler converts the XML CDATA literal to a call to the XCData constructor.

Example
The following example creates a CDATA section that contains the text "Can contain literal <XML> tags".

See Also
XCData

XML Element Literal (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

© 2016 Microsoft

Dim cdata As XCData = <![CDATA[Can contain literal <XML> tags]]>

VB

XML CDATA Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384869(d=printer).aspx

2 of 2 04.09.2016 11:12

XML Comment Literal (Visual Basic)

A literal representing an XComment object.

Syntax

Parts

Term Definition

<!-- Required. Denotes the start of the XML comment.

content Required. Text to appear in the XML comment. Cannot contain a series of two hyphens (--) or end with a

hyphen adjacent to the closing tag.

--> Required. Denotes the end of the XML comment.

Return Value
An XComment object.

Remarks
XML comment literals do not contain document content; they contain information about the document. The XML

comment section ends with the sequence "-->". This implies the following points:

You cannot use an embedded expression in an XML comment literal because the embedded expression delimiters

are valid XML comment content.

XML comment sections cannot be nested, because content cannot contain the value "-->".

Visual Studio 2015

<!‐‐ content ‐‐>

XML Comment Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384721(d=printer).aspx

1 of 2 04.09.2016 11:12

You can assign an XML comment literal to a variable, or you can include it in an XML element literal.

Note

An XML literal can span multiple lines without using line continuation characters. This feature enables you to copy

content from an XML document and paste it directly into a Visual Basic program.

The Visual Basic compiler converts the XML comment literal to a call to the XComment constructor.

Example
The following example creates an XML comment that contains the text "This is a comment".

See Also
XComment

XML Element Literal (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

© 2016 Microsoft

Dim com As XComment = <!‐‐ This is a comment ‐‐>

VB

XML Comment Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384721(d=printer).aspx

2 of 2 04.09.2016 11:12

XML Processing Instruction Literal (Visual
Basic)

A literal representing an XProcessingInstruction object.

Syntax

Parts

<?

Required. Denotes the start of the XML processing instruction literal.

piName

Required. Name indicating which application the processing instruction targets. Cannot begin with "xml" or "XML".

piData

Optional. String indicating how the application targeted by piName should process the XML document.

?>

Required. Denotes the end of the processing instruction.

Return Value
An XProcessingInstruction object.

Remarks
XML processing instruction literals indicate how applications should process an XML document. When an application

loads an XML document, the application can check the XML processing instructions to determine how to process the

document. The application interprets the meaning of piName and piData.

The XML document literal uses syntax that is similar to that of the XML processing instruction. For more information, see

Visual Studio 2015

<?piName [= piData] ?>

XML Processing Instruction Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385055(d=printer).aspx

1 of 2 04.09.2016 11:13

XML Document Literal (Visual Basic).

Note

The piName element cannot begin with the strings "xml" or "XML", because the XML 1.0 specification reserves those

identifiers.

You can assign an XML processing instruction literal to a variable or include it in an XML document literal.

Note

An XML literal can span multiple lines without needing line continuation characters. This enables you to copy content

from an XML document and paste it directly into a Visual Basic program.

The Visual Basic compiler converts the XML processing instruction literal to a call to the XProcessingInstruction

constructor.

Example
The following example creates a processing instruction identifying a style-sheet for an XML document.

See Also
XProcessingInstruction

XML Document Literal (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

© 2016 Microsoft

Dim pi As XProcessingInstruction =

 <?xml‐stylesheet type="text/xsl" href="show_book.xsl"?>

VB

XML Processing Instruction Literal (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385055(d=printer).aspx

2 of 2 04.09.2016 11:13

XML Axis Properties (Visual Basic)

The topics in this section document the syntax of XML axis properties in Visual Basic. The XML axis properties make it easy to

access XML directly in your code.

In This Section

Topic Description

XML Attribute Axis Property (Visual

Basic)

Describes how to access the attributes of an XElement object.

XML Child Axis Property (Visual

Basic)

Describes how to access the children of an XElement object.

