
CType Function 1

New Operator 3

Nothing 5

TryCast 9

DirectCast Operator 11

TypeOf Operator 13

Type List 15

Is Operator 18

Of Clause 20

In (Generic Modifier) 22

CType Function (Visual Basic)

Returns the result of explicitly converting an expression to a specified data type, object, structure, class, or interface.

Syntax

Parts

expression

Any valid expression. If the value of expression is outside the range allowed by typename, Visual Basic throws an

exception.

typename

Any expression that is legal within an As clause in a Dim statement, that is, the name of any data type, object,

structure, class, or interface.

Remarks

Tip

You can also use the following functions to perform a type conversion:

Type conversion functions such as CByte, CDbl, and CInt that perform a conversion to a specific data type. For

more information, see Type Conversion Functions (Visual Basic).

DirectCast Operator (Visual Basic) or TryCast Operator (Visual Basic). These operators require that one type

inherit from or implement the other type. They can provide somewhat better performance than CType when

converting to and from the Object data type.

CType is compiled inline, which means that the conversion code is part of the code that evaluates the expression. In some

cases, the code runs faster because no procedures are called to perform the conversion.

If no conversion is defined from expression to typename (for example, from Integer to Date), Visual Basic displays a

Visual Studio 2015

CType(expression, typename)

CType Function (Visual Basic) https://msdn.microsoft.com/en-us/library/4x2877xb(d=printer).aspx

1 of 2 04.09.2016 0:08

compile-time error message.

If a conversion fails at run time, the appropriate exception is thrown. If a narrowing conversion fails, an OverflowException

is the most common result. If the conversion is undefined, an InvalidCastException in thrown. For example, this can

happen if expression is of type Object and its run-time type has no conversion to typename.

If the data type of expression or typename is a class or structure you've defined, you can define CType on that class or

structure as a conversion operator. This makes CType act as an overloaded operator. If you do this, you can control the

behavior of conversions to and from your class or structure, including the exceptions that can be thrown.

Overloading

The CType operator can also be overloaded on a class or structure defined outside your code. If your code converts to

or from such a class or structure, be sure you understand the behavior of its CType operator. For more information, see

Operator Procedures (Visual Basic).

Converting Dynamic Objects

Type conversions of dynamic objects are performed by user-defined dynamic conversions that use the TryConvert or

BindConvert methods. If you're working with dynamic objects, use the CTypeDynamic method to convert the dynamic

object.

Example
The following example uses the CType function to convert an expression to the Single data type.

For additional examples, see Implicit and Explicit Conversions (Visual Basic).

See Also
OverflowException

InvalidCastException

Type Conversion Functions (Visual Basic)

Conversion Functions (Visual Basic)

Operator Statement

How to: Define a Conversion Operator (Visual Basic)

Type Conversion in the .NET Framework

© 2016 Microsoft

Dim testNumber As Long = 1000

' The following line of code sets testNewType to 1000.0.

Dim testNewType As Single = CType(testNumber, Single)

VB

CType Function (Visual Basic) https://msdn.microsoft.com/en-us/library/4x2877xb(d=printer).aspx

2 of 2 04.09.2016 0:08

New Operator (Visual Basic)

Introduces a New clause to create a new object instance, specifies a constructor constraint on a type parameter, or identifies

a Sub procedure as a class constructor.

Remarks

In a declaration or assignment statement, a New clause must specify a defined class from which the instance can be

created. This means that the class must expose one or more constructors that the calling code can access.

You can use a New clause in a declaration statement or an assignment statement. When the statement runs, it calls the

appropriate constructor of the specified class, passing any arguments you have supplied. The following example

demonstrates this by creating instances of a Customer class that has two constructors, one that takes no parameters and

one that takes a string parameter.

Since arrays are classes, New can create a new array instance, as shown in the following examples.

Visual Studio 2015

' For customer1, call the constructor that takes no arguments.

Dim customer1 As New Customer()

' For customer2, call the constructor that takes the name of the

' customer as an argument.

Dim customer2 As New Customer("Blue Yonder Airlines")

' For customer3, declare an instance of Customer in the first line

' and instantiate it in the second.

Dim customer3 As Customer

customer3 = New Customer()

' With Option Infer set to On, the following declaration declares

' and instantiates a new instance of Customer.

