
Operators and Expressions in Visual Basic

An operator is a code element that performs an operation on one or more code elements that hold values. Value elements

include variables, constants, literals, properties, returns from Function and Operator procedures, and expressions.

An expression is a series of value elements combined with operators, which yields a new value. The operators act on the value

elements by performing calculations, comparisons, or other operations.

Types of Operators
Visual Basic provides the following types of operators:

Arithmetic Operators perform familiar calculations on numeric values, including shifting their bit patterns.

Comparison Operators compare two expressions and return a Boolean value representing the result of the

comparison.

Concatenation Operators join multiple strings into a single string.

Logical and Bitwise Operators in Visual Basic combine Boolean or numeric values and return a result of the same

data type as the values.

The value elements that are combined with an operator are called operands of that operator. Operators combined with

value elements form expressions, except for the assignment operator, which forms a statement. For more information, see

Statements in Visual Basic.

Evaluation of Expressions
The end result of an expression represents a value, which is typically of a familiar data type such as Boolean, String, or a

numeric type.

The following are examples of expressions.

5 + 4

' The preceding expression evaluates to 9.

15 * System.Math.Sqrt(9) + x

' The preceding expression evaluates to 45 plus the value of x.

"Concat" & "ena" & "tion"

Visual Studio 2015

Operators and Expressions in Visual Basic https://msdn.microsoft.com/en-us/library/a1w3te48(d=printer).aspx

1 of 2 02.09.2016 18:30

' The preceding expression evaluates to "Concatenation".

763 < 23

' The preceding expression evaluates to False.

Several operators can perform actions in a single expression or statement, as the following example illustrates.

In the preceding example, Visual Basic performs the operations in the expression on the right side of the assignment

operator (=), then assigns the resulting value to the variable x on the left. There is no practical limit to the number of

operators that can be combined into an expression, but an understanding of Operator Precedence in Visual Basic is

necessary to ensure that you get the results you expect.

For more information and examples, see Operator Overloading in Visual Basic 2005.

See Also
Operators (Visual Basic)

Efficient Combination of Operators (Visual Basic)

Statements (Visual Basic)

© 2016 Microsoft

x = 45 + y * z ^ 2

VB

Operators and Expressions in Visual Basic https://msdn.microsoft.com/en-us/library/a1w3te48(d=printer).aspx

2 of 2 02.09.2016 18:30

Miscellaneous Operators (Visual Basic)

The following are miscellaneous operators defined in Visual Basic.

AddressOf Operator (Visual Basic)

Await Operator (Visual Basic)

GetType Operator (Visual Basic)

Function Expression (Visual Basic)

If Operator (Visual Basic)

TypeOf Operator (Visual Basic)

See Also

Operators Listed by Functionality (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Miscellaneous Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/ya5290s0(d=printer).aspx

1 of 1 02.09.2016 18:41

Await Operator (Visual Basic)

You apply the Await operator to an operand in an asynchronous method or lambda expression to suspend execution of the

method until the awaited task completes. The task represents ongoing work.

The method in which Await is used must have an Async modifier. Such a method, defined by using the Async modifier, and

usually containing one or more Await expressions, is referred to as an async method.

Note

The Async and Await keywords were introduced in Visual Studio 2012. For an introduction to async programming, see

Asynchronous Programming with Async and Await (C# and Visual Basic).

Typically, the task to which you apply the Await operator is the return value from a call to a method that implements the

Task-Based Asynchronous Pattern, that is, a Task or a Task(Of TResult).

In the following code, the HttpClient method GetByteArrayAsync returns getContentsTask, a Task(Of Byte()). The task is a

promise to produce the actual byte array when the operation is complete. The Await operator is applied to

getContentsTask to suspend execution in SumPageSizesAsync until getContentsTask is complete. In the meantime,

control is returned to the caller of SumPageSizesAsync. When getContentsTask is finished, the Await expression

evaluates to a byte array.

Important

Visual Studio 2015

Private Async Function SumPageSizesAsync() As Task

' To use the HttpClient type in desktop apps, you must include a using directive and

add a

' reference for the System.Net.Http namespace.

Dim client As HttpClient = New HttpClient()

' . . .

Dim getContentsTask As Task(Of Byte()) = client.GetByteArrayAsync(url)

Dim urlContents As Byte() = Await getContentsTask

' Equivalently, now that you see how it works, you can write the same thing in a

single line.

'Dim urlContents As Byte() = Await client.GetByteArrayAsync(url)

' . . .

End Function

VB

Await Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/hh156570(d=printer).aspx

1 of 3 02.09.2016 18:41

For the complete example, see Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic). You can

download the sample from Developer Code Samples on the Microsoft website. The example is in the

AsyncWalkthrough_HttpClient project.

If Await is applied to the result of a method call that returns a Task(Of TResult), the type of the Await expression is

TResult. If Await is applied to the result of a method call that returns a Task, the Await expression doesn't return a value.

The following example illustrates the difference.

An Await expression or statement does not block the thread on which it is executing. Instead, it causes the compiler to sign

up the rest of the async method, after the Await expression, as a continuation on the awaited task. Control then returns to

the caller of the async method. When the task completes, it invokes its continuation, and execution of the async method

resumes where it left off.

An Await expression can occur only in the body of an immediately enclosing method or lambda expression that is marked

by an Async modifier. The term Await serves as a keyword only in that context. Elsewhere, it is interpreted as an identifier.

Within the async method or lambda expression, an Await expression cannot occur in a query expression, in the catch or

finally block of a Try…Catch…Finally statement, in the loop control variable expression of a For or For Each loop, or in the

body of a SyncLock statement.

Exceptions
Most async methods return a Task or Task(Of TResult). The properties of the returned task carry information about its

status and history, such as whether the task is complete, whether the async method caused an exception or was canceled,

and what the final result is. The Await operator accesses those properties.

If you await a task-returning async method that causes an exception, the Await operator rethrows the exception.

If you await a task-returning async method that is canceled, the Await operator rethrows an

OperationCanceledException.

A single task that is in a faulted state can reflect multiple exceptions. For example, the task might be the result of a call to

Task.WhenAll. When you await such a task, the await operation rethrows only one of the exceptions. However, you can't

predict which of the exceptions is rethrown.

For examples of error handling in async methods, see Try...Catch...Finally Statement (Visual Basic).

Example
The following Windows Forms example illustrates the use of Await in an async method, WaitAsynchronouslyAsync.

' Await used with a method that returns a Task(Of TResult).

Dim result As TResult = Await AsyncMethodThatReturnsTaskTResult()

' Await used with a method that returns a Task.

Await AsyncMethodThatReturnsTask()

VB

Await Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/hh156570(d=printer).aspx

2 of 3 02.09.2016 18:41

Contrast the behavior of that method with the behavior of WaitSynchronously. Without an Await operator,

WaitSynchronously runs synchronously despite the use of the Async modifier in its definition and a call to Thread.Sleep in

its body.

See Also
Asynchronous Programming with Async and Await (C# and Visual Basic)

Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)

Async (Visual Basic)

© 2016 Microsoft

Private Async Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

' Call the method that runs asynchronously.

Dim result As String = Await WaitAsynchronouslyAsync()

' Call the method that runs synchronously.

'Dim result As String = Await WaitSynchronously()

' Display the result.

 TextBox1.Text &= result

End Sub

' The following method runs asynchronously. The UI thread is not

' blocked during the delay. You can move or resize the Form1 window

' while Task.Delay is running.

Public Async Function WaitAsynchronouslyAsync() As Task(Of String)

Await Task.Delay(10000)

Return "Finished"

End Function

' The following method runs synchronously, despite the use of Async.

' You cannot move or resize the Form1 window while Thread.Sleep

' is running because the UI thread is blocked.

Public Async Function WaitSynchronously() As Task(Of String)

' Import System.Threading for the Sleep method.

 Thread.Sleep(10000)

Return "Finished"

End Function

VB

Await Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/hh156570(d=printer).aspx

3 of 3 02.09.2016 18:41

Function Expression (Visual Basic)

Declares the parameters and code that define a function lambda expression.

