
Strings in Visual Basic

This section describes the basic concepts behind using strings in Visual Basic.

In This Section

Introduction to Strings in Visual Basic

Lists topics that describe the basic concepts behind using strings in Visual Basic.

How to: Create Strings Using a StringBuilder in Visual Basic

Demonstrates how to efficiently create a long string from many smaller strings.

How to: Search Within a String (Visual Basic)

Demonstrates how to determine the index of the first occurrence of a substring.

Converting Between Strings and Other Data Types in Visual Basic

Lists topics that describe how to convert strings into other data types.

Validating Strings in Visual Basic

Lists topics that discuss how to validate strings.

Walkthrough: Encrypting and Decrypting Strings in Visual Basic

Demonstrates how to encrypt and decrypt strings by using the cryptographic service provider version of the Triple

Data Encryption Standard algorithm.

See Also

Visual Basic Language Features

© 2016 Microsoft

Visual Studio 2015

Strings in Visual Basic https://msdn.microsoft.com/en-us/library/hzcd8ze0(d=printer).aspx

1 of 1 02.09.2016 22:53

Introduction to Strings in Visual Basic

This section describes the basic concepts behind using strings in Visual Basic.

In This Section

String Basics in Visual Basic

Introduces the basic concepts behind using strings and string variables.

Types of String Manipulation Methods in Visual Basic

Introduces several different ways to analyze and manipulate strings.

How Culture Affects Strings in Visual Basic

Discusses how Visual Basic uses culture information to perform string conversions and comparisons.

See Also

Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Introduction to Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms235293(d=printer).aspx

1 of 1 02.09.2016 22:54

String Basics in Visual Basic

The String data type represents a series of characters (each representing in turn an instance of the Char data type). This

topic introduces the basic concepts of strings in Visual Basic.

String Variables
An instance of a string can be assigned a literal value that represents a series of characters. For example:

A String variable can also accept any expression that evaluates to a string. Examples are shown below:

Any literal that is assigned to a String variable must be enclosed in quotation marks (""). This means that a quotation

mark within a string cannot be represented by a quotation mark. For example, the following code causes a compiler error:

This code causes an error because the compiler terminates the string after the second quotation mark, and the remainder

of the string is interpreted as code. To solve this problem, Visual Basic interprets two quotation marks in a string literal as

one quotation mark in the string. The following example demonstrates the correct way to include a quotation mark in a

string:

Visual Studio 2015

Dim MyString As String

MyString = "This is an example of the String data type"

Dim OneString As String

Dim TwoString As String

OneString = "one, two, three, four, five"

' Evaluates to "two".

TwoString = OneString.Substring(5, 3)

OneString = "1"

' Evaluates to "11".

TwoString = OneString & "1"

Dim myString As String

' This line would cause an error.

' myString = "He said, "Look at this example!""

' The value of myString is: He said, "Look at this example!"

VB

VB

VB

VB

String Basics in Visual Basic https://msdn.microsoft.com/en-us/library/ms234766(d=printer).aspx

1 of 3 02.09.2016 22:54

In the preceding example, the two quotation marks preceding the word Look become one quotation mark in the string.

The three quotation marks at the end of the line represent one quotation mark in the string and the string termination

character.

String literals can contain multiple lines:

The resulting string contains newline sequences that you used in your string literal (vbcr, vbcrlf, etc.). You no longer need

to use the old workaround:

Characters in Strings
A string can be thought of as a series of Char values, and the String type has built-in functions that allow you to perform

many manipulations on a string that resemble the manipulations allowed by arrays. Like all array in .NET Framework, these

are zero-based arrays. You may refer to a specific character in a string through the Chars property, which provides a way

to access a character by the position in which it appears in the string. For example:

In the above example, the Chars property of the string returns the fourth character in the string, which is D, and assigns it

to myChar. You can also get the length of a particular string through the Length property. If you need to perform

multiple array-type manipulations on a string, you can convert it to an array of Char instances using the ToCharArray

function of the string. For example:

myString = "He said, ""Look at this example!"""

Dim x = "hello

world"

Dim x = <xml><![CDATA[Hello

World]]></xml>.Value

Dim myString As String = "ABCDE"

Dim myChar As Char

' The value of myChar is "D".

myChar = myString.Chars(3)

Dim myString As String = "abcdefghijklmnop"

Dim myArray As Char() = myString.ToCharArray

VB

VB

VB

VB

String Basics in Visual Basic https://msdn.microsoft.com/en-us/library/ms234766(d=printer).aspx

2 of 3 02.09.2016 22:54

The variable myArray now contains an array of Char values, each representing a character from myString.

The Immutability of Strings
A string is immutable, which means its value cannot be changed once it has been created. However, this does not prevent

you from assigning more than one value to a string variable. Consider the following example:

Here, a string variable is created, given a value, and then its value is changed.

More specifically, in the first line, an instance of type String is created and given the value This string is immutable.

In the second line of the example, a new instance is created and given the value Or is it?, and the string variable

discards its reference to the first instance and stores a reference to the new instance.

Unlike other intrinsic data types, String is a reference type. When a variable of reference type is passed as an argument to

a function or subroutine, a reference to the memory address where the data is stored is passed instead of the actual value

of the string. So in the previous example, the name of the variable remains the same, but it points to a new and different

instance of the String class, which holds the new value.

See Also
Introduction to Strings in Visual Basic

String Data Type (Visual Basic)

Char Data Type (Visual Basic)

Basic String Operations in the .NET Framework

© 2016 Microsoft

Dim myString As String = "This string is immutable"

myString = "Or is it?"

VB

String Basics in Visual Basic https://msdn.microsoft.com/en-us/library/ms234766(d=printer).aspx

3 of 3 02.09.2016 22:54

Types of String Manipulation Methods in
Visual Basic

There are several different ways to analyze and manipulate your strings. Some of the methods are a part of the Visual Basic

language, and others are inherent in the String class.

Visual Basic Language and the .NET Framework
Visual Basic methods are used as inherent functions of the language. They may be used without qualification in your code.

The following example shows typical use of a Visual Basic string-manipulation command:

In this example, the Mid function performs a direct operation on aString and assigns the value to bString.

For a list of Visual Basic string manipulation methods, see String Manipulation Summary (Visual Basic).

Shared Methods and Instance Methods

You can also manipulate strings with the methods of the String class. There are two types of methods in String: shared

methods and instance methods.

Shared Methods

A shared method is a method that stems from the String class itself and does not require an instance of that class to

work. These methods can be qualified with the name of the class (String) rather than with an instance of the String

class. For example:

In the preceding example, the String.Copy method is a static method, which acts upon an expression it is given and

assigns the resulting value to bString.

Instance Methods

Visual Studio 2015

Dim aString As String = "SomeString"

Dim bString As String

' Assign "meS" to bString.

bString = Mid(aString, 3, 3)

Dim aString As String = String.Copy("A literal string")

VB

VB

Types of String Manipulation Methods in Visual Basic https://msdn.microsoft.com/en-us/library/ms235223(d=printer).aspx

1 of 2 02.09.2016 22:55

Instance methods, by contrast, stem from a particular instance of String and must be qualified with the instance

name. For example:

In this example, the String.Substring method is a method of the instance of String (that is, aString). It performs an

operation on aString and assigns that value to bString.

For more information, see the documentation for the String class.

See Also
Introduction to Strings in Visual Basic

© 2016 Microsoft

Dim aString As String = "A String"

Dim bString As String

' Assign "String" to bString.

bString = aString.Substring(2, 6)

VB

Types of String Manipulation Methods in Visual Basic https://msdn.microsoft.com/en-us/library/ms235223(d=printer).aspx

2 of 2 02.09.2016 22:55

How Culture Affects Strings in Visual Basic

This Help page discusses how Visual Basic uses culture information to perform string conversions and comparisons.

When to Use Culture-Specific Strings
Typically, you should use culture-specific strings for all data presented to and read from users, and use culture-invariant

strings for your application's internal data.

For example, if your application asks users to enter a date as a string, it should expect users to format the strings

according to their culture, and the application should convert the string appropriately. If your application then presents

that date in its user interface, it should present it in the user's culture.

However, if the application uploads the date to a central server, it should format the string according to one specific

culture, to prevent confusion between potentially different date formats.

Culture-Sensitive Functions
All of the Visual Basic string-conversion functions (except for the Str and Val functions) use the application's culture

information to make sure that the conversions and comparisons are appropriate for the culture of the application's user.

The key to successfully using string-conversion functions in applications that run on computers with different culture

settings is to understand which functions use a specific culture setting, and which use the current culture setting. Notice

that the application's culture settings are, by default, inherited from the culture settings of the operating system. For more

information, see Asc, AscW, Chr, ChrW, Format, Hex, Oct, and Type Conversion Functions (Visual Basic).