XML Descendant Axis Property

(Visual Basic)

Describes how to access the descendants of an XElement object.

Extension Indexer Property (Visual

Basic)

Describes how to access individual elements in a collection of XElement or

XAttribute objects.

XML Value Property (Visual Basic) Describes how to access the value of the first element of a collection of XElement

or XAttribute objects.

See Also

XML in Visual Basic

© 2016 Microsoft

Visual Studio 2015

XML Axis Properties (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384769(d=printer).aspx

1 of 1 04.09.2016 10:59

XML Attribute Axis Property (Visual Basic)

Provides access to the value of an attribute for an XElement object or to the first element in a collection of XElement objects.

Syntax

Parts

object

Required. An XElement object or a collection of XElement objects.

.@

Required. Denotes the start of an attribute axis property.

<

Optional. Denotes the beginning of the name of the attribute when attribute is not a valid identifier in Visual Basic.

attribute

Required. Name of the attribute to access, of the form [prefix:]name.

Part Description

prefix Optional. XML namespace prefix for the attribute. Must be a global XML namespace defined

with an Imports statement.

name Required. Local attribute name. See Names of Declared XML Elements and Attributes (Visual

Basic).

>

Optional. Denotes the end of the name of the attribute when attribute is not a valid identifier in Visual Basic.

Visual Studio 2015

 object.@attribute

‐or‐

object.@<attribute>

XML Attribute Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384755(d=printer).aspx

1 of 4 04.09.2016 11:00

Return Value
A string that contains the value of attribute. If the attribute name does not exist, Nothing is returned.

Remarks
You can use an XML attribute axis property to access the value of an attribute by name from an XElement object or from

the first element in a collection of XElement objects. You can retrieve an attribute value by name, or add a new attribute

to an element by specifying a new name preceded by the @ identifier.

When you refer to an XML attribute using the @ identifier, the attribute value is returned as a string and you do not need

to explicitly specify the Value property.

The naming rules for XML attributes differ from the naming rules for Visual Basic identifiers. To access an XML

attribute that has a name that is not a valid Visual Basic identifier, enclose the name in angle brackets (< and >).

XML Namespaces

The name in an attribute axis property can use only XML namespace prefixes declared globally by using the Imports

statement. It cannot use XML namespace prefixes declared locally within XML element literals. For more information,

see Imports Statement (XML Namespace).

Example
The following example shows how to get the values of the XML attributes named type from a collection of XML elements

that are named phone.

This code displays the following text:

' Topic: XML Attribute Axis Property

Dim phones As XElement =

 <phones>

 <phone type="home">206‐555‐0144</phone>

 <phone type="work">425‐555‐0145</phone>

 </phones>

Dim phoneTypes As XElement =

 <phoneTypes>

 <%= From phone In phones.<phone>

Select <type><%= phone.@type %></type>

 %>

 </phoneTypes>

Console.WriteLine(phoneTypes)

VB

XML Attribute Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384755(d=printer).aspx

2 of 4 04.09.2016 11:00

<phoneTypes>

<type>home</type>

<type>work</type>

</phoneTypes>

Example
The following example shows how to create attributes for an XML element both declaratively, as part of the XML, and

dynamically by adding an attribute to an instance of an XElement object. The type attribute is created declaratively and the

owner attribute is created dynamically.

This code displays the following text:

Example
The following example uses the angle bracket syntax to get the value of the XML attribute named number‐type, which is not

a valid identifier in Visual Basic.

This code displays the following text:

Phone type: work

Example
The following example declares ns as an XML namespace prefix. It then uses the prefix of the namespace to create an XML

literal and access the first child node with the qualified name "ns:name".

