
Extension Methods (Visual Basic)

Extension methods enable developers to add custom functionality to data types that are already defined without creating a

new derived type. Extension methods make it possible to write a method that can be called as if it were an instance method

of the existing type.

Remarks
An extension method can be only a Sub procedure or a Function procedure. You cannot define an extension property,

field, or event. All extension methods must be marked with the extension attribute <Extension()> from the

System.Runtime.CompilerServices namespace.

The first parameter in an extension method definition specifies which data type the method extends. When the method is

run, the first parameter is bound to the instance of the data type that invokes the method.

Example

Description

The following example defines a Print extension to the String data type. The method uses Console.WriteLine to

display a string. The parameter of the Print method, aString, establishes that the method extends the String class.

Notice that the extension method definition is marked with the extension attribute <Extension()>. Marking the

module in which the method is defined is optional, but each extension method must be marked.

System.Runtime.CompilerServices must be imported in order to access the extension attribute.

Extension methods can be declared only within modules. Typically, the module in which an extension method is defined

is not the same module as the one in which it is called. Instead, the module that contains the extension method is

imported, if it needs to be, to bring it into scope. After the module that contains Print is in scope, the method can be

Visual Studio 2015

Imports System.Runtime.CompilerServices

Module StringExtensions

 <Extension()>

Public Sub Print(ByVal aString As String)

 Console.WriteLine(aString)

End Sub

End Module

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

1 of 8 02.09.2016 22:33

called as if it were an ordinary instance method that takes no arguments, such as ToUpper:

The next example, PrintAndPunctuate, is also an extension to String, this time defined with two parameters. The first

parameter, aString, establishes that the extension method extends String. The second parameter, punc, is intended to

be a string of punctuation marks that is passed in as an argument when the method is called. The method displays the

string followed by the punctuation marks.

The method is called by sending in a string argument for punc: example.PrintAndPunctuate(".")

The following example shows Print and PrintAndPunctuate defined and called. System.Runtime.CompilerServices is

imported in the definition module in order to enable access to the extension attribute.

Code

Module Class1

Sub Main()

Dim example As String = "Hello"

' Call to extension method Print.

 example.Print()

' Call to instance method ToUpper.

 example.ToUpper()

 example.ToUpper.Print()

End Sub

End Module

<Extension()>

Public Sub PrintAndPunctuate(ByVal aString As String,

ByVal punc As String)

 Console.WriteLine(aString & punc)

End Sub

Imports System.Runtime.CompilerServices

Module StringExtensions

 <Extension()>

Public Sub Print(ByVal aString As String)

 Console.WriteLine(aString)

End Sub

VB

VB

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

2 of 8 02.09.2016 22:33

Next, the extension methods are brought into scope and called.

Comments

All that is required to be able to run these or similar extension methods is that they be in scope. If the module that

contains an extension method is in scope, it is visible in IntelliSense and can be called as if it were an ordinary instance

method.

Notice that when the methods are invoked, no argument is sent in for the first parameter. Parameter aString in the

previous method definitions is bound to example, the instance of String that calls them. The compiler will use example

as the argument sent to the first parameter.

If an extension method is called for an object that is set to Nothing, the extension method executes. This does not

apply to ordinary instance methods. You can explicitly check for Nothing in the extension method.

Types That Can Be Extended
You can define an extension method on most types that can be represented in a Visual Basic parameter list, including the

following:

 <Extension()>

Public Sub PrintAndPunctuate(ByVal aString As String,

ByVal punc As String)

 Console.WriteLine(aString & punc)

End Sub

End Module

Imports ConsoleApplication2.StringExtensions

Module Module1

Sub Main()

Dim example As String = "Example string"

 example.Print()

 example = "Hello"

 example.PrintAndPunctuate(".")

 example.PrintAndPunctuate("!!!!")

End Sub

End Module

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

3 of 8 02.09.2016 22:33

Classes (reference types)

Structures (value types)

Interfaces

Delegates

ByRef and ByVal arguments

Generic method parameters

Arrays

Because the first parameter specifies the data type that the extension method extends, it is required and cannot be

optional. For that reason, Optional parameters and ParamArray parameters cannot be the first parameter in the

parameter list.

Extension methods are not considered in late binding. In the following example, the statement anObject.PrintMe()

raises a MissingMemberException exception, the same exception you would see if the second PrintMe extension method

definition were deleted.

Option Strict Off

Imports System.Runtime.CompilerServices

Module Module4

Sub Main()

Dim aString As String = "Initial value for aString"

 aString.PrintMe()

Dim anObject As Object = "Initial value for anObject"

' The following statement causes a run‐time error when Option

' Strict is off, and a compiler error when Option Strict is on.

'anObject.PrintMe()

End Sub

 <Extension()>

Public Sub PrintMe(ByVal str As String)

 Console.WriteLine(str)

End Sub

 <Extension()>

Public Sub PrintMe(ByVal obj As Object)

 Console.WriteLine(obj)

End Sub

End Module

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

4 of 8 02.09.2016 22:33

Best Practices
Extension methods provide a convenient and powerful way to extend an existing type. However, to use them successfully,

there are some points to consider. These considerations apply mainly to authors of class libraries, but they might affect

any application that uses extension methods.

Most generally, extension methods that you add to types that you do not own are more vulnerable than extension

methods added to types that you control. A number of things can occur in classes you do not own that can interfere with

your extension methods.

If any accessible instance member exists that has a signature that is compatible with the arguments in the calling

statement, with no narrowing conversions required from argument to parameter, the instance method will be used

in preference to any extension method. Therefore, if an appropriate instance method is added to a class at some

point, an existing extension member that you rely on may become inaccessible.

The author of an extension method cannot prevent other programmers from writing conflicting extension

methods that may have precedence over the original extension.

You can improve robustness by putting extension methods in their own namespace. Consumers of your library can

then include a namespace or exclude it, or select among namespaces, separately from the rest of the library.

It may be safer to extend interfaces than it is to extend classes, especially if you do not own the interface or class. A

change in an interface affects every class that implements it. Therefore, the author may be less likely to add or

change methods in an interface. However, if a class implements two interfaces that have extension methods with

the same signature, neither extension method is visible.

Extend the most specific type you can. In a hierarchy of types, if you select a type from which many other types are

derived, there are layers of possibilities for the introduction of instance methods or other extension methods that

might interfere with yours.

Extension Methods, Instance Methods, and Properties
When an in-scope instance method has a signature that is compatible with the arguments of a calling statement, the

instance method is chosen in preference to any extension method. The instance method has precedence even if the

extension method is a better match. In the following example, ExampleClass contains an instance method named

ExampleMethod that has one parameter of type Integer. Extension method ExampleMethod extends ExampleClass, and

has one parameter of type Long.

Class ExampleClass

' Define an instance method named ExampleMethod.

Public Sub ExampleMethod(ByVal m As Integer)

 Console.WriteLine("Instance method")

End Sub

End Class

<Extension()>

Sub ExampleMethod(ByVal ec As ExampleClass,

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

5 of 8 02.09.2016 22:33

The first call to ExampleMethod in the following code calls the extension method, because arg1 is Long and is

compatible only with the Long parameter in the extension method. The second call to ExampleMethod has an Integer

argument, arg2, and it calls the instance method.

Now reverse the data types of the parameters in the two methods:

This time the code in Main calls the instance method both times. This is because both arg1 and arg2 have a widening

conversion to Long, and the instance method takes precedence over the extension method in both cases.

ByVal n As Long)

 Console.WriteLine("Extension method")

End Sub

Sub Main()

Dim example As New ExampleClass

Dim arg1 As Long = 10

Dim arg2 As Integer = 5

' The following statement calls the extension method.

 example.exampleMethod(arg1)

' The following statement calls the instance method.

 example.exampleMethod(arg2)

End Sub

Class ExampleClass

' Define an instance method named ExampleMethod.