Syntax

Parts

Term Definition

parameterlist Optional. A list of local variable names that represent the parameters of this procedure. The

parentheses must be present even when the list is empty. See Parameter List (Visual Basic).

expression Required. A single expression. The type of the expression is the return type of the function.

statements Required. A list of statements that returns a value by using the Return statement. (See Return

Statement (Visual Basic).) The type of the value returned is the return type of the function.

Remarks
A lambda expression is a function without a name that calculates and returns a value. You can use a lambda expression

anywhere you can use a delegate type, except as an argument to RemoveHandler. For more information about

delegates, and the use of lambda expressions with delegates, see Delegate Statement and Relaxed Delegate Conversion

(Visual Basic).

Lambda Expression Syntax

The syntax of a lambda expression resembles that of a standard function. The differences are as follows:

Visual Studio 2015

Function ([parameterlist]) expression

‐ or ‐

Function ([parameterlist])

 [statements]

End Function

Function Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/cc138590(d=printer).aspx

1 of 3 02.09.2016 18:42

A lambda expression does not have a name.

Lambda expressions cannot have modifiers, such as Overloads or Overrides.

Lambda expressions do not use an As clause to designate the return type of the function. Instead, the type is

inferred from the value that the body of a single-line lambda expression evaluates to, or the return value of a

multiline lambda expression. For example, if the body of a single-line lambda expression is Where cust.City =

"London", its return type is Boolean.

The body of a single-line lambda expression must be an expression, not a statement. The body can consist of a

call to a function procedure, but not a call to a sub procedure.

Either all parameters must have specified data types or all must be inferred.

Optional and Paramarray parameters are not permitted.

Generic parameters are not permitted.

Example
The following examples show two ways to create simple lambda expressions. The first uses a Dim to provide a name for the

function. To call the function, you send in a value for the parameter.

Example
Alternatively, you can declare and run the function at the same time.

Example
Following is an example of a lambda expression that increments its argument and returns the value. The example shows both

the single-line and multiline lambda expression syntax for a function. For more examples, see Lambda Expressions (Visual

Basic).

Dim add1 = Function(num As Integer) num + 1

' The following line prints 6.

Console.WriteLine(add1(5))

Console.WriteLine((Function(num As Integer) num + 1)(5))

VB

VB

VB

VB

Function Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/cc138590(d=printer).aspx

2 of 3 02.09.2016 18:42

Example
Lambda expressions underlie many of the query operators in Language-Integrated Query (LINQ), and can be used explicitly

in method-based queries. The following example shows a typical LINQ query, followed by the translation of the query into

method format.

For more information about query methods, see Queries (Visual Basic). For more information about standard query

operators, see Standard Query Operators Overview.

See Also
Function Statement (Visual Basic)

Lambda Expressions (Visual Basic)

Operators and Expressions in Visual Basic

Statements in Visual Basic

Value Comparisons (Visual Basic)

Boolean Expressions (Visual Basic)

If Operator (Visual Basic)

Relaxed Delegate Conversion (Visual Basic)

© 2016 Microsoft

Dim increment1 = Function(x) x + 1

Dim increment2 = Function(x)

Return x + 2

End Function

' Write the value 2.

Console.WriteLine(increment1(1))

' Write the value 4.

Console.WriteLine(increment2(2))

Dim londonCusts = From cust In db.Customers

Where cust.City = "London"

Select cust

' This query is compiled to the following code:

Dim londonCusts = db.Customers.

Where(Function(cust) cust.City = "London").

Select(Function(cust) cust)

VB

Function Expression (Visual Basic) https://msdn.microsoft.com/en-us/library/cc138590(d=printer).aspx

3 of 3 02.09.2016 18:42

Common Tasks Performed with Visual Basic
Operators

Operators perform many common tasks involving one or more expressions called operands.

Arithmetic and Bit-shift Tasks
The following table summarizes the available arithmetic and bit-shift operations.

To See

Add one numeric value to another + Operator (Visual Basic)

Subtract one numeric value from another - Operator (Visual Basic)

Reverse the sign of a numeric value - Operator (Visual Basic)

Multiply one numeric value by another * Operator (Visual Basic)

Divide one numeric value into another / Operator (Visual Basic)

Find the quotient of one numeric value divided by another (without the remainder) \ Operator (Visual Basic)

Find the remainder of one numeric value divided by another (without the quotient) Mod Operator (Visual Basic)

Raise one numeric value to the power of another ^ Operator (Visual Basic)

Shift the bit pattern of a numeric value to the left << Operator (Visual Basic)

Shift the bit pattern of a numeric value to the right >> Operator (Visual Basic)

Comparison Tasks
The following table summarizes the available comparison operations.

To See

Visual Studio 2015

Common Tasks Performed with Visual Basic Operators https://msdn.microsoft.com/en-us/library/ms235335(d=printer).aspx

1 of 3 02.09.2016 18:32

Determine whether two values are equal = Operator (Comparison Operators in Visual

Basic)

Determine whether two values are unequal <> Operator (Comparison Operators in Visual

Basic)

Determine whether one value is less than another < Operator (Comparison Operators in Visual

Basic)

Determine whether one value is greater than another > Operator (Comparison Operators in Visual

Basic)

Determine whether one value is less than or equal to another <= Operator (Comparison Operators in Visual

Basic)

Determine whether one value is greater than or equal to another >= Operator (Comparison Operators in Visual

Basic)

Determine whether two object variables refer to the same object

instance

Is Operator (Visual Basic)

Determine whether two object variables refer to different object

instances

IsNot Operator (Visual Basic)

Determine whether an object is of a specific type TypeOf Operator (Visual Basic)

Concatenation Tasks
The following table summarizes the available concatenation operations.

To See

Join multiple strings into a single string & Operator (Concatenation Operators in Visual Basic)

Join numeric values with string values + Operator (Concatenation Operators in Visual Basic)

Logical and Bitwise Tasks
The following table summarizes the available logical and bitwise operations.

To See

Common Tasks Performed with Visual Basic Operators https://msdn.microsoft.com/en-us/library/ms235335(d=printer).aspx

2 of 3 02.09.2016 18:32

Perform logical negation on a Boolean value Not Operator (Visual Basic)

Perform logical conjunction on two Boolean values And Operator (Visual Basic)

Perform inclusive logical disjunction on two Boolean values Or Operator (Visual Basic)

Perform exclusive logical disjunction on two Boolean values Xor Operator (Visual Basic)

Perform short-circuited logical conjunction on two Boolean values AndAlso Operator (Visual Basic)

Perform short-circuited inclusive logical disjunction on two Boolean values OrElse Operator (Visual Basic)

Perform bit-by-bit logical conjunction on two integral values And Operator (Visual Basic)

Perform bit-by-bit inclusive logical disjunction on two integral values Or Operator (Visual Basic)

Perform bit-by-bit exclusive logical disjunction on two integral values Xor Operator (Visual Basic)

Perform bit-by-bit logical negation on an integral value Not Operator (Visual Basic)

See Also
Operators and Expressions in Visual Basic

Operators Listed by Functionality (Visual Basic)

© 2016 Microsoft

Common Tasks Performed with Visual Basic Operators https://msdn.microsoft.com/en-us/library/ms235335(d=printer).aspx

3 of 3 02.09.2016 18:32

Arithmetic Operators in Visual Basic

Arithmetic operators are used to perform many of the familiar arithmetic operations that involve the calculation of numeric

values represented by literals, variables, other expressions, function and property calls, and constants. Also classified with

arithmetic operators are the bit-shift operators, which act at the level of the individual bits of the operands and shift their bit

patterns to the left or right.

Arithmetic Operations
You can add two values in an expression together with the + Operator (Visual Basic), or subtract one from another with

the - Operator (Visual Basic), as the following example demonstrates.

Negation also uses the - Operator (Visual Basic), but with only one operand, as the following example demonstrates.

Multiplication and division use the * Operator (Visual Basic) and / Operator (Visual Basic), respectively, as the following

example demonstrates.

Exponentiation uses the ^ Operator (Visual Basic), as the following example demonstrates.

Integer division is carried out using the \ Operator (Visual Basic). Integer division returns the quotient, that is, the integer

Visual Studio 2015

Dim x As Integer

x = 67 + 34

x = 32 ‐ 12

Dim x As Integer = 65

Dim y As Integer

y = ‐x

Dim y As Double

y = 45 * 55.23

y = 32 / 23

Dim z As Double

z = 23 ^ 3

' The preceding statement sets z to 12167 (the cube of 23).

