
Visual Basic Language Reference 1

Keywords 3

Attributes 8

Constants and Enumerations 9

Directives 13

Modifiers 14

Async 16

Narrowing 19

Shadows 20

Unicode 22

Visual Basic Language Reference

This section provides reference information for various aspects of the Visual Basic language.

In This Section

Typographic and Code Conventions (Visual Basic)

Summarizes the way that keywords, placeholders, and other elements of the language are formatted in the Visual

Basic documentation.

Visual Basic Runtime Library Members

Lists the classes and modules of the Microsoft.VisualBasic namespace, with links to their member functions, methods,

properties, constants, and enumerations.

Keywords (Visual Basic)

Lists all Visual Basic keywords and provides links to more information.

Attributes (Visual Basic)

Documents the attributes available in Visual Basic.

Constants and Enumerations (Visual Basic)

Documents the constants and enumerations available in Visual Basic.

Data Type Summary (Visual Basic)

Documents the data types available in Visual Basic.

Directives (Visual Basic)

Documents the compiler directives available in Visual Basic.

Functions (Visual Basic)

Documents the run-time functions available in Visual Basic.

Modifiers (Visual Basic)

Lists the Visual Basic run-time modifiers and provides links to more information.

Modules (Visual Basic)

Documents the modules available in Visual Basic and their members.

Nothing (Visual Basic)

Describes the default value of any data type.

Objects (Visual Basic)

Documents the objects available in Visual Basic and their members.

Operators (Visual Basic)

Documents the operators available in Visual Basic.

Properties (Visual Basic)

Visual Studio 2015

Visual Basic Language Reference https://msdn.microsoft.com/en-us/library/sh9ywfdk(d=printer).aspx

1 of 2 03.09.2016 23:58

Documents the properties available in Visual Basic.

Queries (Visual Basic)

Provides reference information about using Language-Integrated Query (LINQ) expressions in your code.

Statements (Visual Basic)

Documents the declaration and executable statements available in Visual Basic.

Recommended XML Tags for Documentation Comments (Visual Basic)

Describes the documentation comments for which IntelliSense is provided in the Visual Basic Code Editor.

XML Axis Properties (Visual Basic)

Provides links to information about using XML axis properties to access XML directly in your code.

XML Literals (Visual Basic)

Provides links to information about using XML literals to incorporate XML directly in your code.

Error Messages (Visual Basic)

Provides a listing of Visual Basic compiler and run-time error messages and help on how to handle them.

Related Sections

Visual Basic

Provides comprehensive help on all areas of the Visual Basic language.

Visual Basic Command-Line Compiler

Describes how to use the command-line compiler as an alternative to compiling programs from within the Visual

Studio integrated development environment (IDE).

© 2016 Microsoft

Visual Basic Language Reference https://msdn.microsoft.com/en-us/library/sh9ywfdk(d=printer).aspx

2 of 2 03.09.2016 23:58

Keywords (Visual Basic)

The following tables list all Visual Basic language keywords.

Reserved Keywords
The following keywords are reserved, which means that you cannot use them as names for programming elements such as

variables or procedures. You can bypass this restriction by enclosing the name in brackets ([]). For more information, see

"Escaped Names" in Declared Element Names (Visual Basic).

Note

We do not recommend that you use escaped names, because it can make your code hard to read, and it can lead to

subtle errors that can be difficult to find.

AddHandler AddressOf Alias And

AndAlso As Boolean ByRef

Byte ByVal Call Case

Catch CBool CByte CChar

CDate CDbl CDec Char

CInt Class Constraint Class Statement CLng

CObj Const Continue CSByte

CShort CSng CStr CType

CUInt CULng CUShort Date

Decimal Declare Default Delegate

Dim DirectCast Do Double

Each Else ElseIf End Statement

End <keyword> EndIf Enum Erase

Visual Studio 2015

Keywords (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409611(d=printer).aspx

1 of 5 04.09.2016 0:00

Error Event Exit False

Finally For (in For…Next) For Each…Next Friend

Function Get GetType GetXMLNamespace

Global GoSub GoTo Handles

If If() Implements Implements Statement

Imports (.NET Namespace and Type) Imports (XML Namespace) In In (Generic Modifier)

