
Objects and Classes in Visual Basic

An object is a combination of code and data that can be treated as a unit. An object can be a piece of an application, like a

control or a form. An entire application can also be an object.

When you create an application in Visual Basic, you constantly work with objects. You can use objects provided by Visual

Basic, such as controls, forms, and data access objects. You can also use objects from other applications within your Visual

Basic application. You can even create your own objects and define additional properties and methods for them. Objects act

like prefabricated building blocks for programs — they let you write a piece of code once and reuse it over and over.

This topic discusses objects in detail.

Objects and Classes
Each object in Visual Basic is defined by a class. A class describes the variables, properties, procedures, and events of an

object. Objects are instances of classes; you can create as many objects you need once you have defined a class.

To understand the relationship between an object and its class, think of cookie cutters and cookies. The cookie cutter is

the class. It defines the characteristics of each cookie, for example size and shape. The class is used to create objects. The

objects are the cookies.

You must create an object before you can access its members.

To create an object from a class

Determine from which class you want to create an object.1.

Write a Dim Statement (Visual Basic) to create a variable to which you can assign a class instance. The variable

should be of the type of the desired class.

2.

Add the New Operator (Visual Basic) keyword to initialize the variable to a new instance of the class.3.

You can now access the members of the class through the object variable.4.

Visual Studio 2015

Dim nextCustomer As customer

Dim nextCustomer As New customer

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

1 of 8 02.09.2016 18:24

Note

Whenever possible, you should declare the variable to be of the class type you intend to assign to it. This is called early

binding. If you do not know the class type at compile time, you can invoke late binding by declaring the variable to be

of the Object Data Type. However, late binding can make performance slower and limit access to the run-time object's

members. For more information, see Object Variable Declaration (Visual Basic).

Multiple Instances

Objects newly created from a class are often identical to each other. Once they exist as individual objects, however,

their variables and properties can be changed independently of the other instances. For example, if you add three

check boxes to a form, each check box object is an instance of the CheckBox class. The individual CheckBox objects

share a common set of characteristics and capabilities (properties, variables, procedures, and events) defined by the

class. However, each has its own name, can be separately enabled and disabled, and can be placed in a different

location on the form.

Object Members
An object is an element of an application, representing an instance of a class. Fields, properties, methods, and events are

the building blocks of objects and constitute their members.

Member Access

You access a member of an object by specifying, in order, the name of the object variable, a period (.), and the name of

the member. The following example sets the Text property of a Label object.

IntelliSense Listing of Members

IntelliSense lists members of a class when you invoke its List Members option, for example when you type a period (.)

as a member-access operator. If you type the period following the name of a variable declared as an instance of that

class, IntelliSense lists all the instance members and none of the shared members. If you type the period following

the class name itself, IntelliSense lists all the shared members and none of the instance members. For more

information, see Using IntelliSense.

Fields and Properties

Fields and properties represent information stored in an object. You retrieve and set their values with assignment

nextCustomer.accountNumber = lastAccountNumber + 1

warningLabel.Text = "Data not saved"

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

2 of 8 02.09.2016 18:24

statements the same way you retrieve and set local variables in a procedure. The following example retrieves the Width

property and sets the ForeColor property of a Label object.

Note that a field is also called a member variable.

Use property procedures when:

You need to control when and how a value is set or retrieved.

The property has a well-defined set of values that need to be validated.

Setting the value causes some perceptible change in the object's state, such as an IsVisible property.

Setting the property causes changes to other internal variables or to the values of other properties.

A set of steps must be performed before the property can be set or retrieved.

Use fields when:

The value is of a self-validating type. For example, an error or automatic data conversion occurs if a value other

than True or False is assigned to a Boolean variable.

Any value in the range supported by the data type is valid. This is true of many properties of type Single or

Double.

The property is a String data type, and there is no constraint on the size or value of the string.

For more information, see Property Procedures (Visual Basic).