VB

VB

VB

VB

Arithmetic Operators in Visual Basic https://msdn.microsoft.com/en-us/library/b6ex274z(d=printer).aspx

1 of 4 02.09.2016 18:32

that represents the number of times the divisor can divide into the dividend without consideration of any remainder. Both

the divisor and the dividend must be integral types (SByte, Byte, Short, UShort, Integer, UInteger, Long, and ULong)

for this operator. All other types must be converted to an integral type first. The following example demonstrates integer

division.

Modulus arithmetic is performed using the Mod Operator (Visual Basic). This operator returns the remainder after

dividing the divisor into the dividend an integral number of times. If both divisor and dividend are integral types, the

returned value is integral. If divisor and dividend are floating-point types, the returned value is also floating-point. The

following example demonstrates this behavior.

Attempted Division by Zero

Division by zero has different results depending on the data types involved. In integral divisions (SByte, Byte, Short,

UShort, Integer, UInteger, Long, ULong), the .NET Framework throws a DivideByZeroException exception. In division

operations on the Decimal or Single data type, the .NET Framework also throws a DivideByZeroException exception.

In floating-point divisions involving the Double data type, no exception is thrown, and the result is the class member

representing NaN, PositiveInfinity, or NegativeInfinity, depending on the dividend. The following table summarizes the

various results of attempting to divide a Double value by zero.

Dividend data type Divisor data type Dividend value Result

Double Double 0 NaN (not a mathematically defined number)

Double Double > 0 PositiveInfinity

Dim k As Integer

k = 23 \ 5

' The preceding statement sets k to 4.

Dim x As Integer = 100

Dim y As Integer = 6

Dim z As Integer

z = x Mod y

' The preceding statement sets z to 4.

Dim a As Double = 100.3

Dim b As Double = 4.13

Dim c As Double

c = a Mod b

' The preceding statement sets c to 1.18.

VB

VB

VB

Arithmetic Operators in Visual Basic https://msdn.microsoft.com/en-us/library/b6ex274z(d=printer).aspx

2 of 4 02.09.2016 18:32

Double Double < 0 NegativeInfinity

When you catch a DivideByZeroException exception, you can use its members to help you handle it. For example, the

Message property holds the message text for the exception. For more information, see Try...Catch...Finally Statement

(Visual Basic).

Bit-Shift Operations
A bit-shift operation performs an arithmetic shift on a bit pattern. The pattern is contained in the operand on the left,

while the operand on the right specifies the number of positions to shift the pattern. You can shift the pattern to the right

with the >> Operator (Visual Basic) or to the left with the << Operator (Visual Basic).

The data type of the pattern operand must be SByte, Byte, Short, UShort, Integer, UInteger, Long, or ULong. The data

type of the shift amount operand must be Integer or must widen to Integer.

Arithmetic shifts are not circular, which means the bits shifted off one end of the result are not reintroduced at the other

end. The bit positions vacated by a shift are set as follows:

0 for an arithmetic left shift

0 for an arithmetic right shift of a positive number

0 for an arithmetic right shift of an unsigned data type (Byte, UShort, UInteger, ULong)

1 for an arithmetic right shift of a negative number (SByte, Short, Integer, or Long)

The following example shifts an Integer value both left and right.

Arithmetic shifts never generate overflow exceptions.

Bitwise Operations
In addition to being logical operators, Not, Or, And, and Xor also perform bitwise arithmetic when used on numeric

values. For more information, see "Bitwise Operations" in Logical and Bitwise Operators in Visual Basic.

Dim lResult, rResult As Integer

Dim pattern As Integer = 12

' The low‐order bits of pattern are 0000 1100.

lResult = pattern << 3

' A left shift of 3 bits produces a value of 96.

rResult = pattern >> 2

' A right shift of 2 bits produces value of 3.

VB

Arithmetic Operators in Visual Basic https://msdn.microsoft.com/en-us/library/b6ex274z(d=printer).aspx

3 of 4 02.09.2016 18:32

Type Safety
Operands should normally be of the same type. For example, if you are doing addition with an Integer variable, you

should add it to another Integer variable, and you should assign the result to a variable of type Integer as well.

One way to ensure good type-safe coding practice is to use the Option Strict Statement. If you set Option Strict On,

Visual Basic automatically performs type-safe conversions. For example, if you try to add an Integer variable to a Double

variable and assign the value to a Double variable, the operation proceeds normally, because an Integer value can be

converted to Double without loss of data. Type-unsafe conversions, on the other hand, cause a compiler error with

Option Strict On. For example, if you try to add an Integer variable to a Double variable and assign the value to an

Integer variable, a compiler error results, because a Double variable cannot be implicitly converted to type Integer.

If you set Option Strict Off, however, Visual Basic allows implicit narrowing conversions to take place, although they can

result in the unexpected loss of data or precision. For this reason, we recommend that you use Option Strict On when

writing production code. For more information, see Widening and Narrowing Conversions (Visual Basic).

See Also
Arithmetic Operators (Visual Basic)

Bit Shift Operators (Visual Basic)

Comparison Operators in Visual Basic

Concatenation Operators in Visual Basic

Logical and Bitwise Operators in Visual Basic

Efficient Combination of Operators (Visual Basic)

© 2016 Microsoft

Arithmetic Operators in Visual Basic https://msdn.microsoft.com/en-us/library/b6ex274z(d=printer).aspx

4 of 4 02.09.2016 18:32

Comparison Operators in Visual Basic

Comparison operators compare two expressions and return a Boolean value that represents the relationship of their values.

There are operators for comparing numeric values, operators for comparing strings, and operators for comparing objects.

All three types of operators are discussed herein.

Comparing Numeric Values
Visual Basic compares numeric values using six numeric comparison operators. Each operator takes as operands two

expressions that evaluate to numeric values. The following table lists the operators and shows examples of each.

Operator Condition tested Examples

= (Equality) Is the value of the first expression equal to the value of the second? 23 = 33 '

False

23 = 23 ' True

23 = 12 '

False

<> (Inequality) Is the value of the first expression unequal to the value of the

second?

23 <> 33 '

True

23 <> 23 '

False

23 <> 12 '

True

< (Less than) Is the value of the first expression less than the value of the second? 23 < 33 ' True

23 < 23 '

False

23 < 12 '

False

> (Greater than) Is the value of the first expression greater than the value of the

second?

23 > 33 '

False

23 > 23 '

Visual Studio 2015

Comparison Operators in Visual Basic https://msdn.microsoft.com/en-us/library/215yacb6(d=printer).aspx

1 of 4 02.09.2016 18:32

False

23 > 12 ' True

<= (Less than or equal to) Is the value of the first expression less than or equal to the value of

the second?

23 <= 33 '

True

23 <= 23 '

True

23 <= 12 '

False

>= (Greater than or equal

to)

Is the value of the first expression greater than or equal to the value

of the second?

23 >= 33 '

False

23 >= 23 '

True

23 >= 12 '

True

Comparing Strings
Visual Basic compares strings using the Like Operator (Visual Basic) as well as the numeric comparison operators. The Like

operator allows you to specify a pattern. The string is then compared against the pattern, and if it matches, the result is

True. Otherwise, the result is False. The numeric operators allow you to compare String values based on their sort order,

as the following example shows.

"73" < "9"

' The result of the preceding comparison is True.

The result in the preceding example is True because the first character in the first string sorts before the first character in

the second string. If the first characters were equal, the comparison would continue to the next character in both strings,

and so on. You can also test equality of strings using the equality operator, as the following example shows.

"734" = "734"

' The result of the preceding comparison is True.

If one string is a prefix of another, such as "aa" and "aaa", the longer string is considered to be greater than the shorter

string. The following example illustrates this.

"aaa" > "aa"

' The result of the preceding comparison is True.

The sort order is based on either a binary comparison or a textual comparison depending on the setting of Option

Comparison Operators in Visual Basic https://msdn.microsoft.com/en-us/library/215yacb6(d=printer).aspx

2 of 4 02.09.2016 18:32

Compare. For more information see Option Compare Statement.