The Str (converts numbers to strings) and Val (converts strings to numbers) functions do not use the application's culture

information when converting between strings and numbers. Instead, they recognize only the period (.) as a valid decimal

separator. The culturally-aware analogues of these functions are:

Conversions that use the current culture. The CStr and Format functions convert a number to a string, and the

CDbl and CInt functions convert a string to a number.

Conversions that use a specific culture. Each number object has a ToString(IFormatProvider) method that

converts a number to a string, and a Parse(String, IFormatProvider) method that converts a string to a

number. For example, the Double type provides the ToString(IFormatProvider) and Parse(String, IFormatProvider)

methods.

For more information, see Str and Val.

Using a Specific Culture

Visual Studio 2015

How Culture Affects Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms235309(d=printer).aspx

1 of 4 02.09.2016 22:56

Imagine that you are developing an application that sends a date (formatted as a string) to a Web service. In this case,

your application must use a specific culture for the string conversion. To illustrate why, consider the result of using the

date's ToString() method: If your application uses that method to format the date July 4, 2005, it returns "7/4/2005

12:00:00 AM" when run with the United States English (en-US) culture, but it returns "04.07.2005 00:00:00" when run with

the German (de-DE) culture.

When you need to perform a string conversion in a specific culture format, you should use the CultureInfo class that is

built into the .NET Framework. You can create a new CultureInfo object for a specific culture by passing the culture's

name to the CultureInfo constructor. The supported culture names are listed in the CultureInfo class Help page.

Alternatively, you can get an instance of the invariant culture from the CultureInfo.InvariantCulture property. The invariant

culture is based on the English culture, but there are some differences. For example, the invariant culture specifies a

24-hour clock instead of a 12-hour clock.

To convert a date to the culture's string, pass the CultureInfo object to the date object's ToString(IFormatProvider)

method. For example, the following code displays "07/04/2005 00:00:00", regardless of the application's culture settings.

Note

Date literals are always interpreted according to the English culture.

Comparing Strings
There are two important situations where string comparisons are needed:

Sorting data for display to the user. Use operations based on the current culture so the strings sort

appropriately.

Determining if two application-internal strings exactly match (typically for security purposes). Use

operations that disregard the current culture.

You can perform both types of comparisons with the Visual Basic StrComp function. Specify the optional Compare

argument to control the type of comparison: Text for most input and output Binary for determining exact matches.

The StrComp function returns an integer that indicates the relationship between the two compared strings based on the

sorting order. A positive value for the result indicates that the first string is greater than the second string. A negative

result indicates the first string is smaller, and zero indicates equality between the strings.

Dim d As Date = #7/4/2005#

MsgBox(d.ToString(System.Globalization.CultureInfo.InvariantCulture))

' Defines variables.

Dim TestStr1 As String = "ABCD"

Dim TestStr2 As String = "abcd"

VB

VB

How Culture Affects Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms235309(d=printer).aspx

2 of 4 02.09.2016 22:56

You can also use the .NET Framework partner of the StrComp function, the String.Compare method. This is a static,

overloaded method of the base string class. The following example illustrates how this method is used:

For finer control over how the comparisons are performed, you can use additional overloads of the Compare method.

With the String.Compare method, you can use the comparisonType argument to specify which type of comparison to use.

Value for comparisonType

argument

Type of comparison When to use

Ordinal Comparison based on strings' component

bytes.

Use this value when comparing:

case-sensitive identifiers, security-

related settings, or other

non-linguistic identifiers where the

bytes must match exactly.

OrdinalIgnoreCase Comparison based on strings' component

bytes.

OrdinalIgnoreCase uses the invariant

culture information to determine when

two characters differ only in capitalization.

Use this value when comparing:

case-insensitive identifiers, security-

related settings, and data stored in

Windows.

CurrentCulture or

CurrentCultureIgnoreCase

Comparison based on the strings'

interpretation in the current culture.

Use these values when comparing:

data that is displayed to the user,

most user input, and other data that

requires linguistic interpretation.

InvariantCulture or

InvariantCultureIgnoreCase

Comparison based on the strings'

interpretation in the invariant culture.

This is different than the Ordinal and

OrdinalIgnoreCase, because the invariant

culture treats characters outside its

accepted range as equivalent invariant

Use these values only when

comparing persisting data or

displaying linguistically-relevant

data that requires a fixed sort order.

Dim TestComp As Integer

' The two strings sort equally. Returns 0.

TestComp = StrComp(TestStr1, TestStr2, CompareMethod.Text)

' TestStr1 sorts before TestStr2. Returns ‐1.

TestComp = StrComp(TestStr1, TestStr2, CompareMethod.Binary)

' TestStr2 sorts after TestStr1. Returns 1.

TestComp = StrComp(TestStr2, TestStr1, CompareMethod.Binary)

Dim myString As String = "Alphabetical"

Dim secondString As String = "Order"

Dim result As Integer

result = String.Compare(myString, secondString)

VB

How Culture Affects Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms235309(d=printer).aspx

3 of 4 02.09.2016 22:56

characters.

Security Considerations

If your application makes security decisions based on the result of a comparison or case-change operation, then the

operation should use the String.Compare method, and pass Ordinal or OrdinalIgnoreCase for the comparisonType

argument.

See Also
CultureInfo

Introduction to Strings in Visual Basic

Type Conversion Functions (Visual Basic)

© 2016 Microsoft

How Culture Affects Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms235309(d=printer).aspx

4 of 4 02.09.2016 22:56

Nothing and Strings in Visual Basic

The Visual Basic runtime and the .NET Framework evaluate Nothing differently when it comes to strings.

Visual Basic Runtime and the .NET Framework

Consider the following example:

The Visual Basic runtime usually evaluates Nothing as an empty string (""). The .NET Framework does not, however, and

throws an exception whenever an attempt is made to perform a string operation on Nothing.

See Also

Introduction to Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Dim MyString As String = "This is my string"

Dim stringLength As Integer

' Explicitly set the string to Nothing.

MyString = Nothing

' stringLength = 0

stringLength = Len(MyString)

' This line, however, causes an exception to be thrown.

stringLength = MyString.Length

VB

Nothing and Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms233957(d=printer).aspx

1 of 1 02.09.2016 22:57

Zero-based vs. One-based String Access in
Visual Basic

This topic compares how Visual Basic and the .NET Framework provide access to the characters in a string. The .NET

Framework always provides zero-based access to the characters in a string, whereas Visual Basic provides zero-based and

one-based access, depending on the function.

One-Based

For an example of a one-based Visual Basic function, consider the Mid function. It takes an argument that indicates the

character position at which the substring will start, starting with position 1. The .NET Framework String.Substring method

takes an index of the character in the string at which the substring is to start, starting with position 0. Thus, if you have a

string "ABCDE", the individual characters are numbered 1,2,3,4,5 for use with the Mid function, but 0,1,2,3,4 for use with

the String.Substring method.

Zero-Based

For an example of a zero-based Visual Basic function, consider the Split function. It splits a string and returns an array

containing the substrings. The .NET Framework String.Split method also splits a string and returns an array containing the

substrings. Because the Split function and Split method return .NET Framework arrays, they must be zero-based.

See Also

Mid

Split

Substring

Split

Introduction to Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Zero-based vs. One-based String Access in Visual Basic https://msdn.microsoft.com/en-us/library/ms233801(d=printer).aspx

1 of 1 02.09.2016 22:58

How to: Create Strings Using a StringBuilder
in Visual Basic

This example constructs a long string from many smaller strings using the StringBuilder class. The StringBuilder class is more

efficient than the &= operator for concatenating many strings.

Example
The following example creates an instance of the StringBuilder class, appends 1,000 strings to that instance, and then returns

its string representation.

See Also
Using the StringBuilder Class in the .NET Framework

&= Operator (Visual Basic)

Strings in Visual Basic

Creating New Strings in the .NET Framework

Manipulating Strings in the .NET Framework

Strings Sample

© 2016 Microsoft

Visual Studio 2015

Private Function StringBuilderTest() As String

Dim builder As New System.Text.StringBuilder

For i As Integer = 1 To 1000

 builder.Append("Step " & i & vbCrLf)

Next

Return builder.ToString

End Function

VB

How to: Create Strings Using a StringBuilder in Visual Basic https://msdn.microsoft.com/en-us/library/ms172824(d=printer).aspx

1 of 1 02.09.2016 22:59

How to: Search Within a String (Visual Basic)

This example calls the IndexOf method on a String object to report the index of the first occurrence of a substring.

Example

Compiling the Code
This example requires:

An Imports statement specifying the System namespace. For more information, see Imports Statement (.NET

Namespace and Type).