Public Sub ExampleMethod(ByVal m As Long)

 Console.WriteLine("Instance method")

End Sub

End Class

<Extension()>

Sub ExampleMethod(ByVal ec As ExampleClass,

ByVal n As Integer)

 Console.WriteLine("Extension method")

End Sub

Sub Main()

Dim example As New ExampleClass

Dim arg1 As Long = 10

Dim arg2 As Integer = 5

' The following statement calls the instance method.

 example.ExampleMethod(arg1)

' The following statement calls the instance method.

VB

VB

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

6 of 8 02.09.2016 22:33

Therefore, an extension method cannot replace an existing instance method. However, when an extension method has the

same name as an instance method but the signatures do not conflict, both methods can be accessed. For example, if class

ExampleClass contains a method named ExampleMethod that takes no arguments, extension methods with the same

name but different signatures are permitted, as shown in the following code.

The output from this code is as follows:

Extension method

Instance method

The situation is simpler with properties: if an extension method has the same name as a property of the class it extends,

the extension method is not visible and cannot be accessed.

Extension Method Precedence
When two extension methods that have identical signatures are in scope and accessible, the one with higher precedence

will be invoked. An extension method's precedence is based on the mechanism used to bring the method into scope. The

 example.ExampleMethod(arg2)

End Sub

Imports System.Runtime.CompilerServices

Module Module3

Sub Main()

Dim ex As New ExampleClass

' The following statement calls the extension method.

 ex.ExampleMethod("Extension method")

' The following statement calls the instance method.

 ex.ExampleMethod()

End Sub

Class ExampleClass

' Define an instance method named ExampleMethod.

Public Sub ExampleMethod()

 Console.WriteLine("Instance method")

End Sub

End Class

 <Extension()>

Sub ExampleMethod(ByVal ec As ExampleClass,

ByVal stringParameter As String)

 Console.WriteLine(stringParameter)

End Sub

End Module

VB

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

7 of 8 02.09.2016 22:33

following list shows the precedence hierarchy, from highest to lowest.

Extension methods defined inside the current module.1.

Extension methods defined inside data types in the current namespace or any one of its parents, with child

namespaces having higher precedence than parent namespaces.

2.

Extension methods defined inside any type imports in the current file.3.

Extension methods defined inside any namespace imports in the current file.4.

Extension methods defined inside any project-level type imports.5.

Extension methods defined inside any project-level namespace imports.6.

If precedence does not resolve the ambiguity, you can use the fully qualified name to specify the method that you are

calling. If the Print method in the earlier example is defined in a module named StringExtensions, the fully qualified

name is StringExtensions.Print(example) instead of example.Print().

See Also
System.Runtime.CompilerServices

ExtensionAttribute

Extension Methods (C# Programming Guide)

Module Statement

Procedure Parameters and Arguments (Visual Basic)

Optional Parameters (Visual Basic)

Parameter Arrays (Visual Basic)

Attributes (C# and Visual Basic)

Scope in Visual Basic

© 2016 Microsoft

Extension Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384936(d=printer).aspx

8 of 8 02.09.2016 22:33

How to: Write an Extension Method (Visual
Basic)

Extension methods enable you to add methods to an existing class. The extension method can be called as if it were an

instance of that class.

To define an extension method

Open a new or existing Visual Basic application in Visual Studio.1.

At the top of the file in which you want to define an extension method, include the following import statement:2.

Within a module in your new or existing application, begin the method definition with the extension attribute:3.

Declare your method in the ordinary way, except that the type of the first parameter must be the data type you want

to extend.

4.

Example
The following example declares an extension method in module StringExtensions. A second module, Module1, imports

StringExtensions and calls the method. The extension method must be in scope when it is called. Extension method

PrintAndPunctuate extends the String class with a method that displays the string instance followed by a string of

punctuation symbols sent in as a parameter.

Visual Studio 2015

Imports System.Runtime.CompilerServices

<Extension()>

<Extension()>

Public Sub subName (ByVal para1 As ExtendedType, <other parameters>)

 ' < Body of the method >

End Sub

' Declarations will typically be in a separate module.

Imports System.Runtime.CompilerServices

VB

How to: Write an Extension Method (Visual Basic) https://msdn.microsoft.com/en-us/library/bb514025(d=printer).aspx

1 of 2 02.09.2016 22:34

Notice that the method is defined with two parameters and called with only one. The first parameter, aString, in the

method definition is bound to example, the instance of String that calls the method. The output of the example is as

follows:

Hello?

Hello!!!!

See Also
ExtensionAttribute

Extension Methods (Visual Basic)

Module Statement

Procedure Parameters and Arguments (Visual Basic)

Scope in Visual Basic

© 2016 Microsoft

Module StringExtensions

 <Extension()>

Public Sub PrintAndPunctuate(ByVal aString As String,

ByVal punc As String)

 Console.WriteLine(aString & punc)

End Sub

End Module

' Import the module that holds the extension method you want to use,

' and call it.

Imports ConsoleApplication2.StringExtensions

Module Module1

Sub Main()

Dim example = "Hello"

 example.PrintAndPunctuate("?")

 example.PrintAndPunctuate("!!!!")

End Sub

End Module

VB

How to: Write an Extension Method (Visual Basic) https://msdn.microsoft.com/en-us/library/bb514025(d=printer).aspx

2 of 2 02.09.2016 22:34

How to: Call an Extension Method (Visual
Basic)

Extension methods enable you to add methods to an existing class. After an extension method is declared and brought into

scope, you can call it like an instance method of the type that it extends. For more information about how to write an

extension method, see How to: Write an Extension Method (Visual Basic).

The following instructions refer to extension method PrintAndPunctuate, which will display the string instance that

invokes it, followed by whatever value is sent in for the second parameter, punc.

The method must be in scope when it is called.

To call an extension method

Declare a variable that has the data type of the first parameter of the extension method. For PrintAndPunctuate,

you need a String variable:

1.

That variable will invoke the extension method, and its value is bound to the first parameter, aString. The following

calling statement will display Ready?.

Notice that the call to this extension method looks just like a call to any one of the String instance methods that

2.

Visual Studio 2015

Imports System.Runtime.CompilerServices

Module StringExtensions

 <Extension()>

Public Sub PrintAndPunctuate(ByVal aString As String,

ByVal punc As String)

 Console.WriteLine(aString & punc)

End Sub

End Module

Dim example = "Ready"

example.PrintAndPunctuate("?")

VB

How to: Call an Extension Method (Visual Basic) https://msdn.microsoft.com/en-us/library/bb513988(d=printer).aspx

1 of 3 02.09.2016 22:34

require one parameter:

Declare another string variable and call the method again to see that it works with any string.

The result this time is: or not!!!.

3.

Example
The following code is a complete example of the creation and use of a simple extension method.

example.EndsWith("dy")

example.IndexOf("R")

Dim example2 = " or not"

example2.PrintAndPunctuate("!!!")

Imports System.Runtime.CompilerServices

Imports ConsoleApplication1.StringExtensions

Module Module1

Sub Main()

Dim example = "Hello"

 example.PrintAndPunctuate(".")

 example.PrintAndPunctuate("!!!!")

Dim example2 = "Goodbye"

 example2.PrintAndPunctuate("?")

End Sub

 <Extension()>

Public Sub PrintAndPunctuate(ByVal aString As String,

ByVal punc As String)

 Console.WriteLine(aString & punc)

End Sub

End Module

' Output:

' Hello.

' Hello!!!!

' Goodbye?

VB

How to: Call an Extension Method (Visual Basic) https://msdn.microsoft.com/en-us/library/bb513988(d=printer).aspx

2 of 3 02.09.2016 22:34

See Also
How to: Write an Extension Method (Visual Basic)

Extension Methods (Visual Basic)

Scope in Visual Basic

© 2016 Microsoft

How to: Call an Extension Method (Visual Basic) https://msdn.microsoft.com/en-us/library/bb513988(d=printer).aspx

3 of 3 02.09.2016 22:34

Lambda Expressions (Visual Basic)

A lambda expression is a function or subroutine without a name that can be used wherever a delegate is valid. Lambda

expressions can be functions or subroutines and can be single-line or multi-line. You can pass values from the current scope

to a lambda expression.