Comparing Objects
Visual Basic compares two object reference variables with the Is Operator (Visual Basic) and the IsNot Operator (Visual

Basic). You can use either of these operators to determine if two reference variables refer to the same object instance. The

following example illustrates this.

In the preceding example, x Is y evaluates to True, because both variables refer to the same instance. Contrast this

result with the following example.

In the preceding example, x Is y evaluates to False, because although the variables refer to objects of the same type,

they refer to different instances of that type.

When you want to test for two objects not pointing to the same instance, the IsNot operator lets you avoid a

grammatically clumsy combination of Not and Is. The following example illustrates this.

In the preceding example, If a IsNot b is equivalent to If Not a Is b.

Comparing Object Type

You can test whether an object is of a particular type with the TypeOf...Is expression. The syntax is as follows:

Dim x As testClass

Dim y As New testClass()

x = y

If x Is y Then

' Insert code to run if x and y point to the same instance.

End If

Dim x As New customer()

Dim y As New customer()

If x Is y Then

' Insert code to run if x and y point to the same instance.

End If

Dim a As New classA()

Dim b As New classB()

If a IsNot b Then

' Insert code to run if a and b point to different instances.

End If

VB

VB

VB

Comparison Operators in Visual Basic https://msdn.microsoft.com/en-us/library/215yacb6(d=printer).aspx

3 of 4 02.09.2016 18:32

TypeOf <objectexpression> Is <typename>

When typename specifies an interface type, then the TypeOf...Is expression returns True if the object implements the

interface type. When typename is a class type, then the expression returns True if the object is an instance of the

specified class or of a class that derives from the specified class. The following example illustrates this.

In the preceding example, the TypeOf x Is Control expression evaluates to True because the type of x is Button,

which inherits from Control.

For more information, see TypeOf Operator (Visual Basic).

See Also
Value Comparisons (Visual Basic)

Comparison Operators (Visual Basic)

Operators (Visual Basic)

Arithmetic Operators in Visual Basic

Concatenation Operators in Visual Basic

Logical and Bitwise Operators in Visual Basic

© 2016 Microsoft

Dim x As System.Windows.Forms.Button

x = New System.Windows.Forms.Button()

If TypeOf x Is System.Windows.Forms.Control Then

' Insert code to run if x is of type System.Windows.Forms.Control.

End If

VB

Comparison Operators in Visual Basic https://msdn.microsoft.com/en-us/library/215yacb6(d=printer).aspx

4 of 4 02.09.2016 18:32

How to: Test Whether Two Objects Are the
Same (Visual Basic)

If you have two variables that refer to objects, you can use either the Is or IsNot operator, or both, to determine whether

they refer to the same instance.

To test whether two objects are the same

Use the Is Operator (Visual Basic) or the IsNot Operator (Visual Basic) with the two variables as operands.

You might want to take a certain action depending on whether two objects refer to the same instance. The preceding

example compares control c against the active control on form f. If there is no active control, or if there is one but it is not

the same control instance as c, then the If statement fails and the procedure returns without further processing.

Whether you use Is or IsNot is a matter of personal convenience to you. One might be easier to read than the other in a

given expression.

See Also
Comparison Operators in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Public Sub processControl(ByVal f As System.Windows.Forms.Form,

ByVal c As System.Windows.Forms.Control)

Dim active As System.Windows.Forms.Control = f.ActiveControl

If (active IsNot Nothing) And (c Is active) Then

' Insert code to process control c

End If

Return

End Sub

VB

How to: Test Whether Two Objects Are the Same (Visual Basic) https://msdn.microsoft.com/en-us/library/4hsw240d(d=printer).aspx

1 of 1 02.09.2016 18:33

How to: Match a String against a Pattern
(Visual Basic)

If you want to find out if an expression of the String Data Type (Visual Basic) satisfies a pattern, then you can use the Like

Operator (Visual Basic).

Like takes two operands. The left operand is a string expression, and the right operand is a string containing the pattern to

be used for matching. Like returns a Boolean value indicating whether the string expression satisfies the pattern.

You can match each character in the string expression against a specific character, a wildcard character, a character list, or a

character range. The positions of the specifications in the pattern string correspond to the positions of the characters to be

matched in the string expression.

To match a character in the string expression against a specific

character

Put the specific character directly in the pattern string. Certain special characters must be enclosed in brackets ([]).

For more information, see Like Operator (Visual Basic).

The following example tests whether myString consists exactly of the single character H.

To match a character in the string expression against a wildcard

character

Put a question mark (?) in the pattern string. Any valid character in this position makes a successful match.

The following example tests whether myString consists of the single character W followed by exactly two characters

of any values.

To match a character in the string expression against a list of

characters

Visual Studio 2015

Dim sMatch As Boolean = myString Like "H"

Dim sMatch As Boolean = myString Like "W??"

VB

VB

How to: Match a String against a Pattern (Visual Basic) https://msdn.microsoft.com/en-us/library/te33kb6t(d=printer).aspx

1 of 3 02.09.2016 18:34

Put brackets ([]) in the pattern string, and inside the brackets put the list of characters. Do not separate the characters

with commas or any other separator. Any single character in the list makes a successful match.

The following example tests whether myString consists of any valid character followed by exactly one of the

characters A, C, or E.

Note that this match is case-sensitive.

To match a character in the string expression against a range of

characters

Put brackets ([]) in the pattern string, and inside the brackets put the lowest and highest characters in the range,

separated by a hyphen (–). Any single character within the range makes a successful match.

The following example tests whether myString consists of the characters num followed by exactly one of the

characters i, j, k, l, m, or n.

Note that this match is case-sensitive.

Matching Empty Strings
Like treats the sequence [] as a zero-length string (""). You can use [] to test whether the entire string expression is

empty, but you cannot use it to test if a particular position in the string expression is empty. If an empty position is one of

the options you need to test for, you can use Like more than once.

To match a character in the string expression against a list of characters or no character

Call the Like operator twice on the same string expression, and connect the two calls with either the Or Operator

(Visual Basic) or the OrElse Operator (Visual Basic).

1.

In the pattern string for the first Like clause, include the character list, enclosed in brackets ([]).2.

In the pattern string for the second Like clause, do not put any character at the position in question.

The following example tests the seven-digit telephone number phoneNum for exactly three numeric digits, followed

by a space, a hyphen (–), a period (.), or no character at all, followed by exactly four numeric digits.

3.

Dim sMatch As Boolean = myString Like "?[ACE]"

Dim sMatch As Boolean = myString Like "num[i‐m]"

Dim sMatch As Boolean =

VB

VB

VB

How to: Match a String against a Pattern (Visual Basic) https://msdn.microsoft.com/en-us/library/te33kb6t(d=printer).aspx

2 of 3 02.09.2016 18:34

See Also
Comparison Operators (Visual Basic)

Operators and Expressions in Visual Basic

Like Operator (Visual Basic)

String Data Type (Visual Basic)

© 2016 Microsoft

 (phoneNum Like "###[‐.]####") OrElse (phoneNum Like "#######")

How to: Match a String against a Pattern (Visual Basic) https://msdn.microsoft.com/en-us/library/te33kb6t(d=printer).aspx

3 of 3 02.09.2016 18:34

Like Operator (Visual Basic)

Compares a string against a pattern.

Syntax

Parts

result

Required. Any Boolean variable. The result is a Boolean value indicating whether or not the string satisfies the

pattern.

string

Required. Any String expression.

pattern

Required. Any String expression conforming to the pattern-matching conventions described in "Remarks."

Remarks
If the value in string satisfies the pattern contained in pattern, result is True. If the string does not satisfy the pattern, result

is False. If both string and pattern are empty strings, the result is True.

Comparison Method

The behavior of the Like operator depends on the Option Compare Statement. The default string comparison method

for each source file is Option Compare Binary.

Pattern Options

Built-in pattern matching provides a versatile tool for string comparisons. The pattern-matching features allow you to

match each character in string against a specific character, a wildcard character, a character list, or a character range. The

Visual Studio 2015

result = string Like pattern

Like Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/swf8kaxw(d=printer).aspx

1 of 4 02.09.2016 18:35

following table shows the characters allowed in pattern and what they match.

Characters in pattern Matches in string

? Any single character

* Zero or more characters

Any single digit (0–9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

Character Lists

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any single character in

string and can include almost any character code, including digits.