Robust Programming
The IndexOf method reports the location of the first character of the first occurrence of the substring. The index is 0-based,

which means the first character of a string has an index of 0.

If IndexOf does not find the substring, it returns -1.

The IndexOf method is case-sensitive and uses the current culture.

For optimal error control, you might want to enclose the string search in the Try block of a Try...Catch...Finally Statement

(Visual Basic) construction.

See Also
IndexOf

Try...Catch...Finally Statement (Visual Basic)

Introduction to Strings in Visual Basic

Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Dim SearchWithinThis As String = "ABCDEFGHIJKLMNOP"

Dim SearchForThis As String = "DEF"

Dim FirstCharacter As Integer = SearchWithinThis.IndexOf(SearchForThis)

VB

How to: Search Within a String (Visual Basic) https://msdn.microsoft.com/en-us/library/2y7ddk24(d=printer).aspx

1 of 1 02.09.2016 22:59

Converting Between Strings and Other Data
Types in Visual Basic

This section describes how to convert strings into other data types.

In This Section

How to: Convert an Array of Bytes into a String in Visual Basic

How to convert the bytes from a byte array into a string.

How to: Convert Strings into an Array of Bytes in Visual Basic

How to convert a string into an array of bytes.

How to: Create a String from An Array of Char Values (Visual Basic)

How to create the string "abcd" from individual characters.

How to: Convert Hexadecimal Strings to Numbers (Visual Basic)

How to convert a hexadecimal string into an integer.

© 2016 Microsoft

Visual Studio 2015

Converting Between Strings and Other Data Types in Visual Basic https://msdn.microsoft.com/en-us/library/ms172826(d=printer).aspx

1 of 1 02.09.2016 23:00

How to: Convert an Array of Bytes into a
String in Visual Basic

This topic shows how to convert the bytes from a byte array into a string.

Example
This example uses the GetString method of the Encoding.Unicode encoding class to convert all the bytes from a byte array

into a string.

You can choose from several encoding options to convert a byte array into a string:

Encoding.ASCII: Gets an encoding for the ASCII (7-bit) character set.

Encoding.BigEndianUnicode: Gets an encoding for the UTF-16 format using the big-endian byte order.

Encoding.Default: Gets an encoding for the system's current ANSI code page.

Encoding.Unicode: Gets an encoding for the UTF-16 format using the little-endian byte order.

Encoding.UTF32: Gets an encoding for the UTF-32 format using the little-endian byte order.

Encoding.UTF7: Gets an encoding for the UTF-7 format.

Encoding.UTF8: Gets an encoding for the UTF-8 format.

See Also
System.Text.Encoding

GetString

How to: Convert Strings into an Array of Bytes in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Private Function UnicodeBytesToString(

ByVal bytes() As Byte) As String

Return System.Text.Encoding.Unicode.GetString(bytes)

End Function

VB

How to: Convert an Array of Bytes into a String in Visual Basic https://msdn.microsoft.com/en-us/library/ms172827(d=printer).aspx

1 of 1 02.09.2016 23:01

How to: Convert Strings into an Array of
Bytes in Visual Basic

This topic shows how to convert a string into an array of bytes.

Example
This example uses the GetBytes method of the Encoding.Unicode encoding class to convert a string into an array of bytes.

You can choose from several encoding options to convert a string into a byte array:

Encoding.ASCII: Gets an encoding for the ASCII (7-bit) character set.

Encoding.BigEndianUnicode: Gets an encoding for the UTF-16 format using the big-endian byte order.

Encoding.Default: Gets an encoding for the system's current ANSI code page.

Encoding.Unicode: Gets an encoding for the UTF-16 format using the little-endian byte order.

Encoding.UTF32: Gets an encoding for the UTF-32 format using the little-endian byte order.

Encoding.UTF7: Gets an encoding for the UTF-7 format.

Encoding.UTF8: Gets an encoding for the UTF-8 format.

See Also
System.Text.Encoding

GetBytes

How to: Convert an Array of Bytes into a String in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Private Function UnicodeStringToBytes(

ByVal str As String) As Byte()

Return System.Text.Encoding.Unicode.GetBytes(str)

End Function

VB

How to: Convert Strings into an Array of Bytes in Visual Basic https://msdn.microsoft.com/en-us/library/ms172828(d=printer).aspx

1 of 1 02.09.2016 23:01

How to: Create a String from An Array of
Char Values (Visual Basic)

This example creates the string "abcd" from individual characters.

Example

Compiling the Code
This method has no special requirements.

The syntax "a"c, where a single c follows a single character in quotation marks, is used to create a character literal.

Robust Programming
Null characters (equivalent to Chr(0)) in the string lead to unexpected results when using the string. The null character will

be included with the string, but characters following the null character will not be displayed in some situations.

See Also
String

Char Data Type (Visual Basic)

Data Types in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Private Sub MakeStringFromCharacters()

Dim characters() As Char = {"a"c, "b"c, "c"c, "d"c}

Dim alphabet As New String(characters)

End Sub

VB

How to: Create a String from An Array of Char Values (Visual Basic) https://msdn.microsoft.com/en-us/library/x5wsx87h(d=printer).aspx

1 of 1 02.09.2016 23:02

How to: Convert Hexadecimal Strings to
Numbers (Visual Basic)

This example converts a hexadecimal string to an integer using the ToInt32 method.

To convert a hexadecimal string to a number

Use the ToInt32 method to convert the number expressed in base-16 to an integer.

The first argument of the ToInt32 method is the string to convert. The second argument describes what base the

number is expressed in; hexadecimal is base 16.

See Also
Hex

ToInt32

© 2016 Microsoft

Visual Studio 2015

' Assign the value 49153 to i.

Dim i As Integer = Convert.ToInt32("c001", 16)

VB

How to: Convert Hexadecimal Strings to Numbers (Visual Basic) https://msdn.microsoft.com/en-us/library/f1cbtwff(d=printer).aspx

1 of 1 02.09.2016 23:02

Conversion.Hex Method (Object)

Returns a string representing the hexadecimal value of a number.

Namespace: Microsoft.VisualBasic

Assembly: Microsoft.VisualBasic (in Microsoft.VisualBasic.dll)

Syntax

Parameters

Number

Type: System.Object

Required. Any valid numeric expression or String expression.

Return Value

Type: System.String

Returns a string representing the hexadecimal value of a number.

Exceptions

Exception Condition

ArgumentNullException Number is not specified.

ArgumentException Number is not a numeric type.

Remarks
If Number is not already a whole number, it is rounded to the nearest whole number before being evaluated.

.NET Framework (current version)

Public Shared Function Hex (

Number As Object

) As String

VB

Conversion.Hex Method (Object) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/zzceehw2(d=printer).aspx

1 of 2 02.09.2016 23:03

If Number is Hex returns

Empty Zero (0)

Any numeric value Up to sixteen hexadecimal characters

You can represent hexadecimal numbers directly by preceding numbers in the proper range with &H. For example, &H10

represents decimal 16 in hexadecimal notation.

Examples
This example uses the Hex function to return the hexadecimal value of a number.

Version Information
.NET Framework

Available since 1.1

Silverlight

Available since 2.0

See Also
Oct

ArgumentNullException

Hex Overload

Conversion Class

Microsoft.VisualBasic Namespace

Type Conversion Functions (Visual Basic)

How to: Convert Hexadecimal Strings to Numbers (Visual Basic)

Return to top

© 2016 Microsoft

Dim TestHex As String

' Returns 5.

TestHex = Hex(5)

' Returns A.

TestHex = Hex(10)

' Returns 1CB.

TestHex = Hex(459)

VB

Conversion.Hex Method (Object) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/zzceehw2(d=printer).aspx

2 of 2 02.09.2016 23:03

Convert.ToInt32 Method (String, Int32)

Converts the string representation of a number in a specified base to an equivalent 32-bit signed integer.

Namespace: System

Assembly: mscorlib (in mscorlib.dll)

Syntax

Parameters

value

Type: System.String

A string that contains the number to convert.

fromBase

Type: System.Int32

The base of the number in value, which must be 2, 8, 10, or 16.

Return Value

Type: System.Int32

A 32-bit signed integer that is equivalent to the number in value, or 0 (zero) if value is null.

Exceptions

Exception Condition

ArgumentException fromBase is not 2, 8, 10, or 16.

-or-

value, which represents a non-base 10 signed number, is prefixed with a negative

sign.

.NET Framework (current version)

Public Shared Function ToInt32 (

value As String,

fromBase As Integer

) As Integer

VB

Convert.ToInt32 Method (String, Int32) (System) https://msdn.microsoft.com/en-us/library/1k20k614(d=printer).aspx

1 of 3 02.09.2016 23:03

ArgumentOutOfRangeException value is String.Empty.