Inherits Integer Interface Is

IsNot Let Lib Like

Long Loop Me Mod

Module Module Statement MustInherit MustOverride

MyBase MyClass Namespace Narrowing

New Constraint New Operator Next Next (in Resume)

Not Nothing NotInheritable NotOverridable

Object Of On Operator

Option Optional Or OrElse

Out (Generic Modifier) Overloads Overridable Overrides

ParamArray Partial Private Property

Protected Public RaiseEvent ReadOnly

ReDim REM RemoveHandler Resume

Return SByte Select Set

Shadows Shared Short Single

Static Step Stop String

Structure Constraint Structure Statement Sub SyncLock

Then Throw To True

Keywords (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409611(d=printer).aspx

2 of 5 04.09.2016 0:00

Try TryCast TypeOf…Is UInteger

ULong UShort Using Variant

Wend When While Widening

With WithEvents WriteOnly Xor

#Const #Else #ElseIf #End

#If = & &=

* *= / /=

\ \= ^ ^=

+ += - -=

>> Operator (Visual Basic) >>= Operator (Visual Basic) << <<=

Note

EndIf, GoSub, Variant, and Wend are retained as reserved keywords, although they are no longer used in Visual Basic.

The meaning of the Let keyword has changed. Let is now used in LINQ queries. For more information, see Let Clause

(Visual Basic).

Unreserved Keywords
The following keywords are not reserved, which means you can use them as names for your programming elements.

However, doing this is not recommended, because it can make your code hard to read and can lead to subtle errors that

can be difficult to find.

Aggregate Ansi Assembly Async

Auto Await Binary Compare

Custom Distinct Equals Explicit

From Group By Group Join Into

IsFalse IsTrue Iterator Join

Key (Visual Basic) Mid Off Order By

Keywords (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409611(d=printer).aspx

3 of 5 04.09.2016 0:00

Preserve Skip Skip While Strict

Take Take While Text Unicode

Until Where Yield #ExternalSource

#Region

Related Topics

Title Description

Arrays Summary (Visual

Basic)

Lists language elements that are used to create, define, and use arrays.

Collection Object

Summary (Visual Basic)

Lists language elements that are used for collections.

Compiler Directive

Summary (Visual Basic)

Lists directives that control compiler behavior.

Control Flow Summary

(Visual Basic)

Lists statements that are used for looping and controlling procedure flow.

Conversion Summary

(Visual Basic)

Lists functions that are used to convert numbers, dates, times, and strings.

Data Types Summary

(Visual Basic)

Lists data types. Also lists functions that are used to convert between data types and verify

data types.

Dates and Times

Summary (Visual Basic)

Lists language elements that are used for dates and times.

Declarations and

Constants Summary

(Visual Basic)

Lists statements that are used to declare variables, constants, classes, modules, and other

programming elements. Also lists language elements that are used to obtain object

information, handle events, and implement inheritance.

Directories and Files

Summary (Visual Basic)

Lists functions that are used to control the file system and to process files.

Errors Summary (Visual

Basic)

Lists language elements that are used to catch and return run-time error values.

Financial Summary

(Visual Basic)

Lists functions that are used to perform financial calculations.

Keywords (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409611(d=printer).aspx

4 of 5 04.09.2016 0:00

Input and Output

Summary (Visual Basic)

Lists functions that are used to read from and write to files, manage files, and print output.

Information and

Interaction Summary

(Visual Basic)

Lists functions that are used to run other programs, obtain command-line arguments,

manipulate COM objects, retrieve color information, and use control dialog boxes.

Math Summary (Visual

Basic)

Lists functions that are used to perform trigonometric and other mathematical

calculations.

My Reference (Visual

Basic)

Lists the objects contained in My, a feature that provides access to frequently used

methods, properties, and events of the computer on which the application is running, the

current application, the application's resources, the application's settings, and so on.

Operators Summary

(Visual Basic)

Lists assignment and comparison expressions and other operators.

Registry Summary (Visual

Basic)

Lists functions that are used to read, save, and delete program settings.

String Manipulation

Summary (Visual Basic)

Lists functions that are used to manipulate strings.

See Also
Visual Basic Runtime Library Members

© 2016 Microsoft

Keywords (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409611(d=printer).aspx

5 of 5 04.09.2016 0:00

Attributes (Visual Basic)

Visual Basic provides several attributes that allow objects interoperate with unmanaged code, and one attribute that enables

module members to be accessed without the module name. The following table lists the attributes used by Visual Basic.