An exclamation point (!) at the beginning of charlist means that a match is made if any character except the characters

in charlist is found in string. When used outside brackets, the exclamation point matches itself.

Special Characters

To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*), enclose them in

brackets. The right bracket (]) cannot be used within a group to match itself, but it can be used outside a group as an

individual character.

The character sequence [] is considered a zero-length string (""). However, it cannot be part of a character list

enclosed in brackets. If you want to check whether a position in string contains one of a group of characters or no

character at all, you can use Like twice. For an example, see How to: Match a String against a Pattern (Visual Basic).

Character Ranges

By using a hyphen (–) to separate the lower and upper bounds of the range, charlist can specify a range of characters.

For example, [A–Z] results in a match if the corresponding character position in string contains any character within the

range A–Z, and [!H–L] results in a match if the corresponding character position contains any character outside the

range H–L.

When you specify a range of characters, they must appear in ascending sort order, that is, from lowest to highest. Thus,

[A–Z] is a valid pattern, but [Z–A] is not.

Multiple Character Ranges

To specify multiple ranges for the same character position, put them within the same brackets without delimiters. For

Like Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/swf8kaxw(d=printer).aspx

2 of 4 02.09.2016 18:35

example, [A–CX–Z] results in a match if the corresponding character position in string contains any character within

either the range A–C or the range X–Z.

Usage of the Hyphen

A hyphen (–) can appear either at the beginning (after an exclamation point, if any) or at the end of charlist to match

itself. In any other location, the hyphen identifies a range of characters delimited by the characters on either side of

the hyphen.

Collating Sequence

The meaning of a specified range depends on the character ordering at run time, as determined by Option Compare

and the locale setting of the system the code is running on. With Option Compare Binary, the range [A–E] matches A,

B, C, D, and E. With Option Compare Text, [A–E] matches A, a, À, à, B, b, C, c, D, d, E, and e. The range does not match Ê

or ê because accented characters collate after unaccented characters in the sort order.

Digraph Characters

In some languages, there are alphabetic characters that represent two separate characters. For example, several

languages use the character æ to represent the characters a and e when they appear together. The Like operator

recognizes that the single digraph character and the two individual characters are equivalent.

When a language that uses a digraph character is specified in the system locale settings, an occurrence of the single

digraph character in either pattern or string matches the equivalent two-character sequence in the other string.

Similarly, a digraph character in pattern enclosed in brackets (by itself, in a list, or in a range) matches the equivalent

two-character sequence in string.

Overloading

The Like operator can be overloaded, which means that a class or structure can redefine its behavior when an operand

has the type of that class or structure. If your code uses this operator on such a class or structure, be sure you

understand its redefined behavior. For more information, see Operator Procedures (Visual Basic).

Example
This example uses the Like operator to compare strings to various patterns. The results go into a Boolean variable

indicating whether each string satisfies the pattern.

Dim testCheck As Boolean

' The following statement returns True (does "F" satisfy "F"?)

testCheck = "F" Like "F"

VB

Like Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/swf8kaxw(d=printer).aspx

3 of 4 02.09.2016 18:35

See Also
InStr

StrComp

Comparison Operators (Visual Basic)

Operator Precedence in Visual Basic

Operators Listed by Functionality (Visual Basic)

Option Compare Statement

Operators and Expressions in Visual Basic

How to: Match a String against a Pattern (Visual Basic)

© 2016 Microsoft

' The following statement returns False for Option Compare Binary

' and True for Option Compare Text (does "F" satisfy "f"?)

testCheck = "F" Like "f"

' The following statement returns False (does "F" satisfy "FFF"?)

testCheck = "F" Like "FFF"

' The following statement returns True (does "aBBBa" have an "a" at the

' beginning, an "a" at the end, and any number of characters in

' between?)

testCheck = "aBBBa" Like "a*a"

' The following statement returns True (does "F" occur in the set of

' characters from "A" through "Z"?)

testCheck = "F" Like "[A‐Z]"

' The following statement returns False (does "F" NOT occur in the

' set of characters from "A" through "Z"?)

testCheck = "F" Like "[!A‐Z]"

' The following statement returns True (does "a2a" begin and end with

' an "a" and have any single‐digit number in between?)

testCheck = "a2a" Like "a#a"

' The following statement returns True (does "aM5b" begin with an "a",

' followed by any character from the set "L" through "P", followed

' by any single‐digit number, and end with any character NOT in

' the character set "c" through "e"?)

testCheck = "aM5b" Like "a[L‐P]#[!c‐e]"

' The following statement returns True (does "BAT123khg" begin with a

' "B", followed by any single character, followed by a "T", and end

' with zero or more characters of any type?)

testCheck = "BAT123khg" Like "B?T*"

' The following statement returns False (does "CAT123khg"?) begin with

' a "B", followed by any single character, followed by a "T", and

' end with zero or more characters of any type?)

testCheck = "CAT123khg" Like "B?T*"

Like Operator (Visual Basic) https://msdn.microsoft.com/en-us/library/swf8kaxw(d=printer).aspx

4 of 4 02.09.2016 18:35

Concatenation Operators in Visual Basic

Concatenation operators join multiple strings into a single string. There are two concatenation operators, + and &. Both

carry out the basic concatenation operation, as the following example shows.

These operators can also concatenate String variables, as the following example shows.

Differences Between the Two Concatenation Operators
The + Operator (Visual Basic) has the primary purpose of adding two numbers. However, it can also concatenate numeric

operands with string operands. The + operator has a complex set of rules that determine whether to add, concatenate,

signal a compiler error, or throw a run-time InvalidCastException exception.

The & Operator (Visual Basic) is defined only for String operands, and it always widens its operands to String, regardless

of the setting of Option Strict. The & operator is recommended for string concatenation because it is defined exclusively

for strings and reduces your chances of generating an unintended conversion.

Performance: String and StringBuilder
If you do a significant number of manipulations on a string, such as concatenations, deletions, and replacements, your

performance might profit from the StringBuilder class in the System.Text namespace. It takes an extra instruction to create

and initialize a StringBuilder object, and another instruction to convert its final value to a String, but you might recover

this time because StringBuilder can perform faster.

See Also
Option Strict Statement

Visual Studio 2015

Dim a As String = "abc"

Dim d As String = "def"

Dim z As String = a & d

Dim w As String = a + d

' The preceding statements set both z and w to "abcdef".

VB

Concatenation Operators in Visual Basic https://msdn.microsoft.com/en-us/library/te2585xw(d=printer).aspx

1 of 2 02.09.2016 18:35

Types of String Manipulation Methods in Visual Basic

Arithmetic Operators in Visual Basic

Comparison Operators in Visual Basic

Logical and Bitwise Operators in Visual Basic

© 2016 Microsoft

Concatenation Operators in Visual Basic https://msdn.microsoft.com/en-us/library/te2585xw(d=printer).aspx

2 of 2 02.09.2016 18:35

Logical and Bitwise Operators in Visual Basic

Logical operators compare Boolean expressions and return a Boolean result. The And, Or, AndAlso, OrElse, and Xor

operators are binary because they take two operands, while the Not operator is unary because it takes a single operand.

Some of these operators can also perform bitwise logical operations on integral values.

Unary Logical Operator
The Not Operator (Visual Basic) performs logical negation on a Boolean expression. It yields the logical opposite of its

operand. If the expression evaluates to True, then Not returns False; if the expression evaluates to False, then Not returns

True. The following example illustrates this.

Binary Logical Operators
The And Operator (Visual Basic) performs logical conjunction on two Boolean expressions. If both expressions evaluate to

True, then And returns True. If at least one of the expressions evaluates to False, then And returns False.

The Or Operator (Visual Basic) performs logical disjunction or inclusion on two Boolean expressions. If either expression

evaluates to True, or both evaluate to True, then Or returns True. If neither expression evaluates to True, Or returns

False.

The Xor Operator (Visual Basic) performs logical exclusion on two Boolean expressions. If exactly one expression

evaluates to True, but not both, Xor returns True. If both expressions evaluate to True or both evaluate to False, Xor

returns False.

The following example illustrates the And, Or, and Xor operators.