FormatException value contains a character that is not a valid digit in the base specified by fromBase.

The exception message indicates that there are no digits to convert if the first

character in value is invalid; otherwise, the message indicates that value contains

invalid trailing characters.

OverflowException value, which represents a non-base 10 signed number, is prefixed with a negative

sign.

-or-

value represents a number that is less than Int32.MinValue or greater than

Int32.MaxValue.

Remarks
If fromBase is 16, you can prefix the number specified by the value parameter with "0x" or "0X".

Because the negative sign is not supported for non-base 10 numeric representations, the ToInt32(String, Int32) method

assumes that negative numbers use two’s complement representation. In other words, the method always interprets the

highest-order binary bit of an integer (bit 31) as its sign bit. As a result, it is possible to write code in which a non-base 10

number that is out of the range of the Int32 data type is converted to an Int32 value without the method throwing an

exception. The following example increments Int32.MaxValue by one, converts the resulting number to its hexadecimal

string representation, and then calls the ToInt32(String, Int32) method. Instead of throwing an exception, the method

displays the message, "0x80000000 converts to -2147483648."

When performing binary operations or numeric conversions, it is always the responsibility of the developer to verify that

a method is using the appropriate numeric representation to interpret a particular value. As the following example

illustrates, you can ensure that the method handles overflows appropriately by first retrieving the sign of the numeric

value before converting it to its hexadecimal string representation. Throw an exception if the original value was positive

but the conversion back to an integer yields a negative value.

' Create a hexadecimal value out of range of the Integer type.

Dim value As String = Convert.ToString(CLng(Integer.MaxValue) + 1, 16)

' Convert it back to a number.

Try

Dim number As Integer = Convert.ToInt32(value, 16)

 Console.WriteLine("0x{0} converts to {1}.", value, number)

Catch e As OverflowException

 Console.WriteLine("Unable to convert '0x{0}' to an integer.", value)

End Try

' Create a hexadecimal value out of range of the Integer type.

Dim sourceNumber As Long = CLng(Integer.MaxValue) + 1

VB

VB

Convert.ToInt32 Method (String, Int32) (System) https://msdn.microsoft.com/en-us/library/1k20k614(d=printer).aspx

2 of 3 02.09.2016 23:03

Version Information
Universal Windows Platform

Available since 8

.NET Framework

Available since 1.1

Portable Class Library

Supported in: portable .NET platforms

Silverlight

Available since 2.0

Windows Phone Silverlight

Available since 7.0

Windows Phone

Available since 8.1

See Also
ToInt32 Overload

Convert Class

System Namespace

Return to top

© 2016 Microsoft

Dim isNegative As Boolean = (Math.Sign(sourceNumber) = ‐1)

Dim value As String = Convert.ToString(sourceNumber, 16)

Dim targetNumber As Integer

Try

 targetNumber = Convert.ToInt32(value, 16)

If Not isNegative And ((targetNumber And &H80000000) <> 0) Then

Throw New OverflowException()

Else

 Console.WriteLine("0x{0} converts to {1}.", value, targetNumber)

End If

Catch e As OverflowException

 Console.WriteLine("Unable to convert '0x{0}' to an integer.", value)

End Try

' Displays the following to the console:

' Unable to convert '0x80000000' to an integer.

Convert.ToInt32 Method (String, Int32) (System) https://msdn.microsoft.com/en-us/library/1k20k614(d=printer).aspx

3 of 3 02.09.2016 23:03

How to: Convert a String to an Array of
Characters in Visual Basic

Sometimes it is useful to have data about the characters in your string and the positions of those characters within your

string, such as when you are parsing a string. This example shows how you can get an array of the characters in a string by

calling the string's ToCharArray method.

Example
This example demonstrates how to split a string into a Char array, and how to split a string into a String array of its Unicode

text characters. The reason for this distinction is that Unicode text characters can be composed of two or more Char

characters (such as a surrogate pair or a combining character sequence). For more information, see TextElementEnumerator

and "The Unicode Standard" at http://www.unicode.org.

Example
It is more difficult to split a string into its Unicode text characters, but this is necessary if you need information about the

visual representation of a string. This example uses the SubstringByTextElements method to get information about the

Unicode text characters that make up a string.

Visual Studio 2015

Dim testString1 As String = "ABC"

' Create an array containing "A", "B", and "C".

Dim charArray() As Char = testString1.ToCharArray

' This string is made up of a surrogate pair (high surrogate

' U+D800 and low surrogate U+DC00) and a combining character

' sequence (the letter "a" with the combining grave accent).

Dim testString2 As String = ChrW(&HD800) & ChrW(&HDC00) & "a" & ChrW(&H300)

' Create and initialize a StringInfo object for the string.

Dim si As New System.Globalization.StringInfo(testString2)

' Create and populate the array.

Dim unicodeTestArray(si.LengthInTextElements) As String

For i As Integer = 0 To si.LengthInTextElements ‐ 1

 unicodeTestArray(i) = si.SubstringByTextElements(i, 1)

Next

VB

VB

How to: Convert a String to an Array of Characters in Visual Basic https://msdn.microsoft.com/en-us/library/ms233830(d=printer).aspx

1 of 2 02.09.2016 23:05

See Also
Chars

System.Globalization.StringInfo

How to: Access Characters in Strings in Visual Basic

Converting Between Strings and Other Data Types in Visual Basic

Strings in Visual Basic

© 2016 Microsoft

How to: Convert a String to an Array of Characters in Visual Basic https://msdn.microsoft.com/en-us/library/ms233830(d=printer).aspx

2 of 2 02.09.2016 23:05

How to: Access Characters in Strings in Visual
Basic

This example demonstrates how to use the Chars property to access the character at the specified location in a string.

Example
Sometimes it is useful to have data about the characters in your string and the positions of those characters within your

string. You can think of a string as an array of characters (Char instances); you can retrieve a particular character by

referencing the index of that character through the Chars property.

The index parameter of the Chars property is zero-based.

Robust Programming
The Chars property returns the character at the specified position. However, some Unicode characters can be represented by

more than one character. For more information on how to work with Unicode characters, see How to: Convert a String to an

Array of Characters in Visual Basic.

The Chars property throws an IndexOutOfRangeException exception if the index parameter is greater than or equal to the

length of the string, or if it is less than zero

See Also
Chars

How to: Convert a String to an Array of Characters in Visual Basic

Converting Between Strings and Other Data Types in Visual Basic

Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Dim myString As String = "ABCDE"

Dim myChar As Char

' Assign "D" to myChar.

myChar = myString.Chars(3)

VB

How to: Access Characters in Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms233783(d=printer).aspx

1 of 1 02.09.2016 23:05

Validating Strings in Visual Basic

This section discusses how to validate strings in Visual Basic.

In This Section

How to: Validate File Names and Paths in Visual Basic

How to determine whether a string represents a file name or path.

How to: Validate Strings That Represent Dates or Times (Visual Basic)

How to determine whether a string represents a valid date.

Using Regular Expressions with the MaskedTextBox Control in Visual Basic

Demonstrates how to convert simple regular expressions to work with the MaskedTextBox control.

Walkthrough: Validating That Passwords Are Complex (Visual Basic)

How to determine whether a string has the characteristics of a strong password.

See Also

Strings in Visual Basic

MaskedTextBox Control (Windows Forms)

© 2016 Microsoft

Visual Studio 2015

Validating Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms172833(d=printer).aspx

1 of 1 02.09.2016 23:06

How to: Validate File Names and Paths in
Visual Basic

This example returns a Boolean value that indicates whether a string represents a file name or path. The validation checks if

the name contains characters that are not allowed by the file system.

Example

This example does not check if the name has incorrectly placed colons, or directories with no name, or if the length of the

name exceeds the system-defined maximum length. It also does not check if the application has permission to access the

file-system resource with the specified name.

See Also
GetInvalidPathChars

Validating Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Function IsValidFileNameOrPath(ByVal name As String) As Boolean

' Determines if the name is Nothing.

If name Is Nothing Then

Return False

End If

' Determines if there are bad characters in the name.

For Each badChar As Char In System.IO.Path.GetInvalidPathChars

If InStr(name, badChar) > 0 Then

Return False

End If

Next

' The name passes basic validation.

Return True

End Function

VB

How to: Validate File Names and Paths in Visual Basic https://msdn.microsoft.com/en-us/library/ms172834(d=printer).aspx

1 of 1 02.09.2016 23:06

How to: Validate Strings That Represent
Dates or Times (Visual Basic)

The following code example sets a Boolean value that indicates whether a string represents a valid date or time.

Example

Compiling the Code
Replace ("01/01/03") and "9:30 PM" with the date and time you want to validate. You can replace the string with another

hard-coded string, with a String variable, or with a method that returns a string, such as InputBox.