ComClassAttribute Instructs the compiler to add metadata that allows a class to be exposed as a COM object.

HideModuleNameAttribute Allows the module members to be accessed using only the qualification needed for the

module.

VBFixedArrayAttribute Indicates that an array in a structure or non-local variable should be treated as a fixed-

length array.

VBFixedStringAttribute Indicates that a string should be treated as if it were fixed length.

See Also

Attributes (C# and Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Attributes (Visual Basic) https://msdn.microsoft.com/en-us/library/33f59sea(d=printer).aspx

1 of 1 04.09.2016 0:01

Constants and Enumerations (Visual Basic)

Visual Basic supplies a number of predefined constants and enumerations for developers. Constants store values that remain

constant throughout the execution of an application. Enumerations provide a convenient way to work with sets of related

constants, and to associate constant values with names.

Constants

Conditional Compilation Constants

The following table lists the predefined constants available for conditional compilation.

Constant Description

CONFIG A string that corresponds to the current setting of the Active Solution Configuration box in the

Configuration Manager.

DEBUG A Boolean value that can be set in the Project Properties dialog box. By default, the Debug

configuration for a project defines DEBUG. When DEBUG is defined, Debug class methods generate

output to the Output window. When it is not defined, Debug class methods are not compiled and no

Debug output is generated.

TARGET A string representing the output type for the project or the setting of the command-line /target

option. The possible values of TARGET are:

"winexe" for a Windows application.

"exe" for a console application.

"library" for a class library.

"module" for a module.

The /target option may be set in the Visual Studio integrated development environment. For

more information, see /target (Visual Basic).

TRACE A Boolean value that can be set in the Project Properties dialog box. By default, all configurations for

a project define TRACE. When TRACE is defined, Trace class methods generate output to the Output

window. When it is not defined, Trace class methods are not compiled and no Trace output is

generated.

VBC_VER A number representing the Visual Basic version, in major.minor format. The version number for Visual

Basic 2005 is 8.0.

Visual Studio 2015

Constants and Enumerations (Visual Basic) https://msdn.microsoft.com/en-us/library/dy7yth1w(d=printer).aspx

1 of 4 04.09.2016 0:02

Print and Display Constants

When you call print and display functions, you can use the following constants in your code in place of the actual

values.

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for calling external procedures.

vbObjectError Error number. User-defined error numbers should be greater than this value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

vbFormFeed Not used in Microsoft Windows.

vbVerticalTab Not useful in Microsoft Windows.

Enumerations
The following table lists and describes the enumerations provided by Visual Basic.

Enumeration Description

AppWinStyle Indicates the window style to use for the invoked program when calling the Shell function.

AudioPlayMode Indicates how to play sounds when calling audio methods.

BuiltInRole Indicates the type of role to check when calling the IsInRole method.

Constants and Enumerations (Visual Basic) https://msdn.microsoft.com/en-us/library/dy7yth1w(d=printer).aspx

2 of 4 04.09.2016 0:02

CallType Indicates the type of procedure being invoked when calling the CallByName function.

CompareMethod Indicates how to compare strings when calling comparison functions.

DateFormat Indicates how to display dates when calling the FormatDateTime function.

DateInterval Indicates how to determine and format date intervals when calling date-related functions.

DeleteDirectoryOption Specifies what should be done when a directory that is to be deleted contains files or

directories.

DueDate Indicates when payments are due when calling financial methods.

FieldType Indicates whether text fields are delimited or fixed-width.

FileAttribute Indicates the file attributes to use when calling file-access functions.

FirstDayOfWeek Indicates the first day of the week to use when calling date-related functions.

FirstWeekOfYear Indicates the first week of the year to use when calling date-related functions.

MsgBoxResult Indicates which button was pressed on a message box, returned by the MsgBox function.

MsgBoxStyle Indicates which buttons to display when calling the MsgBox function.

OpenAccess Indicates how to open a file when calling file-access functions.

OpenMode Indicates how to open a file when calling file-access functions.

OpenShare Indicates how to open a file when calling file-access functions.

RecycleOption Specifies whether a file should be deleted permanently or placed in the Recycle Bin.

SearchOption Specifies whether to search all or only top-level directories.