Visual Studio 2015

Dim x, y As Boolean

x = Not 23 > 14

y = Not 23 > 67

' The preceding statements set x to False and y to True.

Dim a, b, c, d, e, f, g As Boolean

a = 23 > 14 And 11 > 8

b = 14 > 23 And 11 > 8

' The preceding statements set a to True and b to False.

c = 23 > 14 Or 8 > 11

d = 23 > 67 Or 8 > 11

VB

VB

Logical and Bitwise Operators in Visual Basic https://msdn.microsoft.com/en-us/library/wz3k228a(d=printer).aspx

1 of 4 02.09.2016 18:35

Short-Circuiting Logical Operations
The AndAlso Operator (Visual Basic) is very similar to the And operator, in that it also performs logical conjunction on

two Boolean expressions. The key difference between the two is that AndAlso exhibits short-circuiting behavior. If the

first expression in an AndAlso expression evaluates to False, then the second expression is not evaluated because it

cannot alter the final result, and AndAlso returns False.

Similarly, the OrElse Operator (Visual Basic) performs short-circuiting logical disjunction on two Boolean expressions. If

the first expression in an OrElse expression evaluates to True, then the second expression is not evaluated because it

cannot alter the final result, and OrElse returns True.

Short-Circuiting Trade-Offs

Short-circuiting can improve performance by not evaluating an expression that cannot alter the result of the logical

operation. However, if that expression performs additional actions, short-circuiting skips those actions. For example, if

the expression includes a call to a Function procedure, that procedure is not called if the expression is short-circuited,

and any additional code contained in the Function does not run. Therefore, the function might run only occasionally,

and might not be tested correctly. Or the program logic might depend on the code in the Function.

The following example illustrates the difference between And, Or, and their short-circuiting counterparts.

' The preceding statements set c to True and d to False.

e = 23 > 67 Xor 11 > 8

f = 23 > 14 Xor 11 > 8

g = 14 > 23 Xor 8 > 11

' The preceding statements set e to True, f to False, and g to False.

Dim amount As Integer = 12

Dim highestAllowed As Integer = 45

Dim grandTotal As Integer

If amount > highestAllowed And checkIfValid(amount) Then

' The preceding statement calls checkIfValid().

End If

If amount > highestAllowed AndAlso checkIfValid(amount) Then

' The preceding statement does not call checkIfValid().

End If

If amount < highestAllowed Or checkIfValid(amount) Then

' The preceding statement calls checkIfValid().

End If

If amount < highestAllowed OrElse checkIfValid(amount) Then

' The preceding statement does not call checkIfValid().

End If

VB

VB

Logical and Bitwise Operators in Visual Basic https://msdn.microsoft.com/en-us/library/wz3k228a(d=printer).aspx

2 of 4 02.09.2016 18:35

In the preceding example, note that some important code inside checkIfValid() does not run when the call is short-

circuited. The first If statement calls checkIfValid() even though 12 > 45 returns False, because And does not

short-circuit. The second If statement does not call checkIfValid(), because when 12 > 45 returns False, AndAlso

short-circuits the second expression. The third If statement calls checkIfValid() even though 12 < 45 returns True,

because Or does not short-circuit. The fourth If statement does not call checkIfValid(), because when 12 < 45

returns True, OrElse short-circuits the second expression.

Bitwise Operations
Bitwise operations evaluate two integral values in binary (base 2) form. They compare the bits at corresponding positions

and then assign values based on the comparison. The following example illustrates the And operator.

The preceding example sets the value of x to 1. This happens for the following reasons:

The values are treated as binary:

3 in binary form = 011

5 in binary form = 101

The And operator compares the binary representations, one binary position (bit) at a time. If both bits at a given

position are 1, then a 1 is placed in that position in the result. If either bit is 0, then a 0 is placed in that position in

the result. In the preceding example this works out as follows:

011 (3 in binary form)

101 (5 in binary form)

Function checkIfValid(ByVal checkValue As Integer) As Boolean

If checkValue > 15 Then

 MsgBox(CStr(checkValue) & " is not a valid value.")

' The MsgBox warning is not displayed if the call to

' checkIfValid() is part of a short‐circuited expression.

Return False

Else

 grandTotal += checkValue

' The grandTotal value is not updated if the call to

' checkIfValid() is part of a short‐circuited expression.

Return True

End If

End Function

Dim x As Integer

x = 3 And 5

VB

VB

Logical and Bitwise Operators in Visual Basic https://msdn.microsoft.com/en-us/library/wz3k228a(d=printer).aspx

3 of 4 02.09.2016 18:35

001 (The result, in binary form)

The result is treated as decimal. The value 001 is the binary representation of 1, so x = 1.

The bitwise Or operation is similar, except that a 1 is assigned to the result bit if either or both of the compared bits is 1.

Xor assigns a 1 to the result bit if exactly one of the compared bits (not both) is 1. Not takes a single operand and inverts

all the bits, including the sign bit, and assigns that value to the result. This means that for signed positive numbers, Not

always returns a negative value, and for negative numbers, Not always returns a positive or zero value.

The AndAlso and OrElse operators do not support bitwise operations.

Note

Bitwise operations can be performed on integral types only. Floating-point values must be converted to integral types

before bitwise operation can proceed.

See Also
Logical/Bitwise Operators (Visual Basic)

Boolean Expressions (Visual Basic)

Arithmetic Operators in Visual Basic

Comparison Operators in Visual Basic

Concatenation Operators in Visual Basic

Efficient Combination of Operators (Visual Basic)

© 2016 Microsoft

Logical and Bitwise Operators in Visual Basic https://msdn.microsoft.com/en-us/library/wz3k228a(d=printer).aspx

4 of 4 02.09.2016 18:35

Efficient Combination of Operators (Visual
Basic)

Complex expressions can contain many different operators. The following example illustrates this.

x = (45 * (y + z)) ^ (2 / 85) * 5 + z

Creating complex expressions such as the one in the preceding example requires a thorough understanding of the rules of

operator precedence. For more information, see Operator Precedence in Visual Basic.

Parenthetical Expressions
Often you want operations to proceed in a different order from that determined by operator precedence. Consider the

following example.

x = z * y + 4

The preceding example multiplies z by y, then adds the result to 4. But if you want to add y and 4 before multiplying the

result by z, you can override normal operator precedence by using parentheses. By enclosing an expression in

parentheses, you force that expression to be evaluated first, regardless of operator precedence. To force the preceding

example to do the addition first, you could rewrite it as in the following example.

x = z * (y + 4)

The preceding example adds y and 4, then multiplies that sum by z.

Nested Parenthetical Expressions

You can nest expressions in multiple levels of parentheses to override precedence even further. The expressions most

deeply nested in parentheses are evaluated first, followed by the next most deeply nested, and so on to the least

deeply nested, and finally the expressions outside parentheses. The following example illustrates this.

x = (z * 4) ^ (y * (z + 2))

In the preceding example, z + 2 is evaluated first, then the other parenthetical expressions. Exponentiation, which

normally has higher precedence than addition or multiplication, is evaluated last in this example because the other

expressions are enclosed in parentheses.

See Also
Arithmetic Operators in Visual Basic

Visual Studio 2015

Efficient Combination of Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/7txdtzy9(d=printer).aspx

1 of 2 02.09.2016 18:36

Comparison Operators in Visual Basic

Logical and Bitwise Operators in Visual Basic

Logical/Bitwise Operators (Visual Basic)

Boolean Expressions (Visual Basic)

Value Comparisons (Visual Basic)

How to: Calculate Numeric Values (Visual Basic)

Operator Precedence in Visual Basic

© 2016 Microsoft

Efficient Combination of Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/7txdtzy9(d=printer).aspx

2 of 2 02.09.2016 18:36

How to: Calculate Numeric Values (Visual
Basic)

You can calculate numeric values through the use of numeric expressions. A numeric expression is an expression that

contains literals, constants, and variables representing numeric values, and operators that act on those values.

Calculating Numeric Values

Visual Studio 2015

How to: Calculate Numeric Values (Visual Basic) https://msdn.microsoft.com/en-us/library/x0scff96(d=printer).aspx

1 of 3 02.09.2016 18:36

To calculate a numeric value

Combine one or more numeric literals, constants, and variables into a numeric expression. The following example

shows some valid numeric expressions.