Note

The RemoveHandler statement is an exception. You cannot pass a lambda expression in for the delegate parameter of

RemoveHandler.

You create lambda expressions by using the Function or Sub keyword, just as you create a standard function or subroutine.

However, lambda expressions are included in a statement.

The following example is a lambda expression that increments its argument and returns the value. The example shows both

the single-line and multi-line lambda expression syntax for a function.

The following example is a lambda expression that writes a value to the console. The example shows both the single-line and

multi-line lambda expression syntax for a subroutine.

Visual Studio 2015

Dim increment1 = Function(x) x + 1

Dim increment2 = Function(x)

Return x + 2

End Function

' Write the value 2.

Console.WriteLine(increment1(1))

' Write the value 4.

Console.WriteLine(increment2(2))

Dim writeline1 = Sub(x) Console.WriteLine(x)

Dim writeline2 = Sub(x)

 Console.WriteLine(x)

End Sub

' Write "Hello".

writeline1("Hello")

' Write "World"

VB

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

1 of 10 02.09.2016 22:37

Notice that in the previous examples the lambda expressions are assigned to a variable name. Whenever you refer to the

variable, you invoke the lambda expression. You can also declare and invoke a lambda expression at the same time, as

shown in the following example.

A lambda expression can be returned as the value of a function call (as is shown in the example in the Context section later in

this topic), or passed in as an argument to a parameter that takes a delegate type, as shown in the following example.

Lambda Expression Syntax
The syntax of a lambda expression resembles that of a standard function or subroutine. The differences are as follows:

A lambda expression does not have a name.

Lambda expressions cannot have modifiers, such as Overloads or Overrides.

Single-line lambda functions do not use an As clause to designate the return type. Instead, the type is inferred

writeline2("World")

Console.WriteLine((Function(num As Integer) num + 1)(5))

Module Module2

Sub Main()

' The following line will print Success, because 4 is even.

 testResult(4, Function(num) num Mod 2 = 0)

' The following line will print Failure, because 5 is not > 10.

 testResult(5, Function(num) num > 10)

End Sub

' Sub testResult takes two arguments, an integer value and a

' delegate function that takes an integer as input and returns

' a boolean.

' If the function returns True for the integer argument, Success

' is displayed.

' If the function returns False for the integer argument, Failure

' is displayed.

Sub testResult(ByVal value As Integer, ByVal fun As Func(Of Integer, Boolean))

If fun(value) Then

 Console.WriteLine("Success")

Else

 Console.WriteLine("Failure")

End If

End Sub

End Module

VB

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

2 of 10 02.09.2016 22:37

from the value that the body of the lambda expression evaluates to. For example, if the body of the lambda

expression is cust.City = "London", its return type is Boolean.

In multi-line lambda functions, you can either specify a return type by using an As clause, or omit the As clause so

that the return type is inferred. When the As clause is omitted for a multi-line lambda function, the return type is

inferred to be the dominant type from all the Return statements in the multi-line lambda function. The dominant

type is a unique type that all other types can widen to. If this unique type cannot be determined, the dominant

type is the unique type that all other types in the array can narrow to. If neither of these unique types can be

determined, the dominant type is Object. In this case, if Option Strict is set to On, a compiler error occurs.

For example, if the expressions supplied to the Return statement contain values of type Integer, Long, and

Double, the resulting array is of type Double. Both Integer and Long widen to Double and only Double.

Therefore, Double is the dominant type. For more information, see Widening and Narrowing Conversions (Visual

Basic).

The body of a single-line function must be an expression that returns a value, not a statement. There is no Return

statement for single-line functions. The value returned by the single-line function is the value of the expression in

the body of the function.

The body of a single-line subroutine must be single-line statement.

Single-line functions and subroutines do not include an End Function or End Sub statement.

You can specify the data type of a lambda expression parameter by using the As keyword, or the data type of the

parameter can be inferred. Either all parameters must have specified data types or all must be inferred.

Optional and Paramarray parameters are not permitted.

Generic parameters are not permitted.

Async Lambdas
You can easily create lambda expressions and statements that incorporate asynchronous processing by using the Async

(Visual Basic) and Await Operator (Visual Basic) keywords. For example, the following Windows Forms example contains

an event handler that calls and awaits an async method, ExampleMethodAsync.

Public Class Form1

Async Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

' ExampleMethodAsync returns a Task.

Await ExampleMethodAsync()

 TextBox1.Text = vbCrLf & "Control returned to button1_Click."

End Sub

Async Function ExampleMethodAsync() As Task

' The following line simulates a task‐returning asynchronous process.

Await Task.Delay(1000)

End Function

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

3 of 10 02.09.2016 22:37

You can add the same event handler by using an async lambda in an AddHandler Statement. To add this handler, add an

Async modifier before the lambda parameter list, as the following example shows.

For more information about how to create and use async methods, see Asynchronous Programming with Async and Await

(C# and Visual Basic).

Context
A lambda expression shares its context with the scope within which it is defined. It has the same access rights as any code

written in the containing scope. This includes access to member variables, functions and subs, Me, and parameters and

local variables in the containing scope.

Access to local variables and parameters in the containing scope can extend beyond the lifetime of that scope. As long as

a delegate referring to a lambda expression is not available to garbage collection, access to the variables in the original

environment is retained. In the following example, variable target is local to makeTheGame, the method in which the

lambda expression playTheGame is defined. Note that the returned lambda expression, assigned to takeAGuess in Main,

still has access to the local variable target.

End Class

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

AddHandler Button1.Click,

Async Sub(sender1, e1)

' ExampleMethodAsync returns a Task.

Await ExampleMethodAsync()

 TextBox1.Text = vbCrLf & "Control returned to Button1_ Click."

End Sub

End Sub

Async Function ExampleMethodAsync() As Task

' The following line simulates a task‐returning asynchronous process.

Await Task.Delay(1000)

End Function

End Class

Module Module6

Sub Main()

' Variable takeAGuess is a Boolean function. It stores the target

' number that is set in makeTheGame.

Dim takeAGuess As gameDelegate = makeTheGame()

VB

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

4 of 10 02.09.2016 22:37

The following example demonstrates the wide range of access rights of the nested lambda expression. When the returned

lambda expression is executed from Main as aDel, it accesses these elements:

' Set up the loop to play the game.

Dim guess As Integer

Dim gameOver = False

While Not gameOver

 guess = CInt(InputBox("Enter a number between 1 and 10 (0 to quit)",

"Guessing Game", "0"))

' A guess of 0 means you want to give up.

If guess = 0 Then

 gameOver = True

Else

' Tests your guess and announces whether you are correct. Method

takeAGuess

' is called multiple times with different guesses. The target value is

not

' accessible from Main and is not passed in.

 gameOver = takeAGuess(guess)

 Console.WriteLine("Guess of " & guess & " is " & gameOver)

End If

End While

End Sub

Delegate Function gameDelegate(ByVal aGuess As Integer) As Boolean

Public Function makeTheGame() As gameDelegate

' Generate the target number, between 1 and 10. Notice that

' target is a local variable. After you return from makeTheGame,

' it is not directly accessible.

 Randomize()

Dim target As Integer = CInt(Int(10 * Rnd() + 1))

' Print the answer if you want to be sure the game is not cheating

' by changing the target at each guess.

 Console.WriteLine("(Peeking at the answer) The target is " & target)

' The game is returned as a lambda expression. The lambda expression

' carries with it the environment in which it was created. This

' environment includes the target number. Note that only the current

' guess is a parameter to the returned lambda expression, not the target.

' Does the guess equal the target?

Dim playTheGame = Function(guess As Integer) guess = target

Return playTheGame

End Function

End Module

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

5 of 10 02.09.2016 22:37

A field of the class in which it is defined: aField

A property of the class in which it is defined: aProp

A parameter of method functionWithNestedLambda, in which it is defined: level1

A local variable of functionWithNestedLambda: localVar

A parameter of the lambda expression in which it is nested: level2

Module Module3

Sub Main()

' Create an instance of the class, with 1 as the value of

' the property.