TriState Indicates a Boolean value or whether the default should be used when calling number-

formatting functions.

UICancelOption Specifies what should be done if the user clicks Cancel during an operation.

UIOption Specifies whether or not to show a progress dialog when copying, deleting, or moving files

or directories.

VariantType Indicates the type of a variant object, returned by the VarType function.

VbStrConv Indicates which type of conversion to perform when calling the StrConv function.

Constants and Enumerations (Visual Basic) https://msdn.microsoft.com/en-us/library/dy7yth1w(d=printer).aspx

3 of 4 04.09.2016 0:02

See Also
Visual Basic Language Reference

Visual Basic

Constants Overview (Visual Basic)

Enumerations Overview (Visual Basic)

© 2016 Microsoft

Constants and Enumerations (Visual Basic) https://msdn.microsoft.com/en-us/library/dy7yth1w(d=printer).aspx

4 of 4 04.09.2016 0:02

Directives (Visual Basic)

The topics in this section document the Visual Basic source code compiler directives.

In This Section

#Const Directive -- Define a compiler constant

#ExternalSource Directive -- Indicate a mapping between source lines and text external to the source

#If...Then...#Else Directives -- Compile selected blocks of code

#Region Directive -- Collapse and hide sections of code in the Visual Studio editor

#Disable, #Enable -- Disable and enable specific warnings for regions of code.

You can disable and enable a comma-separated list of warning codes too.

Related Sections

Visual Basic Language Reference

Visual Basic

© 2016 Microsoft

Visual Studio 2015

#Disable Warning BC42356 ' suppress warning about no awaits in this method

Async Function TestAsync() As Task

 Console.WriteLine("testing")

End Function

#Enable Warning BC42356

VB

Directives (Visual Basic) https://msdn.microsoft.com/en-us/library/7ah135z7(d=printer).aspx

1 of 1 04.09.2016 0:03

Modifiers (Visual Basic)

The topics in this section document Visual Basic run-time modifiers.

In This Section

Ansi (Visual Basic)

Assembly (Visual Basic)

Async (Visual Basic)

Auto (Visual Basic)

ByRef (Visual Basic)

ByVal (Visual Basic)

Default (Visual Basic)

Friend (Visual Basic)

In (Generic Modifier) (Visual Basic)

Iterator (Visual Basic)

Key (Visual Basic)

Module <keyword> (Visual Basic)

MustInherit (Visual Basic)

MustOverride (Visual Basic)

Narrowing (Visual Basic)

NotInheritable (Visual Basic)

NotOverridable (Visual Basic)

Optional (Visual Basic)

Out (Generic Modifier) (Visual Basic)

Overloads (Visual Basic)

Overridable (Visual Basic)

Overrides (Visual Basic)

Visual Studio 2015

Modifiers (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409559(d=printer).aspx

1 of 2 04.09.2016 0:09

ParamArray (Visual Basic)

Partial (Visual Basic)

Private (Visual Basic)

Protected (Visual Basic)

Public (Visual Basic)

ReadOnly (Visual Basic)

Shadows (Visual Basic)

Shared (Visual Basic)

Static (Visual Basic)

Unicode (Visual Basic)

Widening (Visual Basic)

WithEvents (Visual Basic)

WriteOnly (Visual Basic)

Related Sections

Visual Basic Language Reference

Visual Basic

© 2016 Microsoft

Modifiers (Visual Basic) https://msdn.microsoft.com/en-us/library/dd409559(d=printer).aspx

2 of 2 04.09.2016 0:09

Async (Visual Basic)

The Async modifier indicates that the method or lambda expression that it modifies is asynchronous. Such methods are

referred to as async methods.

An async method provides a convenient way to do potentially long-running work without blocking the caller's thread. The

caller of an async method can resume its work without waiting for the async method to finish.

Note

The Async and Await keywords were introduced in Visual Studio 2012. For an introduction to async programming, see

Asynchronous Programming with Async and Await (C# and Visual Basic).

The following example shows the structure of an async method. By convention, async method names end in "Async."

Typically, a method modified by the Async keyword contains at least one Await expression or statement. The method runs

synchronously until it reaches the first Await, at which point it suspends until the awaited task completes. In the meantime,

control is returned to the caller of the method. If the method doesn’t contain an Await expression or statement, the method

isn’t suspended and executes as a synchronous method does. A compiler warning alerts you to any async methods that

don't contain Await because that situation might indicate an error. For more information, see the compiler error.