93.217

System.Math.PI

counter

4 * (67 + i)

The first three lines show a literal, a constant, and a variable. Each one forms a valid numeric expression by itself.

The final line shows a combination of a variable with two literals.

Note that a numeric expression does not form a complete Visual Basic statement by itself. You must use the

expression as part of a complete statement.

To store a numeric value

You can use an assignment statement to assign the value represented by a numeric expression to a variable, as the

following example demonstrates.

In the preceding example, the value of the expression on the right side of the equal operator (=) is assigned to the

variable j on the left side of the operator, so j evaluates to 276.

For more information, see Statements (Visual Basic).

Multiple Operators
If the numeric expression contains more than one operator, the order in which they are evaluated is determined by the

rules of operator precedence. To override the rules of operator precedence, you enclose expressions in parentheses, as in

the above example; the enclosed expressions are evaluated first.

To override normal operator precedence

Use parentheses to enclose the operations you want to be performed first. The following example shows two

different results with the same operands and operators.

Dim i As Integer = 2

Dim j As Integer

j = 4 * (67 + i)

VB

VB

How to: Calculate Numeric Values (Visual Basic) https://msdn.microsoft.com/en-us/library/x0scff96(d=printer).aspx

2 of 3 02.09.2016 18:36

In the preceding example, the calculation for j performs the addition operator (+) first because the parentheses

around (67 + i) override normal precedence, and the value assigned to j is 276 (4 times 69). The calculation for

k performs the operators in their normal precedence (* before +), and the value assigned to k is 270 (268 plus 2).

For more information, see Operator Precedence in Visual Basic.

See Also
Operators and Expressions in Visual Basic

Value Comparisons (Visual Basic)

Statements (Visual Basic)

Operator Precedence in Visual Basic

Arithmetic Operators (Visual Basic)

Efficient Combination of Operators (Visual Basic)

© 2016 Microsoft

Dim i As Integer = 2

Dim j, k As Integer

j = 4 * (67 + i)

k = 4 * 67 + i

How to: Calculate Numeric Values (Visual Basic) https://msdn.microsoft.com/en-us/library/x0scff96(d=printer).aspx

3 of 3 02.09.2016 18:36

Value Comparisons (Visual Basic)

Comparison operators can be used to construct expressions that compare the values of numeric variables. These expressions

return a Boolean value based on whether the comparison is true or false. Examples of such an expression are as follows.

45 > 26

26 > 45

The first expression evaluates to True, because 45 is greater than 26. The second example evaluates to False, because 26 is

not greater than 45.

You can also compare numeric expressions in this fashion. The expressions you compare can themselves be complex

expressions, as in the following example.

x / 45 * (y +17) >= System.Math.Sqrt(z) / (p ‐ (x * 16))

The preceding complex expression includes literals, variables, and function calls. The expressions on both sides of the

comparison operator are evaluated, and the resulting values are then compared using the >= comparison operator. If the

value of the expression on the left side is greater than or equal to the value of the expression on the right, the entire

expression evaluates to True; otherwise, it evaluates to False.

Expressions that compare values are most commonly used in If...Then constructions, as in the following example.

The = sign is a comparison operator as well as an assignment operator. When used as a comparison operator, it evaluates

whether the value on the left is equal to the value on the right, as shown in the following example.

You can also use a comparison expression anywhere a Boolean value is needed, such as in an If, While, Loop, or ElseIf

statement, or when assigning to or passing a value to a Boolean variable. In the following example, the value returned by

the comparison expression is assigned to a Boolean variable.

Visual Studio 2015

If x > 50 Then

' Insert code to run if x is greater than 50.

Else

' Insert code to run if x is less than or equal to 50.

End If

If x = 50 Then

' Insert code to continue program.

End If

VB

VB

VB

Value Comparisons (Visual Basic) https://msdn.microsoft.com/en-us/library/ft3z50dy(d=printer).aspx

1 of 2 02.09.2016 18:36

See Also

Boolean Expressions (Visual Basic)

Operators and Expressions in Visual Basic

Comparison Operators in Visual Basic

How to: Calculate Numeric Values (Visual Basic)

Operator Precedence in Visual Basic

© 2016 Microsoft

Dim x As Boolean

x = 50 < 30

' The preceding statement assigns False to x.

Value Comparisons (Visual Basic) https://msdn.microsoft.com/en-us/library/ft3z50dy(d=printer).aspx

2 of 2 02.09.2016 18:36

Boolean Expressions (Visual Basic)

A Boolean expression is an expression that evaluates to a value of the Boolean Data Type: True or False. Boolean

expressions can take several forms. The simplest is the direct comparison of the value of a Boolean variable to a Boolean

literal, as shown in the following example.

Two Meanings of the = Operator
Notice that the assignment statement newCustomer = True looks the same as the expression in the preceding example,

but it performs a different function and is used differently. In the preceding example, the expression newCustomer =

True represents a Boolean value, and the = sign is interpreted as a comparison operator. In a stand-alone statement, the

= sign is interpreted as an assignment operator and assigns the value on the right to the variable on the left. The

following example illustrates this.

For further information, see Value Comparisons (Visual Basic) and Statements (Visual Basic).

Comparison Operators
Comparison operators such as =, <, >, <>, <=, and >= produce Boolean expressions by comparing the expression on the

left side of the operator to the expression on the right side of the operator and evaluating the result as True or False. The

following example illustrates this.

42 < 81

Because 42 is less than 81, the Boolean expression in the preceding example evaluates to True. For more information on

this kind of expression, see Value Comparisons (Visual Basic).

Visual Studio 2015

If newCustomer = True Then

' Insert code to execute if newCustomer = True.

Else

' Insert code to execute if newCustomer = False.

End If

If newCustomer = True Then

 newCustomer = False

End If

VB

VB

Boolean Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/dya2szfk(d=printer).aspx

1 of 3 02.09.2016 18:37

Comparison Operators Combined with Logical Operators

Comparison expressions can be combined using logical operators to produce more complex Boolean expressions. The

following example demonstrates the use of comparison operators in conjunction with a logical operator.

x > y And x < 1000

In the preceding example, the value of the overall expression depends on the values of the expressions on each side of

the And operator. If both expressions are True, then the overall expression evaluates to True. If either expression is

False, then the entire expression evaluates to False.

Short-Circuiting Operators
The logical operators AndAlso and OrElse exhibit behavior known as short-circuiting. A short-circuiting operator

evaluates the left operand first. If the left operand determines the value of the entire expression, then program execution

proceeds without evaluating the right expression. The following example illustrates this.

In the preceding example, the operator evaluates the left expression, 45 < 12. Because the left expression evaluates to

False, the entire logical expression must evaluate to False. Program execution thus skips execution of the code within the

If block without evaluating the right expression, testFunction(3). This example does not call testFunction() because

the left expression falsifies the entire expression.

Similarly, if the left expression in a logical expression using OrElse evaluates to True, execution proceeds to the next line

of code without evaluating the right expression, because the left expression has already validated the entire expression.

Comparison with Non-Short-Circuiting Operators

By contrast, both sides of the logical operator are evaluated when the logical operators And and Or are used. The

following example illustrates this.

The preceding example calls testFunction() even though the left expression evaluates to False.

If 45 < 12 AndAlso testFunction(3) = 81 Then

' Add code to continue execution.

End If

If 45 < 12 And testFunction(3) = 81 Then

' Add code to continue execution.

End If

VB

VB

Boolean Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/dya2szfk(d=printer).aspx

2 of 3 02.09.2016 18:37

Parenthetical Expressions
You can use parentheses to control the order of evaluation of Boolean expressions. Expressions enclosed by parentheses

evaluate first. For multiple levels of nesting, precedence is granted to the most deeply nested expressions. Within

parentheses, evaluation proceeds according to the rules of operator precedence. For more information, see Operator

Precedence in Visual Basic.

See Also
Logical and Bitwise Operators in Visual Basic

Value Comparisons (Visual Basic)

Statements in Visual Basic

Comparison Operators (Visual Basic)

Efficient Combination of Operators (Visual Basic)

Operator Precedence in Visual Basic

Boolean Data Type (Visual Basic)

© 2016 Microsoft

Boolean Expressions (Visual Basic) https://msdn.microsoft.com/en-us/library/dya2szfk(d=printer).aspx

3 of 3 02.09.2016 18:37

Arithmetic Operators (Visual Basic)

The following are the arithmetic operators defined in Visual Basic.