Dim customer4 = New Customer("Coho Winery")

Dim intArray1() As Integer

intArray1 = New Integer() {1, 2, 3, 4}

Dim intArray2() As Integer = {5, 6}

' The following example requires that Option Infer be set to On.

Dim intArray3() = New Integer() {6, 7, 8}

VB

VB

New Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/77s47661(d=printer).aspx

1 of 2 04.09.2016 1:23

The common language runtime (CLR) throws an OutOfMemoryException error if there is insufficient memory to create the

new instance.

Note

The New keyword is also used in type parameter lists to specify that the supplied type must expose an accessible

parameterless constructor. For more information about type parameters and constraints, see Type List (Visual Basic).

To create a constructor procedure for a class, set the name of a Sub procedure to the New keyword. For more

information, see Object Lifetime: How Objects Are Created and Destroyed (Visual Basic).

The New keyword can be used in these contexts:

Dim Statement (Visual Basic)

Of Clause (Visual Basic)

Sub Statement (Visual Basic)

See Also

OutOfMemoryException

Keywords (Visual Basic)

Type List (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic)

© 2016 Microsoft

New Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/77s47661(d=printer).aspx

2 of 2 04.09.2016 1:23

Nothing (Visual Basic)

Represents the default value of any data type. For reference types, the default value is the null reference. For value types, the

default value depends on whether the value type is nullable.

Note

For non-nullable value types, Nothing in Visual Basic differs from null in C#. In Visual Basic, if you set a variable of a

non-nullable value type to Nothing, the variable is set to the default value for its declared type. In C#, if you assign a

variable of a non-nullable value type to null, a compile-time error occurs.

Remarks

Nothing represents the default value of a data type. The default value depends on whether the variable is of a value type

or of a reference type.

A variable of a value type directly contains its value. Value types include all numeric data types, Boolean, Char, Date, all

structures, and all enumerations. A variable of a reference type stores a reference to an instance of the object in memory.

Reference types include classes, arrays, delegates, and strings. For more information, see Value Types and Reference Types.

If a variable is of a value type, the behavior of Nothing depends on whether the variable is of a nullable data type. To

represent a nullable value type, add a ? modifier to the type name. Assigning Nothing to a nullable variable sets the value

to null. For more information and examples, see Nullable Value Types (Visual Basic).

If a variable is of a value type that is not nullable, assigning Nothing to it sets it to the default value for its declared type.

If that type contains variable members, they are all set to their default values. The following example illustrates this for

scalar types.

Visual Studio 2015

Module Module1

Sub Main()

Dim ts As TestStruct

Dim i As Integer

Dim b As Boolean

' The following statement sets ts.Name to Nothing and ts.Number to 0.

 ts = Nothing

' The following statements set i to 0 and b to False.

 i = Nothing

 b = Nothing

VB

Nothing (Visual Basic) https://msdn.microsoft.com/en-us/library/0x9tb07z(d=printer).aspx

1 of 4 04.09.2016 1:16

If a variable is of a reference type, assigning Nothing to the variable sets it to a null reference of the variable's type. A

variable that is set to a null reference is not associated with any object. The following example demonstrates this.

When checking whether a reference (or nullable value type) variable is null, do not use = Nothing or <> Nothing.

Always use Is Nothing or IsNot Nothing.

For strings in Visual Basic, the empty string equals Nothing. Therefore, "" = Nothing is true.

The following example shows comparisons that use the Is and IsNot operators.

 Console.WriteLine("ts.Name: " & ts.Name)

 Console.WriteLine("ts.Number: " & ts.Number)

 Console.WriteLine("i: " & i)

 Console.WriteLine("b: " & b)

 Console.ReadKey()

End Sub

Public Structure TestStruct

Public Name As String

Public Number As Integer

End Structure

End Module

Module Module1

Sub Main()

Dim testObject As Object

' The following statement sets testObject so that it does not refer to

' any instance.

 testObject = Nothing

Dim tc As New TestClass

 tc = Nothing

' The fields of tc cannot be accessed. The following statement causes

' a NullReferenceException at run time. (Compare to the assignment of

' Nothing to structure ts in the previous example.)

'Console.WriteLine(tc.Field1)

End Sub

Class TestClass

Public Field1 As Integer

' . . .