The Async keyword is an unreserved keyword. It is a keyword when it modifies a method or a lambda expression. In all other

contexts, it is interpreted as an identifier.

Visual Studio 2015

Public Async Function ExampleMethodAsync() As Task(Of Integer)

' . . .

' At the Await expression, execution in this method is suspended and,

' if AwaitedProcessAsync has not already finished, control returns

' to the caller of ExampleMethodAsync. When the awaited task is

' completed, this method resumes execution.

Dim exampleInt As Integer = Await AwaitedProcessAsync()

' . . .

' The return statement completes the task. Any method that is

' awaiting ExampleMethodAsync can now get the integer result.

Return exampleInt

End Function

VB

Async (Visual Basic) https://msdn.microsoft.com/en-us/library/hh191564(d=printer).aspx

1 of 3 04.09.2016 0:14

Return Types
An async method is either a Sub procedure, or a Function procedure that has a return type of Task or Task(Of TResult).

The method cannot declare any ByRef parameters.

You specify Task(Of TResult) for the return type of an async method if the Return statement of the method has an

operand of type TResult. You use Task if no meaningful value is returned when the method is completed. That is, a call to

the method returns a Task, but when the Task is completed, any Await statement that's awaiting the Task doesn’t

produce a result value.

Async subroutines are used primarily to define event handlers where a Sub procedure is required. The caller of an async

subroutine can't await it and can't catch exceptions that the method throws.

For more information and examples, see Async Return Types (C# and Visual Basic).

Example
The following examples show an async event handler, an async lambda expression, and an async method. For a full example

that uses these elements, see Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic). You can

download the walkthrough code from Developer Code Samples.

' An event handler must be a Sub procedure.

Async Sub button1_Click(sender As Object, e As RoutedEventArgs) Handles button1.Click

 textBox1.Clear()

' SumPageSizesAsync is a method that returns a Task.

Await SumPageSizesAsync()

 textBox1.Text = vbCrLf & "Control returned to button1_Click."

End Sub

' The following async lambda expression creates an equivalent anonymous

' event handler.

AddHandler button1.Click, Async Sub(sender, e)

 textBox1.Clear()

' SumPageSizesAsync is a method that returns a Task.

Await SumPageSizesAsync()

 textBox1.Text = vbCrLf & "Control returned to

button1_Click."

End Sub

' The following async method returns a Task(Of T).

' A typical call awaits the Byte array result:

' Dim result As Byte() = Await GetURLContents("http://msdn.com")

Private Async Function GetURLContentsAsync(url As String) As Task(Of Byte())

' The downloaded resource ends up in the variable named content.

Dim content = New MemoryStream()

VB

Async (Visual Basic) https://msdn.microsoft.com/en-us/library/hh191564(d=printer).aspx

2 of 3 04.09.2016 0:14

See Also
AsyncStateMachineAttribute

Await Operator (Visual Basic)

Asynchronous Programming with Async and Await (C# and Visual Basic)

Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)

© 2016 Microsoft

' Initialize an HttpWebRequest for the current URL.

Dim webReq = CType(WebRequest.Create(url), HttpWebRequest)

' Send the request to the Internet resource and wait for

' the response.

Using response As WebResponse = Await webReq.GetResponseAsync()

' Get the data stream that is associated with the specified URL.

Using responseStream As Stream = response.GetResponseStream()

' Read the bytes in responseStream and copy them to content.

' CopyToAsync returns a Task, not a Task<T>.

Await responseStream.CopyToAsync(content)

End Using

End Using

' Return the result as a byte array.

Return content.ToArray()

End Function

Async (Visual Basic) https://msdn.microsoft.com/en-us/library/hh191564(d=printer).aspx

3 of 3 04.09.2016 0:14

Narrowing (Visual Basic)

Indicates that a conversion operator (CType) converts a class or structure to a type that might not be able to hold some of

the possible values of the original class or structure.

Converting with the Narrowing Keyword
The conversion procedure must specify Public Shared in addition to Narrowing.

Narrowing conversions do not always succeed at run time, and can fail or incur data loss. Examples are Long to Integer,

String to Date, and a base type to a derived type. This last conversion is narrowing because the base type might not

contain all the members of the derived type and thus is not an instance of the derived type.