Robust Programming
Use this method to validate the string before trying to convert the String to a DateTime variable. By checking the date or

time first, you can avoid generating an exception at run time.

See Also
IsDate

InputBox

Validating Strings in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Dim isValidDate As Boolean = IsDate("01/01/03")

Dim isValidTime As Boolean = IsDate("9:30 PM")

VB

How to: Validate Strings That Represent Dates or Times (Visual Basic) https://msdn.microsoft.com/en-us/library/0fc6h92a(d=printer).aspx

1 of 1 02.09.2016 23:07

Using Regular Expressions with the
MaskedTextBox Control in Visual Basic

This example demonstrates how to convert simple regular expressions to work with the MaskedTextBox control.

Description of the Masking Language
The standard MaskedTextBox masking language is based on the one used by the Masked Edit control in Visual Basic 6.0

and should be familiar to users migrating from that platform.

The Mask property of the MaskedTextBox control specifies what input mask to use. The mask must be a string composed

of one or more of the masking elements from the following table.

Masking

element
Description

Regular expression

element

0 Any single digit between 0 and 9. Entry required. \d

9 Digit or space. Entry optional. [\d]?

Digit or space. Entry optional. If this position is left blank in the mask, it

will be rendered as a space. Plus (+) and minus (-) signs are allowed.

[\d+-]?

L ASCII letter. Entry required. [a-zA-Z]

? ASCII letter. Entry optional. [a-zA-Z]?

& Character. Entry required. [\p{Ll}\p{Lu}\p{Lt}

\p{Lm}\p{Lo}]

C Character. Entry optional. [\p{Ll}\p{Lu}\p{Lt}

\p{Lm}\p{Lo}]?

A Alphanumeric. Entry optional. \W

. Culture-appropriate decimal placeholder. Not available.

, Culture-appropriate thousands placeholder. Not available.

: Culture-appropriate time separator. Not available.

Visual Studio 2015

Using Regular Expressions with the MaskedTextBox Control in Visual Basic https://msdn.microsoft.com/en-us/library/ms234064(d=printer).aspx

1 of 3 02.09.2016 23:08

/ Culture-appropriate date separator. Not available.

$ Culture-appropriate currency symbol. Not available.

< Converts all characters that follow to lowercase. Not available.

> Converts all characters that follow to uppercase. Not available.

| Undoes a previous shift up or shift down. Not available.

\ Escapes a mask character, turning it into a literal. "\\" is the escape

sequence for a backslash.

\

All other

characters.

Literals. All non-mask elements will appear as themselves within

MaskedTextBox.

All other characters.

The decimal (.), thousandths (,), time (:), date (/), and currency ($) symbols default to displaying those symbols as defined

by the application's culture. You can force them to display symbols for another culture by using the FormatProvider

property.

Regular Expressions and Masks

Using Regular Expressions with the MaskedTextBox Control in Visual Basic https://msdn.microsoft.com/en-us/library/ms234064(d=printer).aspx

2 of 3 02.09.2016 23:08

Although you can use regular expressions and masks to validate user input, they are not completely equivalent. Regular

expressions can express more complex patterns than masks, but masks can express the same information more succinctly

and in a culturally relevant format.

The following table compares four regular expressions and the equivalent mask for each.

Regular Expression Mask Notes

\d{2}/\d{2}/\d{4} 00/00/0000 The / character in the mask is a logical date separator, and it will appear

to the user as the date separator appropriate to the application's current

culture.

\d{2}‐[A‐Z][a‐

z]{2}‐\d{4}

00‐>L<LL‐0000 A date (day, month abbreviation, and year) in United States format in

which the three-letter month abbreviation is displayed with an initial

uppercase letter followed by two lowercase letters.

(\(\d{3}

\)‐)?\d{3}‐d{4}

(999)‐

000‐0000

United States phone number, area code optional. If the user does not

wish to enter the optional characters, she can either enter spaces or place

the mouse pointer directly at the position in the mask represented by the

first 0.

$\d{6}.00 $999,999.00 A currency value in the range of 0 to 999999. The currency, thousandth,

and decimal characters will be replaced at run-time with their culture-

specific equivalents.

See Also
Mask

MaskedTextBox

Validating Strings in Visual Basic

MaskedTextBox Control (Windows Forms)

© 2016 Microsoft

Using Regular Expressions with the MaskedTextBox Control in Visual Basic https://msdn.microsoft.com/en-us/library/ms234064(d=printer).aspx

3 of 3 02.09.2016 23:08

Walkthrough: Validating That Passwords Are
Complex (Visual Basic)

This method checks for some strong-password characteristics and updates a string parameter with information about which

checks the password fails.

Passwords can be used in a secure system to authorize a user. However, the passwords must be difficult for unauthorized

users to guess. Attackers can use a dictionary attack program, which iterates through all of the words in a dictionary (or

multiple dictionaries in different languages) and tests whether any of the words work as a user's password. Weak passwords

such as "Yankees" or "Mustang" can be guessed quickly. Stronger passwords, such as "?You'L1N3vaFiNdMeyeP@sSWerd!",

are much less likely to be guessed. A password-protected system should ensure that users choose strong passwords.

A strong password is complex (containing a mixture of uppercase, lowercase, numeric, and special characters) and is not a

word. This example demonstrates how to verify complexity.

Example

Code

Visual Studio 2015

''' <summary>Determines if a password is sufficiently complex.</summary>

''' <param name="pwd">Password to validate</param>

''' <param name="minLength">Minimum number of password characters.</param>

''' <param name="numUpper">Minimum number of uppercase characters.</param>

''' <param name="numLower">Minimum number of lowercase characters.</param>

''' <param name="numNumbers">Minimum number of numeric characters.</param>

''' <param name="numSpecial">Minimum number of special characters.</param>

''' <returns>True if the password is sufficiently complex.</returns>

Function ValidatePassword(ByVal pwd As String,

Optional ByVal minLength As Integer = 8,

Optional ByVal numUpper As Integer = 2,

Optional ByVal numLower As Integer = 2,

Optional ByVal numNumbers As Integer = 2,

Optional ByVal numSpecial As Integer = 2) As Boolean

' Replace [A‐Z] with \p{Lu}, to allow for Unicode uppercase letters.

Dim upper As New System.Text.RegularExpressions.Regex("[A‐Z]")

Dim lower As New System.Text.RegularExpressions.Regex("[a‐z]")

Dim number As New System.Text.RegularExpressions.Regex("[0‐9]")

' Special is "none of the above".

Dim special As New System.Text.RegularExpressions.Regex("[^a‐zA‐Z0‐9]")

' Check the length.

If Len(pwd) < minLength Then Return False

VB

Walkthrough: Validating That Passwords Are Complex (Visual Basic) https://msdn.microsoft.com/en-us/library/b05h65z0(d=printer).aspx

1 of 3 02.09.2016 23:08

Compiling the Code
Call this method by passing the string that contains that password.

This example requires:

Access to the members of the System.Text.RegularExpressions namespace. Add an Imports statement if you are

not fully qualifying member names in your code. For more information, see Imports Statement (.NET Namespace

and Type).

Security

' Check for minimum number of occurrences.

If upper.Matches(pwd).Count < numUpper Then Return False

If lower.Matches(pwd).Count < numLower Then Return False

If number.Matches(pwd).Count < numNumbers Then Return False

If special.Matches(pwd).Count < numSpecial Then Return False

' Passed all checks.

Return True

End Function

Sub TestValidatePassword()

Dim password As String = "Password"

' Demonstrate that "Password" is not complex.

 MsgBox(password & " is complex: " & ValidatePassword(password))

 password = "Z9f%a>2kQ"

' Demonstrate that "Z9f%a>2kQ" is not complex.

 MsgBox(password & " is complex: " & ValidatePassword(password))

End Sub

Walkthrough: Validating That Passwords Are Complex (Visual Basic) https://msdn.microsoft.com/en-us/library/b05h65z0(d=printer).aspx

2 of 3 02.09.2016 23:08

If you are moving the password across a network, you need to use a secure method for transferring data. For more

information, see ASP.NET Web Application Security.

You can improve the accuracy of the ValidatePassword function by adding additional complexity checks:

Compare the password and its substrings against the user's name, user identifier, and an application-defined

dictionary. In addition, treat visually similar characters as equivalent when performing the comparisons. For

example, treat the letters "l" and "e" as equivalent to the numerals "1" and "3".

If there is only one uppercase character, make sure it is not the password's first character.

Make sure that the last two characters of the password are letter characters.

Do not allow passwords in which all the symbols are entered from the keyboard's top row.