Dim phone2 As XElement = <phone type="home">206‐555‐0144</phone>

phone2.@owner = "Harris, Phyllis"

Console.WriteLine(phone2)

<phone type="home" owner="Harris, Phyllis">206‐555‐0144</phone>

Dim phone As XElement =

 <phone number‐type=" work">425‐555‐0145</phone>

 Console.WriteLine("Phone type: " & phone.@<number‐type>)

Imports <xmlns:ns = "http://SomeNamespace">

VB

VB

VB

XML Attribute Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384755(d=printer).aspx

3 of 4 04.09.2016 11:00

This code displays the following text:

Phone type: home

See Also
XElement

XML Axis Properties (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

Names of Declared XML Elements and Attributes (Visual Basic)

© 2016 Microsoft

Class TestClass3

Shared Sub TestPrefix()

Dim phone =

 <ns:phone ns:type="home">206‐555‐0144</ns:phone>

 Console.WriteLine("Phone type: " & phone.@ns:type)

End Sub

End Class

XML Attribute Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384755(d=printer).aspx

4 of 4 04.09.2016 11:00

XML Child Axis Property (Visual Basic)

Provides access to the children of one of the following: an XElement object, an XDocument object, a collection of XElement

objects, or a collection of XDocument objects.

Syntax

Parts

Term Definition

object Required. An XElement object, an XDocument object, a collection of XElement objects, or a collection of

XDocument objects.

.< Required. Denotes the start of a child axis property.

child Required. Name of the child nodes to access, of the form [prefix:]name.

Prefix - Optional. XML namespace prefix for the child node. Must be a global XML namespace defined

with an Imports statement.

Name - Required. Local child node name. See Names of Declared XML Elements and Attributes (Visual

Basic).

> Required. Denotes the end of a child axis property.

Return Value
A collection of XElement objects.

Visual Studio 2015

object.<child>

XML Child Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384806(d=printer).aspx

1 of 3 04.09.2016 11:03

Remarks
You can use an XML child axis property to access child nodes by name from an XElement or XDocument object, or from a

collection of XElement or XDocument objects. Use the XML Value property to access the value of the first child node in

the returned collection. For more information, see XML Value Property (Visual Basic).

The Visual Basic compiler converts child axis properties to calls to the Elements method.

XML Namespaces

The name in a child axis property can use only XML namespace prefixes declared globally with the Imports statement.

It cannot use XML namespace prefixes declared locally within XML element literals. For more information, see Imports

Statement (XML Namespace).

Example
The following example shows how to access the child nodes named phone from the contact object.

This code displays the following text:

Home Phone = 206‐555‐0144

Example
The following example shows how to access the child nodes named phone from the collection returned by the contact

child axis property of the contacts object.

Dim contact As XElement =

 <contact>

 <name>Patrick Hines</name>

 <phone type="home">206‐555‐0144</phone>

 <phone type="work">425‐555‐0145</phone>

 </contact>

Dim homePhone = From hp In contact.<phone>

Where contact.<phone>.@type = "home"

Select hp

Console.WriteLine("Home Phone = {0}", homePhone(0).Value)

Dim contacts As XElement =

 <contacts>

 <contact>

 <name>Patrick Hines</name>

 <phone type="home">206‐555‐0144</phone>

VB

VB

XML Child Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384806(d=printer).aspx

2 of 3 04.09.2016 11:03

This code displays the following text:

Home Phone = 206‐555‐0144

Example
The following example declares ns as an XML namespace prefix. It then uses the prefix of the namespace to create an XML

literal and access the first child node with the qualified name ns:name.

This code displays the following text:

Patrick Hines

See Also
XElement

XML Axis Properties (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

Names of Declared XML Elements and Attributes (Visual Basic)

© 2016 Microsoft

 </contact>

 <contact>

 <name>Lance Tucker</name>

 <phone type="work">425‐555‐0145</phone>

 </contact>

 </contacts>

Dim homePhone = From contact In contacts.<contact>

Where contact.<phone>.@type = "home"

Select contact.<phone>

Console.WriteLine("Home Phone = {0}", homePhone(0).Value)

Imports <xmlns:ns = "http://SomeNamespace">

Class TestClass4

Shared Sub TestPrefix()

Dim contact = <ns:contact>

 <ns:name>Patrick Hines</ns:name>

 </ns:contact>

 Console.WriteLine(contact.<ns:name>.Value)

End Sub

End Class

VB

XML Child Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384806(d=printer).aspx

3 of 3 04.09.2016 11:03

XML Descendant Axis Property (Visual Basic)

Provides access to the descendants of the following: an XElement object, an XDocument object, a collection of XElement

objects, or a collection of XDocument objects.