End Class

End Module

Module Module1

VB

VB

Nothing (Visual Basic) https://msdn.microsoft.com/en-us/library/0x9tb07z(d=printer).aspx

2 of 4 04.09.2016 1:16

If you declare a variable without using an As clause and set it to Nothing, the variable has a type of Object. An example

of this is Dim something = Nothing. A compile-time error occurs in this case when Option Strict is on and Option

Infer is off.

When you assign Nothing to an object variable, it no longer refers to any object instance. If the variable had previously

referred to an instance, setting it to Nothing does not terminate the instance itself. The instance is terminated, and the

memory and system resources associated with it are released, only after the garbage collector (GC) detects that there are

no active references remaining.

Nothing differs from the DBNull object, which represents an uninitialized variant or a nonexistent database column.

See Also

Dim Statement (Visual Basic)

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic)

Lifetime in Visual Basic

Is Operator (Visual Basic)

Sub Main()

Dim testObject As Object

 testObject = Nothing

 Console.WriteLine(testObject Is Nothing)

' Output: True

Dim tc As New TestClass

 tc = Nothing

 Console.WriteLine(tc IsNot Nothing)

' Output: False

' Declare a nullable value type.

Dim n? As Integer

 Console.WriteLine(n Is Nothing)

' Output: True

 n = 4

 Console.WriteLine(n Is Nothing)

' Output: False

 n = Nothing

 Console.WriteLine(n IsNot Nothing)

' Output: False

 Console.ReadKey()

End Sub

Class TestClass

Public Field1 As Integer

Private field2 As Boolean

End Class

End Module

Nothing (Visual Basic) https://msdn.microsoft.com/en-us/library/0x9tb07z(d=printer).aspx

3 of 4 04.09.2016 1:16

IsNot Operator (Visual Basic)

Nullable Value Types (Visual Basic)

© 2016 Microsoft

Nothing (Visual Basic) https://msdn.microsoft.com/en-us/library/0x9tb07z(d=printer).aspx

4 of 4 04.09.2016 1:16

TryCast Operator (Visual Basic)

Introduces a type conversion operation that does not throw an exception.

Remarks
If an attempted conversion fails, CType and DirectCast both throw an InvalidCastException error. This can adversely

affect the performance of your application. TryCast returns Nothing (Visual Basic), so that instead of having to handle a

possible exception, you need only test the returned result against Nothing.

You use the TryCast keyword the same way you use the CType Function (Visual Basic) and the DirectCast Operator (Visual

Basic) keyword. You supply an expression as the first argument and a type to convert it to as the second argument.

TryCast operates only on reference types, such as classes and interfaces. It requires an inheritance or implementation

relationship between the two types. This means that one type must inherit from or implement the other.

Errors and Failures

TryCast generates a compiler error if it detects that no inheritance or implementation relationship exists. But the lack

of a compiler error does not guarantee a successful conversion. If the desired conversion is narrowing, it could fail at

run time. If this happens, TryCast returns Nothing (Visual Basic).

Conversion Keywords

A comparison of the type conversion keywords is as follows.

Keyword Data types Argument relationship Run-time failure

CType Function

(Visual Basic)

Any data types Widening or narrowing conversion must be

defined between the two data types

Throws

InvalidCastException

DirectCast Operator

(Visual Basic)

Any data types One type must inherit from or implement the

other type

Throws

InvalidCastException

TryCast Reference

types only

One type must inherit from or implement the

other type

Returns Nothing (Visual

Basic)

Example

Visual Studio 2015

TryCast Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/zyy863x8(d=printer).aspx

1 of 2 04.09.2016 1:21

The following example shows how to use TryCast.

See Also
Widening and Narrowing Conversions (Visual Basic)

Implicit and Explicit Conversions (Visual Basic)

© 2016 Microsoft

Function PrintTypeCode(ByVal obj As Object) As String

Dim objAsConvertible As IConvertible = TryCast(obj, IConvertible)

If objAsConvertible Is Nothing Then

Return obj.ToString() & " does not implement IConvertible"

Else

Return "Type code is " & objAsConvertible.GetTypeCode()

End If

End Function

VB

TryCast Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/zyy863x8(d=printer).aspx

2 of 2 04.09.2016 1:21

DirectCast Operator (Visual Basic)

Introduces a type conversion operation based on inheritance or implementation.