See Also
Regex

ASP.NET Web Application Security

© 2016 Microsoft

Walkthrough: Validating That Passwords Are Complex (Visual Basic) https://msdn.microsoft.com/en-us/library/b05h65z0(d=printer).aspx

3 of 3 02.09.2016 23:08

Walkthrough: Encrypting and Decrypting
Strings in Visual Basic

This walkthrough shows you how to use the DESCryptoServiceProvider class to encrypt and decrypt strings using the

cryptographic service provider (CSP) version of the Triple Data Encryption Standard (TripleDES) algorithm. The first step is to

create a simple wrapper class that encapsulates the 3DES algorithm and stores the encrypted data as a base-64 encoded

string. Then, that wrapper is used to securely store private user data in a publicly accessible text file.

You can use encryption to protect user secrets (for example, passwords) and to make credentials unreadable by

unauthorized users. This can protect an authorized user's identity from being stolen, which protects the user's assets and

provides non-repudiation. Encryption can also protect a user's data from being accessed by unauthorized users.

For more information, see Cryptographic Services.

 Security Note

The Rijndael (now referred to as Advanced Encryption Standard [AES]) and Triple Data Encryption Standard (3DES)

algorithms provide greater security than DES because they are more computationally intensive. For more information,

see DES and Rijndael.

To create the encryption wrapper

Create the Simple3Des class to encapsulate the encryption and decryption methods.1.

Add an import of the cryptography namespace to the start of the file that contains the Simple3Des class.2.

In the Simple3Des class, add a private field to store the 3DES cryptographic service provider.3.

Visual Studio 2015

Public NotInheritable Class Simple3Des

End Class

Imports System.Security.Cryptography

Private TripleDes As New TripleDESCryptoServiceProvider

VB

VB

VB

Walkthrough: Encrypting and Decrypting Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms172831(d=printer).aspx

1 of 4 02.09.2016 23:09

Add a private method that creates a byte array of a specified length from the hash of the specified key.4.

Add a constructor to initialize the 3DES cryptographic service provider.

The key parameter controls the EncryptData and DecryptData methods.

5.

Add a public method that encrypts a string.6.

Private Function TruncateHash(

ByVal key As String,

ByVal length As Integer) As Byte()

Dim sha1 As New SHA1CryptoServiceProvider

' Hash the key.

Dim keyBytes() As Byte =

 System.Text.Encoding.Unicode.GetBytes(key)

Dim hash() As Byte = sha1.ComputeHash(keyBytes)

' Truncate or pad the hash.

ReDim Preserve hash(length ‐ 1)

Return hash

End Function

Sub New(ByVal key As String)

' Initialize the crypto provider.

 TripleDes.Key = TruncateHash(key, TripleDes.KeySize \ 8)

 TripleDes.IV = TruncateHash("", TripleDes.BlockSize \ 8)

End Sub

Public Function EncryptData(

ByVal plaintext As String) As String

' Convert the plaintext string to a byte array.

Dim plaintextBytes() As Byte =

 System.Text.Encoding.Unicode.GetBytes(plaintext)

' Create the stream.

Dim ms As New System.IO.MemoryStream

' Create the encoder to write to the stream.

Dim encStream As New CryptoStream(ms,

 TripleDes.CreateEncryptor(),

 System.Security.Cryptography.CryptoStreamMode.Write)

' Use the crypto stream to write the byte array to the stream.

 encStream.Write(plaintextBytes, 0, plaintextBytes.Length)

VB

VB

VB

Walkthrough: Encrypting and Decrypting Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms172831(d=printer).aspx

2 of 4 02.09.2016 23:09

Add a public method that decrypts a string.

The wrapper class can now be used to protect user assets. In this example, it is used to securely store private user data

in a publicly accessible text file.

7.

To test the encryption wrapper

In a separate class, add a method that uses the wrapper's EncryptData method to encrypt a string and write it to the

user's My Documents folder.

1.

 encStream.FlushFinalBlock()

' Convert the encrypted stream to a printable string.

Return Convert.ToBase64String(ms.ToArray)

End Function

Public Function DecryptData(

ByVal encryptedtext As String) As String

' Convert the encrypted text string to a byte array.

Dim encryptedBytes() As Byte = Convert.FromBase64String(encryptedtext)

' Create the stream.

Dim ms As New System.IO.MemoryStream

' Create the decoder to write to the stream.

Dim decStream As New CryptoStream(ms,

 TripleDes.CreateDecryptor(),

 System.Security.Cryptography.CryptoStreamMode.Write)

' Use the crypto stream to write the byte array to the stream.

 decStream.Write(encryptedBytes, 0, encryptedBytes.Length)

 decStream.FlushFinalBlock()

' Convert the plaintext stream to a string.

Return System.Text.Encoding.Unicode.GetString(ms.ToArray)

End Function

Sub TestEncoding()

Dim plainText As String = InputBox("Enter the plain text:")

Dim password As String = InputBox("Enter the password:")

Dim wrapper As New Simple3Des(password)

Dim cipherText As String = wrapper.EncryptData(plainText)

 MsgBox("The cipher text is: " & cipherText)

My.Computer.FileSystem.WriteAllText(

My.Computer.FileSystem.SpecialDirectories.MyDocuments &

VB

VB

Walkthrough: Encrypting and Decrypting Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms172831(d=printer).aspx

3 of 4 02.09.2016 23:09

Add a method that reads the encrypted string from the user's My Documents folder and decrypts the string with the

wrapper's DecryptData method.

2.

Add user interface code to call the TestEncoding and TestDecoding methods.3.

Run the application.

When you test the application, notice that it will not decrypt the data if you provide the wrong password.

4.

See Also
System.Security.Cryptography

DESCryptoServiceProvider

DES

TripleDES

Rijndael

Cryptographic Services

© 2016 Microsoft

"\cipherText.txt", cipherText, False)

End Sub

Sub TestDecoding()

Dim cipherText As String = My.Computer.FileSystem.ReadAllText(

My.Computer.FileSystem.SpecialDirectories.MyDocuments &

"\cipherText.txt")

Dim password As String = InputBox("Enter the password:")

Dim wrapper As New Simple3Des(password)

' DecryptData throws if the wrong password is used.

Try

Dim plainText As String = wrapper.DecryptData(cipherText)

 MsgBox("The plain text is: " & plainText)

Catch ex As System.Security.Cryptography.CryptographicException

 MsgBox("The data could not be decrypted with the password.")

End Try

End Sub

VB

Walkthrough: Encrypting and Decrypting Strings in Visual Basic https://msdn.microsoft.com/en-us/library/ms172831(d=printer).aspx

4 of 4 02.09.2016 23:09

Cryptographic Services

Public networks such as the Internet do not provide a means of secure communication between entities. Communication

over such networks is susceptible to being read or even modified by unauthorized third parties. Cryptography helps protect

data from being viewed, provides ways to detect whether data has been modified, and helps provide a secure means of

communication over otherwise nonsecure channels. For example, data can be encrypted by using a cryptographic algorithm,

transmitted in an encrypted state, and later decrypted by the intended party. If a third party intercepts the encrypted data, it

will be difficult to decipher.

In the .NET Framework, the classes in the System.Security.Cryptography namespace manage many details of cryptography

for you. Some are wrappers for the unmanaged Microsoft Cryptography API (CryptoAPI), while others are purely managed

implementations. You do not need to be an expert in cryptography to use these classes. When you create a new instance of

one of the encryption algorithm classes, keys are autogenerated for ease of use, and default properties are as safe and secure

as possible.

This overview provides a synopsis of the encryption methods and practices supported by the .NET Framework, including the

ClickOnce manifests, Suite B, and Cryptography Next Generation (CNG) support introduced in the .NET Framework 3.5.

This overview contains the following sections:

Cryptographic Primitives

Secret-Key Encryption

Public-Key Encryption

Digital Signatures

Hash Values

Random Number Generation

ClickOnce Manifests

Suite B Support

Related Topics

For additional information about cryptography and about Microsoft services, components, and tools that enable you to

add cryptographic security to your applications, see the Win32 and COM Development, Security section of this

documentation.

Cryptographic Primitives
In a typical situation where cryptography is used, two parties (Alice and Bob) communicate over a nonsecure channel.

Alice and Bob want to ensure that their communication remains incomprehensible by anyone who might be listening.

.NET Framework (current version)

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

1 of 9 02.09.2016 23:11

Furthermore, because Alice and Bob are in remote locations, Alice must make sure that the information she receives from

Bob has not been modified by anyone during transmission. In addition, she must make sure that the information really

does originate from Bob and not from someone who is impersonating Bob.

Cryptography is used to achieve the following goals:

Confidentiality: To help protect a user's identity or data from being read.

Data integrity: To help protect data from being changed.

Authentication: To ensure that data originates from a particular party.

Non-repudiation: To prevent a particular party from denying that they sent a message.