Dim lambdaScopeDemoInstance =

New LambdaScopeDemoClass With {.Prop = 1}

' Variable aDel will be bound to the nested lambda expression

' returned by the call to functionWithNestedLambda.

' The value 2 is sent in for parameter level1.

Dim aDel As aDelegate =

 lambdaScopeDemoInstance.functionWithNestedLambda(2)

' Now the returned lambda expression is called, with 4 as the

' value of parameter level3.

 Console.WriteLine("First value returned by aDel: " & aDel(4))

' Change a few values to verify that the lambda expression has

' access to the variables, not just their original values.

 lambdaScopeDemoInstance.aField = 20

 lambdaScopeDemoInstance.Prop = 30

 Console.WriteLine("Second value returned by aDel: " & aDel(40))

End Sub

Delegate Function aDelegate(

ByVal delParameter As Integer) As Integer

Public Class LambdaScopeDemoClass

Public aField As Integer = 6

Dim aProp As Integer

Property Prop() As Integer

Get

Return aProp

End Get

Set(ByVal value As Integer)

 aProp = value

End Set

End Property

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

6 of 10 02.09.2016 22:37

Converting to a Delegate Type
A lambda expression can be implicitly converted to a compatible delegate type. For information about the general

requirements for compatibility, see Relaxed Delegate Conversion (Visual Basic). For example, the following code example

shows a lambda expression that implicitly converts to Func(Of Integer, Boolean) or a matching delegate signature.

Public Function functionWithNestedLambda(

ByVal level1 As Integer) As aDelegate

Dim localVar As Integer = 5

' When the nested lambda expression is executed the first

' time, as aDel from Main, the variables have these values:

' level1 = 2

' level2 = 3, after aLambda is called in the Return statement

' level3 = 4, after aDel is called in Main

' locarVar = 5

' aField = 6

' aProp = 1

' The second time it is executed, two values have changed:

' aField = 20

' aProp = 30

' level3 = 40

Dim aLambda = Function(level2 As Integer) _

Function(level3 As Integer) _

 level1 + level2 + level3 + localVar +

 aField + aProp

' The function returns the nested lambda, with 3 as the

' value of parameter level2.

Return aLambda(3)

End Function

End Class

End Module

' Explicitly specify a delegate type.

Delegate Function MultipleOfTen(ByVal num As Integer) As Boolean

' This function matches the delegate type.

Function IsMultipleOfTen(ByVal num As Integer) As Boolean

Return num Mod 10 = 0

End Function

' This method takes an input parameter of the delegate type.

' The checkDelegate parameter could also be of

' type Func(Of Integer, Boolean).

Sub CheckForMultipleOfTen(ByVal values As Integer(),

ByRef checkDelegate As MultipleOfTen)

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

7 of 10 02.09.2016 22:37

The following code example shows a lambda expression that implicitly converts to Sub(Of Double, String, Double)

or a matching delegate signature.

For Each value In values

If checkDelegate(value) Then

 Console.WriteLine(value & " is a multiple of ten.")

Else

 Console.WriteLine(value & " is not a multiple of ten.")

End If

Next

End Sub

' This method shows both an explicitly defined delegate and a

' lambda expression passed to the same input parameter.

Sub CheckValues()

Dim values = {5, 10, 11, 20, 40, 30, 100, 3}

 CheckForMultipleOfTen(values, AddressOf IsMultipleOfTen)

 CheckForMultipleOfTen(values, Function(num) num Mod 10 = 0)

End Sub

Module Module1

Delegate Sub StoreCalculation(ByVal value As Double,

ByVal calcType As String,

ByVal result As Double)

Sub Main()

' Create a DataTable to store the data.

Dim valuesTable = New DataTable("Calculations")

 valuesTable.Columns.Add("Value", GetType(Double))

 valuesTable.Columns.Add("Calculation", GetType(String))

 valuesTable.Columns.Add("Result", GetType(Double))

' Define a lambda subroutine to write to the DataTable.

Dim writeToValuesTable = Sub(value As Double, calcType As String, result As

Double)

Dim row = valuesTable.NewRow()

 row(0) = value

 row(1) = calcType

 row(2) = result

 valuesTable.Rows.Add(row)

End Sub

' Define the source values.

Dim s = {1, 2, 3, 4, 5, 6, 7, 8, 9}

' Perform the calculations.

 Array.ForEach(s, Sub(c) CalculateSquare(c, writeToValuesTable))

 Array.ForEach(s, Sub(c) CalculateSquareRoot(c, writeToValuesTable))

' Display the data.

 Console.WriteLine("Value" & vbTab & "Calculation" & vbTab & "Result")

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

8 of 10 02.09.2016 22:37

When you assign lambda expressions to delegates or pass them as arguments to procedures, you can specify the

parameter names but omit their data types, letting the types be taken from the delegate.

Examples

The following example defines a lambda expression that returns True if the nullable argument has an assigned

value, and False if its value is Nothing.

The following example defines a lambda expression that returns the index of the last element in an array.

See Also

For Each row As DataRow In valuesTable.Rows

 Console.WriteLine(row(0).ToString() & vbTab &

 row(1).ToString() & vbTab &

 row(2).ToString())

Next

End Sub

Sub CalculateSquare(ByVal number As Double, ByVal writeTo As StoreCalculation)

 writeTo(number, "Square ", number ^ 2)

End Sub

Sub CalculateSquareRoot(ByVal number As Double, ByVal writeTo As StoreCalculation)

 writeTo(number, "Square Root", Math.Sqrt(number))

End Sub

End Module

Dim notNothing =

Function(num? As Integer) num IsNot Nothing

Dim arg As Integer = 14

Console.WriteLine("Does the argument have an assigned value?")

Console.WriteLine(notNothing(arg))

Dim numbers() = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Dim lastIndex =

Function(intArray() As Integer) intArray.Length ‐ 1

For i = 0 To lastIndex(numbers)

 numbers(i) += 1

Next

VB

VB

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

9 of 10 02.09.2016 22:37

Procedures in Visual Basic

Introduction to LINQ in Visual Basic

Delegates (Visual Basic)

Function Statement (Visual Basic)

Sub Statement (Visual Basic)

Nullable Value Types (Visual Basic)

How to: Pass Procedures to Another Procedure in Visual Basic

How to: Create a Lambda Expression (Visual Basic)

Relaxed Delegate Conversion (Visual Basic)

© 2016 Microsoft

Lambda Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531253(d=printer).aspx

10 of 10 02.09.2016 22:37

How to: Create a Lambda Expression (Visual
Basic)

A lambda expression is a function or subroutine that does not have a name. A lambda expression can be used wherever a

delegate type is valid.

To create a single-line lambda expression function

In any situation where a delegate type could be used, type the keyword Function, as in the following example:

Dim add1 = Function

1.

In parentheses, directly after Function, type the parameters of the function. Notice that you do not specify a name

after Function.

Dim add1 = Function (num As Integer)

2.

Following the parameter list, type a single expression as the body of the function. The value that the expression

evaluates to is the value returned by the function. You do not use an As clause to specify the return type.

You call the lambda expression by passing in an integer argument.

3.

Alternatively, the same result is accomplished by the following example:4.

To create a single-line lambda expression subroutine

In any situation where a delegate type could be used, type the keyword Sub, as shown in the following example.

Dim add1 = Sub

1.

Visual Studio 2015

Dim add1 = Function(num As Integer) num + 1

' The following line prints 6.

Console.WriteLine(add1(5))

Console.WriteLine((Function(num As Integer) num + 1)(5))

VB

VB

VB

How to: Create a Lambda Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531298(d=printer).aspx

1 of 4 02.09.2016 22:38

In parentheses, directly after Sub, type the parameters of the subroutine. Notice that you do not specify a name after

Sub.

Dim add1 = Sub (msg As String)

2.

Following the parameter list, type a single statement as the body of the subroutine.

You call the lambda expression by passing in a string argument.

3.

To create a multiline lambda expression function

In any situation where a delegate type could be used, type the keyword Function, as shown in the following example.

Dim add1 = Function

1.

In parentheses, directly after Function, type the parameters of the function. Notice that you do not specify a name

after Function.