Remarks
DirectCast does not use the Visual Basic run-time helper routines for conversion, so it can provide somewhat better

performance than CType when converting to and from data type Object.

You use the DirectCast keyword similar to the way you use the CType Function (Visual Basic) and the TryCast Operator

(Visual Basic) keyword. You supply an expression as the first argument and a type to convert it to as the second argument.

DirectCast requires an inheritance or implementation relationship between the data types of the two arguments. This

means that one type must inherit from or implement the other.

Errors and Failures

DirectCast generates a compiler error if it detects that no inheritance or implementation relationship exists. But the

lack of a compiler error does not guarantee a successful conversion. If the desired conversion is narrowing, it could fail

at run time. If this happens, the runtime throws an InvalidCastException error.

Conversion Keywords

A comparison of the type conversion keywords is as follows.

Keyword Data types Argument relationship Run-time failure

CType Function

(Visual Basic)

Any data types Widening or narrowing conversion must be

defined between the two data types

Throws

InvalidCastException

DirectCast Any data types One type must inherit from or implement the

other type

Throws

InvalidCastException

TryCast Operator

(Visual Basic)

Reference

types only

One type must inherit from or implement the

other type

Returns Nothing (Visual

Basic)

Example
The following example demonstrates two uses of DirectCast, one that fails at run time and one that succeeds.

Visual Studio 2015

DirectCast Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/7k6y2h6x(d=printer).aspx

1 of 2 04.09.2016 1:21

In the preceding example, the run-time type of q is Double. CType succeeds because Double can be converted to Integer.

However, the first DirectCast fails at run time because the run-time type of Double has no inheritance relationship with

Integer, even though a conversion exists. The second DirectCast succeeds because it converts from type Form to type

Control, from which Form inherits.

See Also
Convert.ChangeType

Widening and Narrowing Conversions (Visual Basic)

Implicit and Explicit Conversions (Visual Basic)

© 2016 Microsoft

Dim q As Object = 2.37

Dim i As Integer = CType(q, Integer)

' The following conversion fails at run time

Dim j As Integer = DirectCast(q, Integer)

Dim f As New System.Windows.Forms.Form

Dim c As System.Windows.Forms.Control

' The following conversion succeeds.

c = DirectCast(f, System.Windows.Forms.Control)

VB

DirectCast Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/7k6y2h6x(d=printer).aspx

2 of 2 04.09.2016 1:21

TypeOf Operator (Visual Basic)

Compares an object reference variable to a data type.

Syntax

Parts

result

Returned. A Boolean value.

objectexpression

Required. Any expression that evaluates to a reference type.

typename

Required. Any data type name.

Remarks
The TypeOf operator determines whether the run-time type of objectexpression is compatible with typename. The

compatibility depends on the type category of typename. The following table shows how compatibility is determined.

Type category of

typename
Compatibility criterion

Class objectexpression is of type typename or inherits from typename

Visual Studio 2015

result = TypeOf objectexpression Is typename

result = TypeOf objectexpression IsNot typename

TypeOf Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/0ec5kw18(d=printer).aspx

1 of 2 04.09.2016 11:44

Structure objectexpression is of type typename

Interface objectexpression implements typename or inherits from a class that implements

typename

If the run-time type of objectexpression satisfies the compatibility criterion, result is True. Otherwise, result is False. If

objectexpression is null, then TypeOf...Is returns False, and ...IsNot returns True.

TypeOf is always used with the Is keyword to construct a TypeOf...Is expression, or with the IsNot keyword to construct a

TypeOf...IsNot expression.

Example
The following example uses TypeOf...Is expressions to test the type compatibility of two object reference variables with

various data types.

The variable refInteger has a run-time type of Integer. It is compatible with Integer but not with Double. The variable

refForm has a run-time type of Form. It is compatible with Form because that is its type, with Control because Form inherits

from Control, and with IComponent because Form inherits from Component, which implements IComponent. However,

refForm is not compatible with Label.