Syntax

Parts

object

Required. An XElement object, an XDocument object, a collection of XElement objects, or a collection of

XDocument objects.

...<

Required. Denotes the start of a descendant axis property.

descendant

Required. Name of the descendant nodes to access, of the form [prefix:]name.

Part Description

prefix Optional. XML namespace prefix for the descendant node. Must be a global XML namespace

that is defined by using an Imports statement.

name Required. Local name of the descendant node. See Names of Declared XML Elements and

Attributes (Visual Basic).

>

Required. Denotes the end of a descendant axis property.

Return Value

Visual Studio 2015

object...<descendant>

XML Descendant Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384876(d=printer).aspx

1 of 3 04.09.2016 11:04

A collection of XElement objects.

Remarks
You can use an XML descendant axis property to access descendant nodes by name from an XElement or XDocument

object, or from a collection of XElement or XDocument objects. Use the XML Value property to access the value of the

first descendant node in the returned collection. For more information, see XML Value Property (Visual Basic).

The Visual Basic compiler converts descendant axis properties into calls to the Descendants method.

XML Namespaces

The name in a descendant axis property can use only XML namespaces declared globally with the Imports statement. It

cannot use XML namespaces declared locally within XML element literals. For more information, see Imports Statement

(XML Namespace).

Example
The following example shows how to access the value of the first descendant node named name and the values of all

descendant nodes named phone from the contacts object.

This code displays the following text:

Name: Patrick Hines

Home Phone = 206‐555‐0144

Example
The following example declares ns as an XML namespace prefix. It then uses the prefix of the namespace to create an XML

Dim contacts As XElement =

 <contacts>

 <contact>

 <name>Patrick Hines</name>

 <phone type="home">206‐555‐0144</phone>

 <phone type="work">425‐555‐0145</phone>

 </contact>

 </contacts>

Console.WriteLine("Name: " & contacts...<name>.Value)

Dim homePhone = From phone In contacts...<phone>

Select phone.Value

Console.WriteLine("Home Phone = {0}", homePhone(0))

VB

XML Descendant Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384876(d=printer).aspx

2 of 3 04.09.2016 11:04

literal and access the value of the first child node with the qualified name ns:name.

This code displays the following text:

Name: Patrick Hines

See Also
XElement

XML Axis Properties (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

Names of Declared XML Elements and Attributes (Visual Basic)

© 2016 Microsoft

Imports <xmlns:ns = "http://SomeNamespace">

Class TestClass2

Shared Sub TestPrefix()

Dim contacts =

 <ns:contacts>

 <ns:contact>

 <ns:name>Patrick Hines</ns:name>

 </ns:contact>

 </ns:contacts>

 Console.WriteLine("Name: " & contacts...<ns:name>.Value)

End Sub

End Class

VB

XML Descendant Axis Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384876(d=printer).aspx

3 of 3 04.09.2016 11:04

Extension Indexer Property (Visual Basic)

Provides access to individual elements in a collection.

Syntax

Parts

Term Definition

object Required. A queryable collection. That is, a collection that implements IEnumerable(Of T) or IQueryable(Of T).

(Required. Denotes the start of the indexer property.

index Required. An integer expression that specifies the zero-based position of an element of the collection.

) Required. Denotes the end of the indexer property.

Return Value
The object from the specified location in the collection, or Nothing if the index is out of range.

Remarks
You can use the extension indexer property to access individual elements in a collection. This indexer property is typically

used on the output of XML axis properties. The XML child and XML descendent axis properties return collections of

XElement objects or an attribute value.

The Visual Basic compiler converts extension indexer properties to calls to theElementAtOrDefault method. Unlike an

array indexer, theElementAtOrDefault method returns Nothing if the index is out of range. This behavior is useful when

Visual Studio 2015

object(index)

Extension Indexer Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384875(d=printer).aspx

1 of 2 04.09.2016 11:05

you cannot easily determine the number of elements in a collection.