Dim add1 = Function (index As Integer)

2.

Press ENTER. The End Function statement is automatically added.3.

Within the body of the function, add the following code to create an expression and return the value. You do not use

an As clause to specify the return type.

You call the lambda expression by passing in an integer argument.

4.

Dim writeMessage = Sub(msg As String) Console.WriteLine(msg)

' The following line prints "Hello".

writeMessage("Hello")

Dim getSortColumn = Function(index As Integer)

Select Case index

Case 0

Return "FirstName"

Case 1

Return "LastName"

Case 2

Return "CompanyName"

Case Else

Return "LastName"

End Select

End Function

VB

VB

VB

How to: Create a Lambda Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531298(d=printer).aspx

2 of 4 02.09.2016 22:38

To create a multiline lambda expression subroutine

In any situation where a delegate type could be used, type the keyword Sub, as shown in the following example:

Dim add1 = Sub

1.

In parentheses, directly after Sub, type the parameters of the subroutine. Notice that you do not specify a name after

Sub.

Dim add1 = Sub(msg As String)

2.

Press ENTER. The End Sub statement is automatically added.3.

Within the body of the function, add the following code to execute when the subroutine is invoked.

You call the lambda expression by passing in a string argument.

4.

Example
A common use of lambda expressions is to define a function that can be passed in as the argument for a parameter whose

type is Delegate. In the following example, the GetProcesses method returns an array of the processes running on the local

computer. The Where(Of TSource) method from the Enumerable class requires a Boolean delegate as its argument. The

lambda expression in the example is used for that purpose. It returns True for each process that has only one thread, and

those are selected in filteredList.

Dim sortColumn = getSortColumn(0)

Dim writeToLog = Sub(msg As String)

Dim log As New EventLog()

 log.Source = "Application"

 log.WriteEntry(msg)

 log.Close()

End Sub

writeToLog("Application started.")

Sub Main()

' Create an array of running processes.

Dim procList As Process() = Diagnostics.Process.GetProcesses

' Return the processes that have one thread. Notice that the type

VB

VB

VB

VB

How to: Create a Lambda Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531298(d=printer).aspx

3 of 4 02.09.2016 22:38

The previous example is equivalent to the following code, which is written in Language-Integrated Query (LINQ) syntax:

See Also
Enumerable

Lambda Expressions (Visual Basic)

Function Statement (Visual Basic)

Sub Statement (Visual Basic)

Delegates (Visual Basic)

How to: Pass Procedures to Another Procedure in Visual Basic

Delegate Statement

Introduction to LINQ in Visual Basic

© 2016 Microsoft

' of the parameter does not have to be explicitly stated.

Dim filteredList = procList.Where(Function(p) p.Threads.Count = 1)

' Display the name of each selected process.

For Each proc In filteredList

 MsgBox(proc.ProcessName)

Next

End Sub

Sub Main()

Dim filteredQuery = From proc In Diagnostics.Process.GetProcesses

Where proc.Threads.Count = 1

Select proc

For Each proc In filteredQuery

 MsgBox(proc.ProcessName)

Next

End Sub

VB

How to: Create a Lambda Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531298(d=printer).aspx

4 of 4 02.09.2016 22:38

Property Procedures (Visual Basic)

A property procedure is a series of Visual Basic statements that manipulate a custom property on a module, class, or

structure. Property procedures are also known as property accessors.

Visual Basic provides for the following property procedures:

A Get procedure returns the value of a property. It is called when you access the property in an expression.

A Set procedure sets a property to a value, including an object reference. It is called when you assign a value to the

property.

You usually define property procedures in pairs, using the Get and Set statements, but you can define either procedure

alone if the property is read-only (Get Statement) or write-only (Set Statement (Visual Basic)).

You can omit the Get and Set procedure when using an auto-implemented property. For more information, see

Auto-Implemented Properties (Visual Basic).

You can define properties in classes, structures, and modules. Properties are Public by default, which means you can call

them from anywhere in your application that can access the property's container.

For a comparison of properties and variables, see Differences Between Properties and Variables in Visual Basic.

Declaration Syntax
A property itself is defined by a block of code enclosed within the Property Statement and the End Property statement.

Inside this block, each property procedure appears as an internal block enclosed within a declaration statement (Get or

Set) and the matching End declaration.

The syntax for declaring a property and its procedures is as follows:

Visual Studio 2015

[Default] [Modifiers] Property PropertyName[(ParameterList)] [As DataType]

 [AccessLevel] Get

 ' Statements of the Get procedure.

 ' The following statement returns an expression as the property's value.

 Return Expression

 End Get

 [AccessLevel] Set[(ByVal NewValue As DataType)]

 ' Statements of the Set procedure.

 ' The following statement assigns newvalue as the property's value.

 LValue = NewValue

 End Set

End Property

‐ or ‐

Property Procedures (Visual Basic) https://msdn.microsoft.com/en-us/library/bc3dtbky(d=printer).aspx

1 of 5 02.09.2016 21:49

The Modifiers can specify access level and information regarding overloading, overriding, sharing, and shadowing, as well

as whether the property is read-only or write-only. The AccessLevel on the Get or Set procedure can be any level that is

more restrictive than the access level specified for the property itself. For more information, see Property Statement.

Data Type

A property's data type and principal access level are defined in the Property statement, not in the property

procedures. A property can have only one data type. For example, you cannot define a property to store a Decimal

value but retrieve a Double value.

Access Level

However, you can define a principal access level for a property and further restrict the access level in one of its property

procedures. For example, you can define a Public property and then define a Private Set procedure. The Get

procedure remains Public. You can change the access level in only one of a property's procedures, and you can only

make it more restrictive than the principal access level. For more information, see How to: Declare a Property with

Mixed Access Levels (Visual Basic).

Parameter Declaration
You declare each parameter the same way you do for Sub Procedures (Visual Basic), except that the passing mechanism

must be ByVal.

The syntax for each parameter in the parameter list is as follows:

[Optional] ByVal [ParamArray] parametername As datatype

If the parameter is optional, you must also supply a default value as part of its declaration. The syntax for specifying a

default value is as follows:

Optional ByVal parametername As datatype = defaultvalue

Property Value
In a Get procedure, the return value is supplied to the calling expression as the value of the property.

In a Set procedure, the new property value is passed to the parameter of the Set statement. If you explicitly declare a

parameter, you must declare it with the same data type as the property. If you do not declare a parameter, the compiler

uses the implicit parameter Value to represent the new value to be assigned to the property.

Calling Syntax

[Default] [Modifiers] Property PropertyName [(ParameterList)] [As DataType]

Property Procedures (Visual Basic) https://msdn.microsoft.com/en-us/library/bc3dtbky(d=printer).aspx

2 of 5 02.09.2016 21:49

You invoke a property procedure implicitly by making reference to the property. You use the name of the property the

same way you would use the name of a variable, except that you must provide values for all arguments that are not

optional, and you must enclose the argument list in parentheses. If no arguments are supplied, you can optionally omit

the parentheses.

The syntax for an implicit call to a Set procedure is as follows:

propertyname[(argumentlist)] = expression

The syntax for an implicit call to a Get procedure is as follows:

lvalue = propertyname[(argumentlist)]

Do While (propertyname[(argumentlist)] > expression)

Illustration of Declaration and Call

Property Procedures (Visual Basic) https://msdn.microsoft.com/en-us/library/bc3dtbky(d=printer).aspx

3 of 5 02.09.2016 21:49

The following property stores a full name as two constituent names, the first name and the last name. When the calling

code reads fullName, the Get procedure combines the two constituent names and returns the full name. When the

calling code assigns a new full name, the Set procedure attempts to break it into two constituent names. If it does not

find a space, it stores it all as the first name.

The following example shows typical calls to the property procedures of fullName.