See Also
Is Operator (Visual Basic)

IsNot Operator (Visual Basic)

Comparison Operators in Visual Basic

Operator Precedence in Visual Basic

Operators Listed by Functionality (Visual Basic)

Operators and Expressions in Visual Basic

© 2016 Microsoft

Dim refInteger As Object = 2

MsgBox("TypeOf Object[Integer] Is Integer? " & TypeOf refInteger Is Integer)

MsgBox("TypeOf Object[Integer] Is Double? " & TypeOf refInteger Is Double)

Dim refForm As Object = New System.Windows.Forms.Form

MsgBox("TypeOf Object[Form] Is Form? " & TypeOf refForm Is System.Windows.Forms.Form)

MsgBox("TypeOf Object[Form] Is Label? " & TypeOf refForm Is System.Windows.Forms.Label)

MsgBox("TypeOf Object[Form] Is Control? " & TypeOf refForm Is

System.Windows.Forms.Control)

MsgBox("TypeOf Object[Form] Is IComponent? " & TypeOf refForm Is

System.ComponentModel.IComponent)

VB

TypeOf Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/0ec5kw18(d=printer).aspx

2 of 2 04.09.2016 11:44

Type List (Visual Basic)

Specifies the type parameters for a generic programming element. Multiple parameters are separated by commas. Following

is the syntax for one type parameter.

Syntax

Parts

Term Definition

genericmodifier Optional. Can be used only in generic interfaces and delegates. You can declare a type covariant by

using the Out keyword or contravariant by using the In keyword. See Covariance and

Contravariance (C# and Visual Basic).

typename Required. Name of the type parameter. This is a placeholder, to be replaced by a defined type

supplied by the corresponding type argument.

constraintlist Optional. List of requirements that constrain the data type that can be supplied for typename. If you

have multiple constraints, enclose them in curly braces ({ }) and separate them with commas. You

must introduce the constraint list with the As keyword. You use As only once, at the beginning of

the list.

Remarks
Every generic programming element must take at least one type parameter. A type parameter is a placeholder for a

specific type (a constructed element) that client code specifies when it creates an instance of the generic type. You can

define a generic class, structure, interface, procedure, or delegate.

For more information on when to define a generic type, see Generic Types in Visual Basic (Visual Basic). For more

information on type parameter names, see Declared Element Names (Visual Basic).

Visual Studio 2015

[genericmodifier] typename [As constraintlist]

Type List (Visual Basic) https://msdn.microsoft.com/en-us/library/t4xaz66w(d=printer).aspx

1 of 3 04.09.2016 1:32

Rules

Parentheses. If you supply a type parameter list, you must enclose it in parentheses, and you must introduce

the list with the Of keyword. You use Of only once, at the beginning of the list.

Constraints. A list of constraints on a type parameter can include the following items in any combination:

Any number of interfaces. The supplied type must implement every interface in this list.

At most one class. The supplied type must inherit from that class.

The New keyword. The supplied type must expose a parameterless constructor that your generic type

can access. This is useful if you constrain a type parameter by one or more interfaces. A type that

implements interfaces does not necessarily expose a constructor, and depending on the access level of a

constructor, the code within the generic type might not be able to access it.

Either the Class keyword or the Structure keyword. The Class keyword constrains a generic type

parameter to require that any type argument passed to it be a reference type, for example a string, array,

or delegate, or an object created from a class. The Structure keyword constrains a generic type

parameter to require that any type argument passed to it be a value type, for example a structure,

enumeration, or elementary data type. You cannot include both Class and Structure in the same

constraintlist.

The supplied type must satisfy every requirement you include in constraintlist.

Constraints on each type parameter are independent of constraints on other type parameters.

Behavior

Compile-Time Substitution. When you create a constructed type from a generic programming element, you

supply a defined type for each type parameter. The Visual Basic compiler substitutes that supplied type for every

occurrence of typename within the generic element.

Absence of Constraints. If you do not specify any constraints on a type parameter, your code is limited to the

operations and members supported by the Object Data Type for that type parameter.

Example
The following example shows a skeleton definition of a generic dictionary class, including a skeleton function to add a new

entry to the dictionary.

Public Class dictionary(Of entryType, keyType As {IComparable, IFormattable, New})

Public Sub add(ByVal et As entryType, ByVal kt As keyType)

Dim dk As keyType

If kt.CompareTo(dk) = 0 Then

VB

Type List (Visual Basic) https://msdn.microsoft.com/en-us/library/t4xaz66w(d=printer).aspx

2 of 3 04.09.2016 1:32

Example
Because dictionary is generic, the code that uses it can create a variety of objects from it, each having the same

functionality but acting on a different data type. The following example shows a line of code that creates a dictionary

object with String entries and Integer keys.