If Option Strict is On, the consuming code must use CType for all narrowing conversions.

The Narrowing keyword can be used in this context:

Operator Statement

See Also
Operator Statement

Widening (Visual Basic)

Widening and Narrowing Conversions (Visual Basic)

How to: Define an Operator (Visual Basic)

CType Function (Visual Basic)

Option Strict Statement

© 2016 Microsoft

Visual Studio 2015

Narrowing (Visual Basic) https://msdn.microsoft.com/en-us/library/4w127ed2(d=printer).aspx

1 of 1 04.09.2016 0:18

Shadows (Visual Basic)

Specifies that a declared programming element redeclares and hides an identically named element, or set of overloaded

elements, in a base class.

Remarks

The main purpose of shadowing (which is also known as hiding by name) is to preserve the definition of your class

members. The base class might undergo a change that creates an element with the same name as one you have already

defined. If this happens, the Shadows modifier forces references through your class to be resolved to the member you

defined, instead of to the new base class element.

Both shadowing and overriding redefine an inherited element, but there are significant differences between the two

approaches. For more information, see Shadowing in Visual Basic.

Rules

Declaration Context. You can use Shadows only at class level. This means the declaration context for a

Shadows element must be a class, and cannot be a source file, namespace, interface, module, structure, or

procedure.

You can declare only one shadowing element in a single declaration statement.

Combined Modifiers. You cannot specify Shadows together with Overloads, Overrides, or Static in the same

declaration.

Element Types. You can shadow any kind of declared element with any other kind. If you shadow a property or

procedure with another property or procedure, the parameters and the return type do not have to match those

in the base class property or procedure.

Accessing. The shadowed element in the base class is normally unavailable from within the derived class that

shadows it. However, the following considerations apply.

If the shadowing element is not accessible from the code referring to it, the reference is resolved to the

shadowed element. For example, if a Private element shadows a base class element, code that does not

have permission to access the Private element accesses the base class element instead.

If you shadow an element, you can still access the shadowed element through an object declared with the

type of the base class. You can also access it through MyBase.

The Shadows modifier can be used in these contexts:

Class Statement

Const Statement

Visual Studio 2015

Shadows (Visual Basic) https://msdn.microsoft.com/en-us/library/1h3wytf6(d=printer).aspx

1 of 2 04.09.2016 0:20

Declare Statement

Delegate Statement

Dim Statement

Enum Statement

Event Statement

Function Statement

Interface Statement

Property Statement

Structure Statement

Sub Statement

See Also

Shared (Visual Basic)

Static (Visual Basic)

Private (Visual Basic)

Me, My, MyBase, and MyClass in Visual Basic

Inheritance Basics (Visual Basic)

MustOverride (Visual Basic)

NotOverridable (Visual Basic)

Overloads (Visual Basic)

Overridable (Visual Basic)

Overrides (Visual Basic)

Shadowing in Visual Basic

© 2016 Microsoft

Shadows (Visual Basic) https://msdn.microsoft.com/en-us/library/1h3wytf6(d=printer).aspx

2 of 2 04.09.2016 0:20

Unicode (Visual Basic)

Specifies that Visual Basic should marshal all strings to Unicode values regardless of the name of the external procedure

being declared.

When you call a procedure defined outside your project, the Visual Basic compiler does not have access to the information it

must have in order to call the procedure correctly. This information includes where the procedure is located, how it is

identified, its calling sequence and return type, and the string character set it uses. The Declare Statement creates a reference

to an external procedure and supplies this necessary information.

The charsetmodifier part in the Declare statement supplies the character set information to marshal strings during a call to

the external procedure. It also affects how Visual Basic searches the external file for the external procedure name. The

Unicode modifier specifies that Visual Basic should marshal all strings to Unicode values and should look up the procedure

without modifying its name during the search.

If no character set modifier is specified, Ansi is the default.

Remarks
The Unicode modifier can be used in this context:

Declare Statement

Smart Device Developer Notes
This keyword is not supported.

See Also
Ansi (Visual Basic)

Auto (Visual Basic)

Keywords (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Unicode (Visual Basic) https://msdn.microsoft.com/en-us/library/b4tf0yk2(d=printer).aspx

1 of 1 04.09.2016 0:20