See Also

Dim firstName, lastName As String

Property fullName() As String

Get

If lastName = "" Then

Return firstName

Else

Return firstName & " " & lastName

End If

End Get

Set(ByVal Value As String)

Dim space As Integer = Value.IndexOf(" ")

If space < 0 Then

 firstName = Value

 lastName = ""

Else

 firstName = Value.Substring(0, space)

 lastName = Value.Substring(space + 1)

End If

End Set

End Property

fullName = "MyFirstName MyLastName"

MsgBox(fullName)

VB

VB

Property Procedures (Visual Basic) https://msdn.microsoft.com/en-us/library/bc3dtbky(d=printer).aspx

4 of 5 02.09.2016 21:49

Procedures in Visual Basic

Function Procedures (Visual Basic)

Operator Procedures (Visual Basic)

Procedure Parameters and Arguments (Visual Basic)

Differences Between Properties and Variables in Visual Basic

How to: Create a Property (Visual Basic)

How to: Call a Property Procedure (Visual Basic)

How to: Declare and Call a Default Property in Visual Basic

How to: Put a Value in a Property (Visual Basic)

How to: Get a Value from a Property (Visual Basic)

© 2016 Microsoft

Property Procedures (Visual Basic) https://msdn.microsoft.com/en-us/library/bc3dtbky(d=printer).aspx

5 of 5 02.09.2016 21:49

Differences Between Properties and Variables
in Visual Basic

Variables and properties both represent values that you can access. However, there are differences in storage and

implementation.

Variables
A variable corresponds directly to a memory location. You define a variable with a single declaration statement. A

variable can be a local variable, defined inside a procedure and available only within that procedure, or it can be a

member variable, defined in a module, class, or structure but not inside any procedure. A member variable is also called a

field.

Properties
A property is a data element defined on a module, class, or structure. You define a property with a code block between the

Property and End Property statements. The code block contains a Get procedure, a Set procedure, or both. These

procedures are called property procedures or property accessors. In addition to retrieving or storing the property's value,

they can also perform custom actions, such as updating an access counter.

Differences
The following table shows some important differences between variables and properties.

Point of difference Variable Property

Declaration Single declaration

statement

Series of statements in a code block

Implementation Single storage location Executable code (property procedures)

Storage Directly associated with

variable's value

Typically has internal storage not available outside

the property's containing class or module

Property's value might or might not exist as a

stored element 1

Executable code None Must have at least one procedure

Visual Studio 2015

Differences Between Properties and Variables in Visual Basic https://msdn.microsoft.com/en-us/library/sk5e8eth(d=printer)

1 of 2 02.09.2016 21:51

Read and write access Read/write or read-only Read/write, read-only, or write-only

Custom actions (in addition to

accepting or returning value)

Not possible Can be performed as part of setting or retrieving

property value

1 Unlike a variable, the value of a property might not correspond directly to a single item of storage. The storage might

be split into pieces for convenience or security, or the value might be stored in an encrypted form. In these cases the Get

procedure would assemble the pieces or decrypt the stored value, and the Set procedure would encrypt the new value or

split it into the constituent storage. A property value might be ephemeral, like time of day, in which case the Get

procedure would calculate it on the fly each time you access the property.

See Also
Property Procedures (Visual Basic)

Procedure Parameters and Arguments (Visual Basic)

Property Statement

Dim Statement (Visual Basic)

How to: Create a Property (Visual Basic)

How to: Declare a Property with Mixed Access Levels (Visual Basic)

How to: Call a Property Procedure (Visual Basic)

How to: Declare and Call a Default Property in Visual Basic

How to: Put a Value in a Property (Visual Basic)

How to: Get a Value from a Property (Visual Basic)

© 2016 Microsoft

Differences Between Properties and Variables in Visual Basic https://msdn.microsoft.com/en-us/library/sk5e8eth(d=printer)

2 of 2 02.09.2016 21:51

Auto-Implemented Properties (Visual Basic)

Auto-implemented properties enable you to quickly specify a property of a class without having to write code to Get and

Set the property. When you write code for an auto-implemented property, the Visual Basic compiler automatically creates a

private field to store the property variable in addition to creating the associated Get and Set procedures.

With auto-implemented properties, a property, including a default value, can be declared in a single line. The following

example shows three property declarations.

An auto-implemented property is equivalent to a property for which the property value is stored in a private field. The

following code example shows an auto-implemented property.

The following code example shows the equivalent code for the previous auto-implemented property example.

The following code show implementing readonly properties:

Visual Studio 2015

Public Property Name As String

Public Property Owner As String = "DefaultName"

Public Property Items As New List(Of String) From {"M", "T", "W"}

Public Property ID As New Guid()

Property Prop2 As String = "Empty"

Private _Prop2 As String = "Empty"

Property Prop2 As String

Get

Return _Prop2

End Get

Set(ByVal value As String)

 _Prop2 = value

End Set

End Property

Class Customer

Public ReadOnly Property Tags As New List(Of String)

Public ReadOnly Property Name As String = ""

Public ReadOnly Property File As String

VB

VB

VB

VB

Auto-Implemented Properties (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293589(d=printer).aspx

1 of 4 02.09.2016 21:52

You can assign to the property with initialization expressions as shown in the example, or you can assign to the properties in

the containing type’s constructor. You can assign to the backing fields of readonly properties at any time.

Backing Field
When you declare an auto-implemented property, Visual Basic automatically creates a hidden private field called the

backing field to contain the property value. The backing field name is the auto-implemented property name preceded by

an underscore (_). For example, if you declare an auto-implemented property named ID, the backing field is named _ID. If

you include a member of your class that is also named _ID, you produce a naming conflict and Visual Basic reports a

compiler error.

The backing field also has the following characteristics:

The access modifier for the backing field is always Private, even when the property itself has a different access

level, such as Public.

If the property is marked as Shared, the backing field also is shared.

Attributes specified for the property do not apply to the backing field.

The backing field can be accessed from code within the class and from debugging tools such as the Watch window.

However, the backing field does not show in an IntelliSense word completion list.

Initializing an Auto-Implemented Property
Any expression that can be used to initialize a field is valid for initializing an auto-implemented property. When you

initialize an auto-implemented property, the expression is evaluated and passed to the Set procedure for the property.

The following code examples show some auto-implemented properties that include initial values.

You cannot initialize an auto-implemented property that is a member of an Interface, or one that is marked

MustOverride.

When you declare an auto-implemented property as a member of a Structure, you can only initialize the

auto-implemented property if it is marked as Shared.

When you declare an auto-implemented property as an array, you cannot specify explicit array bounds. However, you can

Sub New(file As String)

Me.File = file

End Sub

End Class

Property FirstName As String = "James"

Property PartNo As Integer = 44302

Property Orders As New List(Of Order)(500)

VB

Auto-Implemented Properties (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293589(d=printer).aspx

2 of 4 02.09.2016 21:52

supply a value by using an array initializer, as shown in the following examples.

Property Definitions That Require Standard Syntax
Auto-implemented properties are convenient and support many programming scenarios. However, there are situations in

which you cannot use an auto-implemented property and must instead use standard, or expanded, property syntax.

You have to use expanded property-definition syntax if you want to do any one of the following:

Add code to the Get or Set procedure of a property, such as code to validate incoming values in the Set

procedure. For example, you might want to verify that a string that represents a telephone number contains the

required number of numerals before setting the property value.

Specify different accessibility for the Get and Set procedure. For example, you might want to make the Set

procedure Private and the Get procedure Public.

Create properties that are WriteOnly.

Use parameterized properties (including Default properties). You must declare an expanded property in order to

specify a parameter for the property, or to specify additional parameters for the Set procedure.

Place an attribute on the backing field, or change the access level of the backing field.

Provide XML comments for the backing field.

Expanding an Auto-Implemented Property
If you have to convert an auto-implemented property to an expanded property that contains a Get or Set procedure, the

Visual Basic Code Editor can automatically generate the Get and Set procedures and End Property statement for the

property. The code is generated if you put the cursor on a blank line following the Property statement, type a G (for Get)

or an S (for Set) and press ENTER. The Visual Basic Code Editor automatically generates the Get or Set procedure for

read-only and write-only properties when you press ENTER at the end of a Property statement.