To achieve these goals, you can use a combination of algorithms and practices known as cryptographic primitives to

create a cryptographic scheme. The following table lists the cryptographic primitives and their uses.

Cryptographic primitive Use

Secret-key encryption

(symmetric cryptography)

Performs a transformation on data to keep it from being read by third parties. This

type of encryption uses a single shared, secret key to encrypt and decrypt data.

Public-key encryption

(asymmetric cryptography)

Performs a transformation on data to keep it from being read by third parties. This

type of encryption uses a public/private key pair to encrypt and decrypt data.

Cryptographic signing Helps verify that data originates from a specific party by creating a digital signature

that is unique to that party. This process also uses hash functions.

Cryptographic hashes Maps data from any length to a fixed-length byte sequence. Hashes are statistically

unique; a different two-byte sequence will not hash to the same value.

Back to top

Secret-Key Encryption
Secret-key encryption algorithms use a single secret key to encrypt and decrypt data. You must secure the key from

access by unauthorized agents, because any party that has the key can use it to decrypt your data or encrypt their own

data, claiming it originated from you.

Secret-key encryption is also referred to as symmetric encryption because the same key is used for encryption and

decryption. Secret-key encryption algorithms are very fast (compared with public-key algorithms) and are well suited for

performing cryptographic transformations on large streams of data. Asymmetric encryption algorithms such as RSA are

limited mathematically in how much data they can encrypt. Symmetric encryption algorithms do not generally have those

problems.

A type of secret-key algorithm called a block cipher is used to encrypt one block of data at a time. Block ciphers such as

Data Encryption Standard (DES), TripleDES, and Advanced Encryption Standard (AES) cryptographically transform an

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

2 of 9 02.09.2016 23:11

input block of n bytes into an output block of encrypted bytes. If you want to encrypt or decrypt a sequence of bytes, you

have to do it block by block. Because n is small (8 bytes for DES and TripleDES; 16 bytes [the default], 24 bytes, or 32

bytes for AES), data values that are larger than n have to be encrypted one block at a time. Data values that are smaller

than n have to be expanded to n in order to be processed.

One simple form of block cipher is called the electronic codebook (ECB) mode. ECB mode is not considered secure,

because it does not use an initialization vector to initialize the first plaintext block. For a given secret key k, a simple block

cipher that does not use an initialization vector will encrypt the same input block of plaintext into the same output block

of ciphertext. Therefore, if you have duplicate blocks in your input plaintext stream, you will have duplicate blocks in your

output ciphertext stream. These duplicate output blocks alert unauthorized users to the weak encryption used the

algorithms that might have been employed, and the possible modes of attack. The ECB cipher mode is therefore quite

vulnerable to analysis, and ultimately, key discovery.

The block cipher classes that are provided in the base class library use a default chaining mode called cipher-block

chaining (CBC), although you can change this default if you want.

CBC ciphers overcome the problems associated with ECB ciphers by using an initialization vector (IV) to encrypt the first

block of plaintext. Each subsequent block of plaintext undergoes a bitwise exclusive OR (XOR) operation with the

previous ciphertext block before it is encrypted. Each ciphertext block is therefore dependent on all previous blocks.

When this system is used, common message headers that might be known to an unauthorized user cannot be used to

reverse-engineer a key.

One way to compromise data that is encrypted with a CBC cipher is to perform an exhaustive search of every possible key.

Depending on the size of the key that is used to perform encryption, this kind of search is very time-consuming using

even the fastest computers and is therefore infeasible. Larger key sizes are more difficult to decipher. Although encryption

does not make it theoretically impossible for an adversary to retrieve the encrypted data, it does raise the cost of doing

this. If it takes three months to perform an exhaustive search to retrieve data that is meaningful only for a few days, the

exhaustive search method is impractical.

The disadvantage of secret-key encryption is that it presumes two parties have agreed on a key and IV, and

communicated their values. The IV is not considered a secret and can be transmitted in plaintext with the message.

However, the key must be kept secret from unauthorized users. Because of these problems, secret-key encryption is often

used together with public-key encryption to privately communicate the values of the key and IV.

Assuming that Alice and Bob are two parties who want to communicate over a nonsecure channel, they might use

secret-key encryption as follows: Alice and Bob agree to use one particular algorithm (AES, for example) with a particular

key and IV. Alice composes a message and creates a network stream (perhaps a named pipe or network e-mail) on which

to send the message. Next, she encrypts the text using the key and IV, and sends the encrypted message and IV to Bob

over the intranet. Bob receives the encrypted text and decrypts it by using the IV and previously agreed upon key. If the

transmission is intercepted, the interceptor cannot recover the original message, because he does not know the key. In

this scenario, only the key must remain secret. In a real world scenario, either Alice or Bob generates a secret key and uses

public-key (asymmetric) encryption to transfer the secret (symmetric) key to the other party. For more information about

public-key encryption, see the next section.

The .NET Framework provides the following classes that implement secret-key encryption algorithms:

AesManaged (introduced in the .NET Framework 3.5).

DESCryptoServiceProvider.

HMACSHA1 (This is technically a secret-key algorithm because it represents message authentication code that is

calculated by using a cryptographic hash function combined with a secret key. See Hash Values, later in this topic.)

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

3 of 9 02.09.2016 23:11

RC2CryptoServiceProvider.

RijndaelManaged.

TripleDESCryptoServiceProvider.

Back to top

Public-Key Encryption
Public-key encryption uses a private key that must be kept secret from unauthorized users and a public key that can be

made public to anyone. The public key and the private key are mathematically linked; data that is encrypted with the

public key can be decrypted only with the private key, and data that is signed with the private key can be verified only

with the public key. The public key can be made available to anyone; it is used for encrypting data to be sent to the

keeper of the private key. Public-key cryptographic algorithms are also known as asymmetric algorithms because one key

is required to encrypt data, and another key is required to decrypt data. A basic cryptographic rule prohibits key reuse,

and both keys should be unique for each communication session. However, in practice, asymmetric keys are generally

long-lived.

Two parties (Alice and Bob) might use public-key encryption as follows: First, Alice generates a public/private key pair. If

Bob wants to send Alice an encrypted message, he asks her for her public key. Alice sends Bob her public key over a

nonsecure network, and Bob uses this key to encrypt a message. Bob sends the encrypted message to Alice, and she

decrypts it by using her private key. If Bob received Alice's key over a nonsecure channel, such as a public network, Bob is

open to a man-in-the-middle attack. Therefore, Bob must verify with Alice that he has a correct copy of her public key.

During the transmission of Alice's public key, an unauthorized agent might intercept the key. Furthermore, the same

agent might intercept the encrypted message from Bob. However, the agent cannot decrypt the message with the public

key. The message can be decrypted only with Alice's private key, which has not been transmitted. Alice does not use her

private key to encrypt a reply message to Bob, because anyone with the public key could decrypt the message. If Alice

wants to send a message back to Bob, she asks Bob for his public key and encrypts her message using that public key. Bob

then decrypts the message using his associated private key.

In this scenario, Alice and Bob use public-key (asymmetric) encryption to transfer a secret (symmetric) key and use

secret-key encryption for the remainder of their session.

The following list offers comparisons between public-key and secret-key cryptographic algorithms:

Public-key cryptographic algorithms use a fixed buffer size, whereas secret-key cryptographic algorithms use a

variable-length buffer.

Public-key algorithms cannot be used to chain data together into streams the way secret-key algorithms can,

because only small amounts of data can be encrypted. Therefore, asymmetric operations do not use the same

streaming model as symmetric operations.

Public-key encryption has a much larger keyspace (range of possible values for the key) than secret-key encryption.

Therefore, public-key encryption is less susceptible to exhaustive attacks that try every possible key.

Public keys are easy to distribute because they do not have to be secured, provided that some way exists to verify

the identity of the sender.

Some public-key algorithms (such as RSA and DSA, but not Diffie-Hellman) can be used to create digital signatures

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

4 of 9 02.09.2016 23:11

to verify the identity of the sender of data.

Public-key algorithms are very slow compared with secret-key algorithms, and are not designed to encrypt large

amounts of data. Public-key algorithms are useful only for transferring very small amounts of data. Typically,

public-key encryption is used to encrypt a key and IV to be used by a secret-key algorithm. After the key and IV are

transferred, secret-key encryption is used for the remainder of the session.

The .NET Framework provides the following classes that implement public-key encryption algorithms:

DSACryptoServiceProvider

RSACryptoServiceProvider

ECDiffieHellman (base class)

ECDiffieHellmanCng

ECDiffieHellmanCngPublicKey (base class)

ECDiffieHellmanKeyDerivationFunction (base class)

ECDsaCng

RSA allows both encryption and signing, but DSA can be used only for signing, and Diffie-Hellman can be used only for

key generation. In general, public-key algorithms are more limited in their uses than private-key algorithms.