Example
The following example shows the equivalent skeleton definition generated by the preceding example.

See Also
Of Clause (Visual Basic)

New Operator (Visual Basic)

Access Levels in Visual Basic

Object Data Type

Function Statement (Visual Basic)

Structure Statement

Sub Statement (Visual Basic)

How to: Use a Generic Class (Visual Basic)

Covariance and Contravariance (C# and Visual Basic)

In (Generic Modifier) (Visual Basic)

Out (Generic Modifier) (Visual Basic)

© 2016 Microsoft

End If

End Sub

End Class

Dim dictInt As New dictionary(Of String, Integer)

Public Class dictionary

Public Sub add(ByVal et As String, ByVal kt As Integer)

Dim dk As Integer

If kt.CompareTo(dk) = 0 Then

End If

End Sub

End Class

VB

VB

Type List (Visual Basic) https://msdn.microsoft.com/en-us/library/t4xaz66w(d=printer).aspx

3 of 3 04.09.2016 1:32

Is Operator (Visual Basic)

Compares two object reference variables.

Syntax

Parts

result

Required. Any Boolean value.

object1

Required. Any Object name.

object2

Required. Any Object name.

Remarks
The Is operator determines if two object references refer to the same object. However, it does not perform value

comparisons. If object1 and object2 both refer to the exact same object instance, result is True; if they do not, result is

False.

Is can also be used with the TypeOf keyword to make a TypeOf...Is expression, which tests whether an object variable is

compatible with a data type.

Note

The Is keyword is also used in the Select...Case Statement (Visual Basic).

Example

Visual Studio 2015

result = object1 Is object2

Is Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/kb136x1y(d=printer).aspx

1 of 2 04.09.2016 11:44

The following example uses the Is operator to compare pairs of object references. The results are assigned to a Boolean

value representing whether the two objects are identical.

As the preceding example demonstrates, you can use the Is operator to test both early bound and late bound objects.

See Also
TypeOf Operator (Visual Basic)

IsNot Operator (Visual Basic)

Comparison Operators in Visual Basic

Operator Precedence in Visual Basic

Operators Listed by Functionality (Visual Basic)

Operators and Expressions in Visual Basic

© 2016 Microsoft

Dim myObject As New Object

Dim otherObject As New Object

Dim yourObject, thisObject, thatObject As Object

Dim myCheck As Boolean

yourObject = myObject

thisObject = myObject

thatObject = otherObject

' The following statement sets myCheck to True.

myCheck = yourObject Is thisObject

' The following statement sets myCheck to False.

myCheck = thatObject Is thisObject

' The following statement sets myCheck to False.

myCheck = myObject Is thatObject

thatObject = myObject

' The following statement sets myCheck to True.

myCheck = thisObject Is thatObject

VB

Is Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/kb136x1y(d=printer).aspx

2 of 2 04.09.2016 11:44

Of Clause (Visual Basic)

Introduces an Of clause, which identifies a type parameter on a generic class, structure, interface, delegate, or procedure. For

information on generic types, see Generic Types in Visual Basic (Visual Basic).

Using the Of Keyword
The following code example uses the Of keyword to define the outline of a class that takes two type parameters. It

constrains the keyType parameter by the IComparable interface, which means the consuming code must supply a type

argument that implements IComparable. This is necessary so that the add procedure can call the IComparable.CompareTo

method. For more information on constraints, see Type List (Visual Basic).

If you complete the preceding class definition, you can construct a variety of dictionary classes from it. The types you

supply to entryType and keyType determine what type of entry the class holds and what type of key it associates with

each entry. Because of the constraint, you must supply to keyType a type that implements IComparable.

The following code example creates an object that holds String entries and associates an Integer key with each one.

Integer implements IComparable and therefore satisfies the constraint on keyType.