See Also
How to: Declare and Call a Default Property in Visual Basic

How to: Declare a Property with Mixed Access Levels (Visual Basic)

Property Statement

ReadOnly (Visual Basic)

WriteOnly (Visual Basic)

Property Grades As Integer() = {90, 73}

Property Temperatures As Integer() = New Integer() {68, 54, 71}

VB

Auto-Implemented Properties (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293589(d=printer).aspx

3 of 4 02.09.2016 21:52

Objects and Classes in Visual Basic

© 2016 Microsoft

Auto-Implemented Properties (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293589(d=printer).aspx

4 of 4 02.09.2016 21:52

Procedure Parameters and Arguments
(Visual Basic)

In most cases, a procedure needs some information about the circumstances in which it has been called. A procedure that

performs repeated or shared tasks uses different information for each call. This information consists of variables, constants,

and expressions that you pass to the procedure when you call it.

A parameter represents a value that the procedure expects you to supply when you call it. The procedure's declaration

defines its parameters.

You can define a procedure with no parameters, one parameter, or more than one. The part of the procedure definition that

specifies the parameters is called the parameter list.

An argument represents the value you supply to a procedure parameter when you call the procedure. The calling code

supplies the arguments when it calls the procedure. The part of the procedure call that specifies the arguments is called the

argument list.

The following illustration shows code calling the procedure safeSquareRoot from two different places. The first call passes

the value of the variable x (4.0) to the parameter number, and the return value in root (2.0) is assigned to the variable y. The

second call passes the literal value 9.0 to number, and assigns the return value (3.0) to variable z.

Passing an argument to a parameter

For more information, see Differences Between Parameters and Arguments (Visual Basic).

Visual Studio 2015

Procedure Parameters and Arguments (Visual Basic) https://msdn.microsoft.com/en-us/library/2ch70h3t(d=printer)

1 of 2 02.09.2016 21:55

Parameter Data Type
You define a data type for a parameter by using the As clause in its declaration. For example, the following function

accepts a string and an integer.

If the type checking switch (Option Strict Statement) is Off, the As clause is optional, except that if any one parameter

uses it, all parameters must use it. If type checking is On, the As clause is required for all procedure parameters.

If the calling code expects to supply an argument with a data type different from that of its corresponding parameter,

such as Byte to a String parameter, it must do one of the following:

Supply only arguments with data types that widen to the parameter data type;

Set Option Strict Off to allow implicit narrowing conversions; or

Use a conversion keyword to explicitly convert the data type.

Type Parameters

A generic procedure also defines one or more type parameters in addition to its normal parameters. A generic

procedure allows the calling code to pass different data types each time it calls the procedure, so it can tailor the data

types to the requirements of each individual call. See Generic Procedures in Visual Basic.

See Also
Procedures in Visual Basic

Sub Procedures (Visual Basic)

Function Procedures (Visual Basic)

Property Procedures (Visual Basic)

Operator Procedures (Visual Basic)

How to: Define a Parameter for a Procedure (Visual Basic)

How to: Pass Arguments to a Procedure (Visual Basic)

Passing Arguments by Value and by Reference (Visual Basic)

Procedure Overloading (Visual Basic)

Type Conversions in Visual Basic

© 2016 Microsoft

Function appointment(ByVal day As String, ByVal hour As Integer) As String

' Insert code to return any appointment for the given day and time.

Return "appointment"

End Function

VB

Procedure Parameters and Arguments (Visual Basic) https://msdn.microsoft.com/en-us/library/2ch70h3t(d=printer)

2 of 2 02.09.2016 21:55

How to: Declare a Property with Mixed
Access Levels (Visual Basic)

If you want the Get and Set procedures on a property to have different access levels, you can use the more permissive level

in the Property statement and the more restrictive level in either the Get or Set statement. You use mixed access levels on a

property when you want certain parts of the code to be able to get the property's value, and certain other parts of the code

to be able to change the value.

For more information on access levels, see Access Levels in Visual Basic.

To declare a property with mixed access levels

Declare the property in the normal way, and specify the less restrictive access level (such as Public) in the Property

statement.

1.

Declare either the Get or the Set procedure specifying the more restrictive access level (such as Friend).2.

Do not specify an access level on the other property procedure. It assumes the access level declared in the Property

statement. You can restrict access on only one of the property procedures.

In the preceding example, the Get procedure has the same Protected access as the property itself, while the Set

procedure has Private access. A class derived from employee can read the salary value, but only the employee class

can set it.

3.

See Also
Procedures in Visual Basic

Property Procedures (Visual Basic)

Visual Studio 2015

Public Class employee

Private salaryValue As Double

Protected Property salary() As Double

Get

Return salaryValue

End Get

Private Set(ByVal value As Double)

 salaryValue = value

End Set

End Property

End Class

VB

How to: Declare a Property with Mixed Access Levels (Visual Basic) https://msdn.microsoft.com/en-us/library/01143ea4(d=printer)

1 of 2 02.09.2016 21:57

Procedure Parameters and Arguments (Visual Basic)

Property Statement

Differences Between Properties and Variables in Visual Basic

How to: Create a Property (Visual Basic)

How to: Call a Property Procedure (Visual Basic)

How to: Declare and Call a Default Property in Visual Basic

How to: Put a Value in a Property (Visual Basic)

How to: Get a Value from a Property (Visual Basic)

© 2016 Microsoft

How to: Declare a Property with Mixed Access Levels (Visual Basic) https://msdn.microsoft.com/en-us/library/01143ea4(d=printer)

2 of 2 02.09.2016 21:57

How to: Call a Property Procedure (Visual
Basic)

You call a property procedure by storing a value in the property or retrieving its value. You access a property the same way

you access a variable.

The property's Set procedure stores a value, and its Get procedure retrieves the value. However, you do not explicitly call

these procedures by name. You use the property in an assignment statement or an expression, just as you would store or

retrieve the value of a variable. Visual Basic makes the calls to the property's procedures.

To call a property's Get procedure

Use the property name in an expression the same way you would use a variable name. You can use a property

anywhere you can use a variable or a constant.

-or-

Use the property name following the equal (=) sign in an assignment statement.

The following example reads the value of the Now property, implicitly calling its Get procedure.

1.

If the property takes arguments, follow the property name with parentheses to enclose the argument list. If there are

no arguments, you can optionally omit the parentheses.

2.

Place the arguments in the argument list within the parentheses, separated by commas. Be sure you supply the

arguments in the same order that the property defines the corresponding parameters.

3.

The value of the property participates in the expression just as a variable or constant would, or it is stored in the variable or

property on the left side of the assignment statement.

To call a property's Set procedure

Use the property name on the left side of an assignment statement.

The following example sets the value of the TimeOfDay property, implicitly calling the Set procedure.

1.

Visual Studio 2015

Dim ThisMoment As Date

' The following statement calls the Get procedure of the Visual Basic Now property.

ThisMoment = Now

VB

VB

How to: Call a Property Procedure (Visual Basic) https://msdn.microsoft.com/en-us/library/97bz87f5(d=printer).aspx

1 of 2 02.09.2016 21:58

If the property takes arguments, follow the property name with parentheses to enclose the argument list. If there are

no arguments, you can optionally omit the parentheses.

2.

Place the arguments in the argument list within the parentheses, separated by commas. Be sure you supply the

arguments in the same order that the property defines the corresponding parameters.

3.

The value generated on the right side of the assignment statement is stored in the property.

See Also
Property Procedures (Visual Basic)

Procedure Parameters and Arguments (Visual Basic)

Property Statement

Differences Between Properties and Variables in Visual Basic

How to: Create a Property (Visual Basic)

How to: Declare a Property with Mixed Access Levels (Visual Basic)

How to: Declare and Call a Default Property in Visual Basic

How to: Put a Value in a Property (Visual Basic)

How to: Get a Value from a Property (Visual Basic)

Get Statement

Set Statement (Visual Basic)

© 2016 Microsoft

' The following statement calls the Set procedure of the Visual Basic TimeOfDay

property.