This indexer property is like an extension property for collections that implement IEnumerable(Of T) or IQueryable(Of T):

it is used only if the collection does not have an indexer or a default property.

To access the value of the first element in a collection of XElement or XAttribute objects, you can use the XML Value

property. For more information, see XML Value Property (Visual Basic).

Example
The following example shows how to use the extension indexer to access the second child node in a collection of XElement

objects. The collection is accessed by using the child axis property, which gets all child elements named phone in the

contact object.

This code displays the following text:

Second phone number: 425‐555‐0145

See Also
XElement

XML Axis Properties (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

XML Value Property (Visual Basic)

© 2016 Microsoft

Dim contact As XElement =

 <contact>

 <name>Patrick Hines</name>

 <phone type="home">206‐555‐0144</phone>

 <phone type="work">425‐555‐0145</phone>

 </contact>

Console.WriteLine("Second phone number: " & contact.<phone>(1).Value)

VB

Extension Indexer Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384875(d=printer).aspx

2 of 2 04.09.2016 11:05

XML Value Property (Visual Basic)

Provides access to the value of the first element of a collection of XElement objects.

Syntax

Parts

Term Definition

object Required. Collection of XElement objects.

Return Value
A String that contains the value of the first element of the collection, or Nothing if the collection is empty.

Remarks
The Value property makes it easy to access the value of the first element in a collection of XElement objects. This property

first checks whether the collection contains at least one object. If the collection is empty, this property returns Nothing.

Otherwise, this property returns the value of the Value property of the first element in the collection.

Note

When you access the value of an XML attribute using the '@' identifier, the attribute value is returned as a String and

you do not need to explicitly specify the Value property.

To access other elements in a collection, you can use the XML extension indexer property. For more information, see

Visual Studio 2015

object.Value

XML Value Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384768(d=printer).aspx

1 of 3 04.09.2016 11:06

Extension Indexer Property (Visual Basic).

Inheritance

Most users will not have to implement IEnumerable(Of T), and can therefore ignore this section.

The Value property is an extension property for types that implement IEnumerable(Of XElement). The binding of this

extension property is like the binding of extension methods: if a type implements one of the interfaces and defines a

property that has the name "Value", that property has precedence over the extension property. In other words, this

Value property can be overridden by defining a new property in a class that implements IEnumerable(Of XElement).

Example
The following example shows how to use the Value property to access the first node in a collection of XElement objects. The

example uses the child axis property to get the collection of all child nodes named phone that are in the contact object.

This code displays the following text:

Phone number: 206‐555‐0144

Example
The following example shows how to get the value of an XML attribute from a collection of XAttribute objects. The example

uses the attribute axis property to display the value of the type attribute for all of the the phone elements.

Dim contact As XElement =

 <contact>

 <name>Patrick Hines</name>

 <phone type="home">206‐555‐0144</phone>

 <phone type="work">425‐555‐0145</phone>

 </contact>

Console.WriteLine("Phone number: " & contact.<phone>.Value)

Dim contact As XElement =

 <contact>

 <name>Patrick Hines</name>

 <phone type="home">206‐555‐0144</phone>

 <phone type="work">425‐555‐0145</phone>

 </contact>

Dim types = contact.<phone>.Attributes("type")

For Each attr In types

 Console.WriteLine(attr.Value)

VB

VB

XML Value Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384768(d=printer).aspx

2 of 3 04.09.2016 11:06

This code displays the following text:

home

work

See Also
XElement

IEnumerable(Of T)

XML Axis Properties (Visual Basic)

XML Literals (Visual Basic)

Creating XML in Visual Basic

Extension Methods (Visual Basic)

Extension Indexer Property (Visual Basic)

XML Child Axis Property (Visual Basic)

XML Attribute Axis Property (Visual Basic)

© 2016 Microsoft

Next

XML Value Property (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384768(d=printer).aspx

3 of 3 04.09.2016 11:06