Back to top

Digital Signatures
Public-key algorithms can also be used to form digital signatures. Digital signatures authenticate the identity of a sender

(if you trust the sender's public key) and help protect the integrity of data. Using a public key generated by Alice, the

recipient of Alice's data can verify that Alice sent it by comparing the digital signature to Alice's data and Alice's public

key.

To use public-key cryptography to digitally sign a message, Alice first applies a hash algorithm to the message to create a

message digest. The message digest is a compact and unique representation of data. Alice then encrypts the message

digest with her private key to create her personal signature. Upon receiving the message and signature, Bob decrypts the

signature using Alice's public key to recover the message digest and hashes the message using the same hash algorithm

that Alice used. If the message digest that Bob computes exactly matches the message digest received from Alice, Bob is

assured that the message came from the possessor of the private key and that the data has not been modified. If Bob

trusts that Alice is the possessor of the private key, he knows that the message came from Alice.

Note

A signature can be verified by anyone because the sender's public key is common knowledge and is typically included

in the digital signature format. This method does not retain the secrecy of the message; for the message to be secret, it

must also be encrypted.

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

5 of 9 02.09.2016 23:11

The .NET Framework provides the following classes that implement digital signature algorithms:

DSACryptoServiceProvider

RSACryptoServiceProvider

ECDsa (base class)

ECDsaCng

Back to top

Hash Values
Hash algorithms map binary values of an arbitrary length to smaller binary values of a fixed length, known as hash values.

A hash value is a numerical representation of a piece of data. If you hash a paragraph of plaintext and change even one

letter of the paragraph, a subsequent hash will produce a different value. If the hash is cryptographically strong, its value

will change significantly. For example, if a single bit of a message is changed, a strong hash function may produce an

output that differs by 50 percent. Many input values may hash to the same output value. However, it is computationally

infeasible to find two distinct inputs that hash to the same value.

Two parties (Alice and Bob) could use a hash function to ensure message integrity. They would select a hash algorithm to

sign their messages. Alice would write a message, and then create a hash of that message by using the selected algorithm.

They would then follow one of the following methods:

Alice sends the plaintext message and the hashed message (digital signature) to Bob. Bob receives and hashes the

message and compares his hash value to the hash value that he received from Alice. If the hash values are identical,

the message was not altered. If the values are not identical, the message was altered after Alice wrote it.

Unfortunately, this method does not establish the authenticity of the sender. Anyone can impersonate Alice and

send a message to Bob. They can use the same hash algorithm to sign their message, and all Bob can determine is

that the message matches its signature. This is one form of a man-in-the-middle attack. See NIB: Cryptography

Next Generation (CNG) Secure Communication Example for more information.

Alice sends the plaintext message to Bob over a nonsecure public channel. She sends the hashed message to Bob

over a secure private channel. Bob receives the plaintext message, hashes it, and compares the hash to the privately

exchanged hash. If the hashes match, Bob knows two things:

The message was not altered.

The sender of the message (Alice) is authentic.

For this system to work, Alice must hide her original hash value from all parties except Bob.

Alice sends the plaintext message to Bob over a nonsecure public channel and places the hashed message on her

publicly viewable Web site.

This method prevents message tampering by preventing anyone from modifying the hash value. Although the

message and its hash can be read by anyone, the hash value can be changed only by Alice. An attacker who wants

to impersonate Alice would require access to Alice's Web site.

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

6 of 9 02.09.2016 23:11

None of the previous methods will prevent someone from reading Alice's messages, because they are transmitted in

plaintext. Full security typically requires digital signatures (message signing) and encryption.

The .NET Framework provides the following classes that implement hashing algorithms:

HMACSHA1.

MACTripleDES.

MD5CryptoServiceProvider.

RIPEMD160.

SHA1Managed.

SHA256Managed.

SHA384Managed.

SHA512Managed.

HMAC variants of all of the Secure Hash Algorithm (SHA), Message Digest 5 (MD5), and RIPEMD-160 algorithms.

CryptoServiceProvider implementations (managed code wrappers) of all the SHA algorithms.

Cryptography Next Generation (CNG) implementations of all the MD5 and SHA algorithms.

Note

MD5 design flaws were discovered in 1996, and SHA-1 was recommended instead. In 2004, additional flaws were

discovered, and the MD5 algorithm is no longer considered secure. The SHA-1 algorithm has also been found to be

insecure, and SHA-2 is now recommended instead.

Back to top

Random Number Generation
Random number generation is integral to many cryptographic operations. For example, cryptographic keys need to be as

random as possible so that it is infeasible to reproduce them. Cryptographic random number generators must generate

output that is computationally infeasible to predict with a probability that is better than one half. Therefore, any method

of predicting the next output bit must not perform better than random guessing. The classes in the .NET Framework use

random number generators to generate cryptographic keys.

The RNGCryptoServiceProvider class is an implementation of a random number generator algorithm.

Back to top

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

7 of 9 02.09.2016 23:11

ClickOnce Manifests
In the .NET Framework 3.5, the following cryptography classes let you obtain and verify information about manifest

signatures for applications that are deployed using ClickOnce technology:

The ManifestSignatureInformation class obtains information about a manifest signature when you use its

VerifySignature method overloads.

You can use the ManifestKinds enumeration to specify which manifests to verify. The result of the verification is one

of the SignatureVerificationResult enumeration values.

The ManifestSignatureInformationCollection class provides a read-only collection of ManifestSignatureInformation

objects of the verified signatures.

In addition, the following classes provide specific signature information:

StrongNameSignatureInformation holds the strong name signature information for a manifest.

AuthenticodeSignatureInformation represents the Authenticode signature information for a manifest.

TimestampInformation contains information about the time stamp on an Authenticode signature.

TrustStatus provides a simple way to check whether an Authenticode signature is trusted.

Back to top

Suite B Support
The .NET Framework 3.5 supports the Suite B set of cryptographic algorithms published by the National Security Agency

(NSA). For more information about Suite B, see the NSA Suite B Cryptography Fact Sheet.

The following algorithms are included:

Advanced Encryption Standard (AES) algorithm with key sizes of 128, 192, , and 256 bits for encryption.

Secure Hash Algorithms SHA-1, SHA-256, SHA-384, and SHA-512 for hashing. (The last three are generally

grouped together and referred to as SHA-2.)

Elliptic Curve Digital Signature Algorithm (ECDSA), using curves of 256-bit, 384-bit, and 521-bit prime moduli for

signing. The NSA documentation specifically defines these curves, and calls them P-256, P-384, and P-521. This

algorithm is provided by the ECDsaCng class. It enables you to sign with a private key and verify the signature with

a public key.

Elliptic Curve Diffie-Hellman (ECDH) algorithm, using curves of 256-bit, 384-bit, and 521-bit prime moduli for the

key exchange and secret agreement. This algorithm is provided by the ECDiffieHellmanCng class.

Managed code wrappers for the Federal Information Processing Standard (FIPS) certified implementations of the AES,

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

8 of 9 02.09.2016 23:11

SHA-256, SHA-384, and SHA-512 implementations are available in the new AesCryptoServiceProvider,

SHA256CryptoServiceProvider, SHA384CryptoServiceProvider, and SHA512CryptoServiceProvider classes.

Back to top

Cryptography Next Generation (CNG) Classes
The Cryptography Next Generation (CNG) classes provide a managed wrapper around the native CNG functions. (CNG is

the replacement for CryptoAPI.) These classes have "Cng" as part of their names. Central to the CNG wrapper classes is the

CngKey key container class, which abstracts the storage and use of CNG keys. This class lets you store a key pair or a

public key securely and refer to it by using a simple string name. The elliptic curve-based ECDsaCng signature class and

the ECDiffieHellmanCng encryption class can use CngKey objects.

The CngKey class is used for a variety of additional operations, including opening, creating, deleting, and exporting keys.

It also provides access to the underlying key handle to use when calling native functions directly.

The .NET Framework 3.5 also includes a variety of supporting CNG classes, such as the following:

CngProvider maintains a key storage provider.

CngAlgorithm maintains a CNG algorithm.

CngProperty maintains frequently used key properties.

Back to top

Related Topics

Title Description

.NET Framework Cryptography

Model

Describes how cryptography is implemented in the base class library.

Walkthrough: Creating a

Cryptographic Application

Demonstrates basic encryption and decryption tasks.

Configuring Cryptography Classes Describes how to map algorithm names to cryptographic classes and map

object identifiers to a cryptographic algorithm.

© 2016 Microsoft

Cryptographic Services https://msdn.microsoft.com/en-us/library/92f9ye3s(d=printer).aspx

9 of 9 02.09.2016 23:11