TimeOfDay = #12:00:00 PM#

How to: Call a Property Procedure (Visual Basic) https://msdn.microsoft.com/en-us/library/97bz87f5(d=printer).aspx

2 of 2 02.09.2016 21:58

How to: Declare and Call a Default Property
in Visual Basic

A default property is a class or structure property that your code can access without specifying it. When calling code names a

class or structure but not a property, and the context allows access to a property, Visual Basic resolves the access to that

class or structure's default property if one exists.

A class or structure can have at most one default property. However, you can overload a default property and have more

than one version of it.

For more information, see Default (Visual Basic).

To declare a default property

Declare the property in the normal way. Do not specify the Shared or Private keyword.1.

Include the Default keyword in the property declaration.2.

Specify at least one parameter for the property. You cannot define a default property that does not take at least one

argument.

3.

To call a default property

Declare a variable of the containing class or structure type.1.

Use the variable name alone in an expression where you would normally include the property name.2.

Follow the variable name with an argument list in parentheses. A default property must take at least one argument.3.

Visual Studio 2015

Default Property myProperty(ByVal index As Integer) As String

Dim x As New class1(3)

MsgBox(x)

VB

VB

VB

VB

How to: Declare and Call a Default Property in Visual Basic https://msdn.microsoft.com/en-us/library/se6z814t(d=printer).aspx

1 of 4 02.09.2016 21:59

To retrieve the default property value, use the variable name, with an argument list, in an expression or following the

equal (=) sign in an assignment statement.

4.

To set the default property value, use the variable name, with an argument list, on the left side of an assignment

statement.

5.

You can always specify the default property name together with the variable name, just as you would do to access

any other property.

6.

Example
The following example declares a default property on a class.

MsgBox(x(1))

MsgBox(x(1) & x(2) & x(3))

x(1) = "Hello"

x(2) = " "

x(3) = "World"

x.myProperty(1) = "Hello"

x.myProperty(2) = " "

x.myProperty(3) = "World"

Public Class class1

Private myStrings() As String

Sub New(ByVal size As Integer)

ReDim myStrings(size)

End Sub

Default Property myProperty(ByVal index As Integer) As String

Get

' The Get property procedure is called when the value

' of the property is retrieved.

Return myStrings(index)

End Get

Set(ByVal Value As String)

' The Set property procedure is called when the value

' of the property is modified.

' The value to be assigned is passed in the argument

' to Set.

 myStrings(index) = Value

VB

VB

VB

VB

How to: Declare and Call a Default Property in Visual Basic https://msdn.microsoft.com/en-us/library/se6z814t(d=printer).aspx

2 of 4 02.09.2016 21:59

Example
The following example demonstrates how to call the default property myProperty on class class1. The three assignment

statements store values in myProperty, and the MsgBox call reads the values.

The most common use of a default property is the Item property on various collection classes.

Robust Programming
Default properties can result in a small reduction in source code-characters, but they can make your code more difficult to

read. If the calling code is not familiar with your class or structure, when it makes a reference to the class or structure name it

cannot be certain whether that reference accesses the class or structure itself, or a default property. This can lead to compiler

errors or subtle run-time logic errors.

You can somewhat reduce the chance of default property errors by always using the Option Strict Statement to set compiler

type checking to On.

If you are planning to use a predefined class or structure in your code, you must determine whether it has a default property,

and if so, what its name is.

Because of these disadvantages, you should consider not defining default properties. For code readability, you should also

consider always referring to all properties explicitly, even default properties.

See Also
Property Procedures (Visual Basic)

Procedure Parameters and Arguments (Visual Basic)

Property Statement

Default (Visual Basic)

Differences Between Properties and Variables in Visual Basic

How to: Create a Property (Visual Basic)

How to: Declare a Property with Mixed Access Levels (Visual Basic)

How to: Call a Property Procedure (Visual Basic)

How to: Put a Value in a Property (Visual Basic)

How to: Get a Value from a Property (Visual Basic)

End Set

End Property

End Class

Sub Test()

Dim x As New class1(3)

 x(1) = "Hello"

 x(2) = " "

 x(3) = "World"

 MsgBox(x(1) & x(2) & x(3))

End Sub

VB

How to: Declare and Call a Default Property in Visual Basic https://msdn.microsoft.com/en-us/library/se6z814t(d=printer).aspx

3 of 4 02.09.2016 21:59

© 2016 Microsoft

How to: Declare and Call a Default Property in Visual Basic https://msdn.microsoft.com/en-us/library/se6z814t(d=printer).aspx

4 of 4 02.09.2016 21:59

How to: Put a Value in a Property (Visual
Basic)

You store a value in a property by putting the property name on the left side of an assignment statement.

The property's Set procedure stores a value, but you do not explicitly call it by name. You use the property just as you

would use a variable. Visual Basic makes the calls to the property's procedures.

To store a value in a property

Use the property name on the left side of an assignment statement.

The following example sets the value of the Visual Basic TimeOfDay property to noon, implicitly calling its Set

procedure.

1.

If the property takes arguments, follow the property name with parentheses to enclose the argument list. If there are

no arguments, you can optionally omit the parentheses.

2.

Place the arguments in the argument list within the parentheses, separated by commas. Be sure you supply the

arguments in the same order that the property defines the corresponding parameters.

3.

The value generated on the right side of the assignment statement is stored in the property.4.

See Also
TimeOfDay

Property Procedures (Visual Basic)

Procedure Parameters and Arguments (Visual Basic)

Property Statement

Differences Between Properties and Variables in Visual Basic

How to: Create a Property (Visual Basic)

How to: Declare a Property with Mixed Access Levels (Visual Basic)

How to: Call a Property Procedure (Visual Basic)

How to: Declare and Call a Default Property in Visual Basic

How to: Get a Value from a Property (Visual Basic)

Visual Studio 2015

' The following statement calls the Set procedure of the Visual Basic TimeOfDay

property.

TimeOfDay = #12:00:00 PM#

VB

How to: Put a Value in a Property (Visual Basic) https://msdn.microsoft.com/en-us/library/y4y3wssh(d=printer).aspx

1 of 2 02.09.2016 22:00

© 2016 Microsoft

How to: Put a Value in a Property (Visual Basic) https://msdn.microsoft.com/en-us/library/y4y3wssh(d=printer).aspx

2 of 2 02.09.2016 22:00

How to: Get a Value from a Property (Visual
Basic)

You retrieve a property's value by including the property name in an expression.

The property's Get procedure retrieves the value, but you do not explicitly call it by name. You use the property just as you

would use a variable. Visual Basic makes the calls to the property's procedures.

To retrieve a value from a property

Use the property name in an expression the same way you would use a variable name. You can use a property

anywhere you can use a variable or a constant.

-or-

Use the property name following the equal (=) sign in an assignment statement.

The following example reads the value of the Visual Basic Now property, implicitly calling its Get procedure.

1.

If the property takes arguments, follow the property name with parentheses to enclose the argument list. If there are

no arguments, you can optionally omit the parentheses.

2.

Place the arguments in the argument list within the parentheses, separated by commas. Be sure you supply the

arguments in the same order that the property defines the corresponding parameters.

3.

The value of the property participates in the expression just as a variable or constant would, or it is stored in the variable or

property on the left side of the assignment statement.

See Also
Procedures in Visual Basic

Property Procedures (Visual Basic)

Procedure Parameters and Arguments (Visual Basic)

Property Statement

Differences Between Properties and Variables in Visual Basic

How to: Create a Property (Visual Basic)

How to: Declare a Property with Mixed Access Levels (Visual Basic)

Visual Studio 2015

Dim ThisMoment As Date

' The following statement calls the Get procedure of the Visual Basic Now property.

ThisMoment = Now

VB

How to: Get a Value from a Property (Visual Basic) https://msdn.microsoft.com/en-us/library/at3ew1e4(d=printer).aspx

1 of 2 02.09.2016 22:01

How to: Call a Property Procedure (Visual Basic)

How to: Declare and Call a Default Property in Visual Basic

How to: Put a Value in a Property (Visual Basic)

© 2016 Microsoft

How to: Get a Value from a Property (Visual Basic) https://msdn.microsoft.com/en-us/library/at3ew1e4(d=printer).aspx

2 of 2 02.09.2016 22:01