The Of keyword can be used in these contexts:

Class Statement

Delegate Statement

Function Statement

Interface Statement

Visual Studio 2015

Public Class Dictionary(Of entryType, keyType As IComparable)

 Public Sub add(ByVal e As entryType, ByVal k As keyType)

 Dim dk As keyType

 If k.CompareTo(dk) = 0 Then

 End If

 End Sub

 Public Function find(ByVal k As keyType) As entryType

 End Function

End Class

Dim d As New dictionary(Of String, Integer)

Of Clause (Visual Basic) https://msdn.microsoft.com/en-us/library/067b2z78(d=printer).aspx

1 of 2 04.09.2016 1:23

Structure Statement

Sub Statement

See Also
IComparable

Type List (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

In (Generic Modifier) (Visual Basic)

Out (Generic Modifier) (Visual Basic)

© 2016 Microsoft

Of Clause (Visual Basic) https://msdn.microsoft.com/en-us/library/067b2z78(d=printer).aspx

2 of 2 04.09.2016 1:23

In (Generic Modifier) (Visual Basic)

For generic type parameters, the In keyword specifies that the type parameter is contravariant.

Remarks
Contravariance enables you to use a less derived type than that specified by the generic parameter. This allows for implicit

conversion of classes that implement variant interfaces and implicit conversion of delegate types.

For more information, see Covariance and Contravariance (C# and Visual Basic).

Rules

You can use the In keyword in generic interfaces and delegates.

A type parameter can be declared contravariant in a generic interface or delegate if it is used only as a type of method

arguments and not used as a method return type. ByRef parameters cannot be covariant or contravariant.

Covariance and contravariance are supported for reference types and not supported for value types.

In Visual Basic, you cannot declare events in contravariant interfaces without specifying the delegate type. Also,

contravariant interfaces cannot have nested classes, enums, or structures, but they can have nested interfaces.

Behavior

An interface that has a contravariant type parameter allows its methods to accept arguments of less derived types than

those specified by the interface type parameter. For example, because in .NET Framework 4, in the IComparer(Of T)

interface, type T is contravariant, you can assign an object of the IComparer(Of Person) type to an object of the

IComparer(Of Employee) type without using any special conversion methods if Person inherits Employee.

A contravariant delegate can be assigned another delegate of the same type, but with a less derived generic type

parameter.

Example
The following example shows how to declare, extend, and implement a contravariant generic interface. It also shows how

you can use implicit conversion for classes that implement this interface.

Visual Studio 2015

' Contravariant interface.

Interface IContravariant(Of In A)

VB

In (Generic Modifier) (Visual Basic) https://msdn.microsoft.com/en-us/library/dd469536(d=printer).aspx

1 of 3 04.09.2016 0:10

Example
The following example shows how to declare, instantiate, and invoke a contravariant generic delegate. It also shows how you

can implicitly convert a delegate type.

End Interface

' Extending contravariant interface.

Interface IExtContravariant(Of In A)

Inherits IContravariant(Of A)

End Interface

' Implementing contravariant interface.

Class Sample(Of A)

Implements IContravariant(Of A)

End Class

Sub Main()

Dim iobj As IContravariant(Of Object) = New Sample(Of Object)()

Dim istr As IContravariant(Of String) = New Sample(Of String)()

' You can assign iobj to istr, because

' the IContravariant interface is contravariant.

 istr = iobj

End Sub

VB

In (Generic Modifier) (Visual Basic) https://msdn.microsoft.com/en-us/library/dd469536(d=printer).aspx

2 of 3 04.09.2016 0:10

See Also
Variance in Generic Interfaces (C# and Visual Basic)

Out (Generic Modifier) (Visual Basic)

© 2016 Microsoft

' Contravariant delegate.

Public Delegate Sub DContravariant(Of In A)(ByVal argument As A)

' Methods that match the delegate signature.

Public Shared Sub SampleControl(ByVal control As Control)

End Sub

Public Shared Sub SampleButton(ByVal control As Button)

End Sub

Private Sub Test()

' Instantiating the delegates with the methods.

Dim dControl As DContravariant(Of Control) =

AddressOf SampleControl

Dim dButton As DContravariant(Of Button) =

AddressOf SampleButton

' You can assign dControl to dButton

' because the DContravariant delegate is contravariant.

 dButton = dControl

' Invoke the delegate.

 dButton(New Button())

End Sub

In (Generic Modifier) (Visual Basic) https://msdn.microsoft.com/en-us/library/dd469536(d=printer).aspx

3 of 3 04.09.2016 0:10