^ Operator

* Operator

/ Operator

\ Operator

Mod Operator

+ Operator (unary and binary)

- Operator (unary and binary)

See Also

Operator Precedence in Visual Basic

Arithmetic Operators in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Arithmetic Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/w63yd7ax(d=printer).aspx

1 of 1 02.09.2016 18:37

Assignment Operators (Visual Basic)

The following are the assignment operators defined in Visual Basic.

= Operator

^= Operator

*= Operator

/= Operator

\= Operator

+= Operator

-= Operator

<<= Operator

>>= Operator

&= Operator

See Also

Operator Precedence in Visual Basic

Operators Listed by Functionality (Visual Basic)

Statements (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Assignment Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/3466w64d(d=printer).aspx

1 of 1 02.09.2016 18:39

Comparison Operators (Visual Basic)

The following are the comparison operators defined in Visual Basic.

< operator

<= operator

> operator

>= operator

= operator

<> operator

Is Operator (Visual Basic)

IsNot Operator (Visual Basic)

Like Operator (Visual Basic)

These operators compare two expressions to determine whether or not they are equal, and if not, how they differ. Is, IsNot,

and Like are discussed in detail on separate Help pages. The relational comparison operators are discussed in detail on this

page.

Syntax

Parts

result

Required. A Boolean value representing the result of the comparison.

expression

Required. Any expression.

comparisonoperator

Visual Studio 2015

 result = expression1 comparisonoperator expression2

result = object1 [Is | IsNot] object2

result = string Like pattern

Comparison Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/cey92b0t(d=printer).aspx

1 of 5 02.09.2016 18:39

Required. Any relational comparison operator.

object1, object2

Required. Any reference object names.

string

Required. Any String expression.

pattern

Required. Any String expression or range of characters.

Remarks
The following table contains a list of the relational comparison operators and the conditions that determine whether

result is True or False.

Operator True if False if

< (Less than) expression1 < expression2 expression1 >= expression2

<= (Less than or equal to) expression1 <= expression2 expression1 > expression2

> (Greater than) expression1 > expression2 expression1 <= expression2

>= (Greater than or equal to) expression1 >= expression2 expression1 < expression2

= (Equal to) expression1 = expression2 expression1 <> expression2

<> (Not equal to) expression1 <> expression2 expression1 = expression2

Note

The = Operator (Visual Basic) is also used as an assignment operator.

The Is operator, the IsNot operator, and the Like operator have specific comparison functionalities that differ from the

operators in the preceding table.

Comparing Numbers

When you compare an expression of type Single to one of type Double, the Single expression is converted to Double.

This behavior is opposite to the behavior found in Visual Basic 6.

Similarly, when you compare an expression of type Decimal to an expression of type Single or Double, the Decimal

expression is converted to Single or Double. For Decimal expressions, any fractional value less than 1E-28 might be

lost. Such fractional value loss may cause two values to compare as equal when they are not. For this reason, you

Comparison Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/cey92b0t(d=printer).aspx

2 of 5 02.09.2016 18:39

should take care when using equality (=) to compare two floating-point variables. It is safer to test whether the

absolute value of the difference between the two numbers is less than a small acceptable tolerance.

Floating-point Imprecision

When you work with floating-point numbers, keep in mind that they do not always have a precise representation in

memory. This could lead to unexpected results from certain operations, such as value comparison and the Mod

Operator (Visual Basic). For more information, see Troubleshooting Data Types (Visual Basic).

Comparing Strings

When you compare strings, the string expressions are evaluated based on their alphabetical sort order, which depends

on the Option Compare setting.

Option Compare Binary bases string comparisons on a sort order derived from the internal binary representations of

the characters. The sort order is determined by the code page. The following example shows a typical binary sort order.

A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø

Option Compare Text bases string comparisons on a case-insensitive, textual sort order determined by your

application's locale. When you set Option Compare Text and sort the characters in the preceding example, the

following text sort order applies:

(A=a) < (À= à) < (B=b) < (E=e) < (Ê= ê) < (Ø = ø) < (Z=z)

Locale Dependence

When you set Option Compare Text, the result of a string comparison can depend on the locale in which the

application is running. Two characters might compare as equal in one locale but not in another. If you are using a

string comparison to make important decisions, such as whether to accept an attempt to log on, you should be alert

to locale sensitivity. Consider either setting Option Compare Binary or calling the StrComp, which takes the locale

into account.

Typeless Programming with Relational Comparison Operators

The use of relational comparison operators with Object expressions is not allowed under Option Strict On. When

Option Strict is Off, and either expression1 or expression2 is an Object expression, the run-time types determine how

they are compared. The following table shows how the expressions are compared and the result from the comparison,

depending on the runtime type of the operands.

If operands are Comparison is

Both String Sort comparison based on string sorting characteristics.

Both numeric Objects converted to Double, numeric comparison.

Comparison Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/cey92b0t(d=printer).aspx

3 of 5 02.09.2016 18:39

One numeric and one String The String is converted to a Double and numeric comparison is performed. If the

String cannot be converted to Double, an InvalidCastException is thrown.

Either or both are reference

types other than String

An InvalidCastException is thrown.

Numeric comparisons treat Nothing as 0. String comparisons treat Nothing as "" (an empty string).

Overloading

The relational comparison operators (<. <=, >, >=, =, <>) can be overloaded, which means that a class or structure can

redefine their behavior when an operand has the type of that class or structure. If your code uses any of these operators

on such a class or structure, be sure you understand the redefined behavior. For more information, see Operator

Procedures (Visual Basic).

Notice that the = Operator (Visual Basic) can be overloaded only as a relational comparison operator, not as an

assignment operator.

Example
The following example shows various uses of relational comparison operators, which you use to compare expressions.

Relational comparison operators return a Boolean result that represents whether or not the stated expression evaluates to

True. When you apply the > and < operators to strings, the comparison is made using the normal alphabetical sorting

order of the strings. This order can be dependent on your locale setting. Whether the sort is case-sensitive or not depends

on the Option Compare setting.

In the preceding example, the first comparison returns False and the remaining comparisons return True.

See Also
InvalidCastException

= Operator (Visual Basic)

Operator Precedence in Visual Basic

Operators Listed by Functionality (Visual Basic)

Troubleshooting Data Types (Visual Basic)

Comparison Operators in Visual Basic

Dim testResult As Boolean

testResult = 45 < 35

testResult = 45 = 45

testResult = 4 <> 3

testResult = "5" > "4444"

VB

Comparison Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/cey92b0t(d=printer).aspx

4 of 5 02.09.2016 18:39

© 2016 Microsoft

Comparison Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/cey92b0t(d=printer).aspx

5 of 5 02.09.2016 18:39

Concatenation Operators (Visual Basic)

The following are the concatenation operators defined in Visual Basic.

& Operator

+ Operator

See Also

System.Text

StringBuilder

Operator Precedence in Visual Basic

Concatenation Operators in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Concatenation Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/ssh7ye8e(d=printer).aspx

1 of 1 02.09.2016 18:40

Logical/Bitwise Operators (Visual Basic)

The following are the logical/bitwise operators defined in Visual Basic.

And Operator (Visual Basic)

Not Operator (Visual Basic)

Or Operator (Visual Basic)

Xor Operator (Visual Basic)

AndAlso Operator (Visual Basic)

OrElse Operator (Visual Basic)

IsFalse Operator (Visual Basic)

IsTrue Operator (Visual Basic)

See Also

Operator Precedence in Visual Basic

Logical and Bitwise Operators in Visual Basic

© 2016 Microsoft

Visual Studio 2015

Logical/Bitwise Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/2h9cz2eb(d=printer).aspx

1 of 1 02.09.2016 18:40

Bit Shift Operators (Visual Basic)

The following are the bit shift operators defined in Visual Basic.

<< Operator

>> Operator

See Also

Operators Listed by Functionality (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Bit Shift Operators (Visual Basic) https://msdn.microsoft.com/en-us/library/2d9yb87a(d=printer).aspx

1 of 1 02.09.2016 18:40