Methods

Dim warningWidth As Integer = warningLabel.Width

warningLabel.ForeColor = System.Drawing.Color.Red

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

3 of 8 02.09.2016 18:24

A method is an action that an object can perform. For example, Add is a method of the ComboBox object that adds a

new entry to a combo box.

The following example demonstrates the Start method of a Timer object.

Note that a method is simply a procedure that is exposed by an object.

For more information, see Procedures in Visual Basic.

Events

An event is an action recognized by an object, such as clicking the mouse or pressing a key, and for which you can write

code to respond. Events can occur as a result of a user action or program code, or they can be caused by the system.

Code that signals an event is said to raise the event, and code that responds to it is said to handle it.

You can also develop your own custom events to be raised by your objects and handled by other objects. For more

information, see Events (Visual Basic).

Instance Members and Shared Members

When you create an object from a class, the result is an instance of that class. Members that are not declared with the

Shared (Visual Basic) keyword are instance members, which belong strictly to that particular instance. An instance

member in one instance is independent of the same member in another instance of the same class. An instance member

variable, for example, can have different values in different instances.

Members declared with the Shared keyword are shared members, which belong to the class as a whole and not to any

particular instance. A shared member exists only once, no matter how many instances of its class you create, or even if

you create no instances. A shared member variable, for example, has only one value, which is available to all code that

can access the class.

Accessing Nonshared Members

To access a nonshared member of an object

Make sure the object has been created from its class and assigned to an object variable.1.

In the statement that accesses the member, follow the object variable name with the member-access operator

(.) and then the member name.

2.

Dim safetyTimer As New System.Windows.Forms.Timer

safetyTimer.Start()

Dim secondForm As New System.Windows.Forms.Form

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

4 of 8 02.09.2016 18:24

Accessing Shared Members

To access a shared member of an object

Follow the class name with the member-access operator (.) and then the member name. You should always

access a Shared member of the object directly through the class name.

If you have already created an object from the class, you can alternatively access a Shared member through

the object's variable.

Differences Between Classes and Modules

The main difference between classes and modules is that classes can be instantiated as objects while standard modules

cannot. Because there is only one copy of a standard module's data, when one part of your program changes a public

variable in a standard module, any other part of the program gets the same value if it then reads that variable. In

contrast, object data exists separately for each instantiated object. Another difference is that unlike standard modules,

classes can implement interfaces.

Note

When the Shared modifier is applied to a class member, it is associated with the class itself instead of a particular

instance of the class. The member is accessed directly by using the class name, the same way module members are

accessed.

Classes and modules also use different scopes for their members. Members defined within a class are scoped within a

specific instance of the class and exist only for the lifetime of the object. To access class members from outside a class,

you must use fully qualified names in the format of Object.Member.

On the other hand, members declared within a module are publicly accessible by default, and can be accessed by any

code that can access the module. This means that variables in a standard module are effectively global variables

because they are visible from anywhere in your project, and they exist for the life of the program.

Reusing Classes and Objects
Objects let you declare variables and procedures once and then reuse them whenever needed. For example, if you want to

secondForm.Show()

MsgBox("This computer is called " & Environment.MachineName)

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

5 of 8 02.09.2016 18:24

add a spelling checker to an application you could define all the variables and support functions to provide spell-

checking functionality. If you create your spelling checker as a class, you can then reuse it in other applications by adding

a reference to the compiled assembly. Better yet, you may be able to save yourself some work by using a spelling checker

class that someone else has already developed.

The .NET Framework provides many examples of components that are available for use. The following example uses the

TimeZone class in the System namespace. TimeZone provides members that allow you to retrieve information about the

time zone of the current computer system.

In the preceding example, the first Dim Statement (Visual Basic) declares an object variable of type TimeZone and assigns

to it a TimeZone object returned by the CurrentTimeZone property.

Relationships Among Objects
Objects can be related to each other in several ways. The principal kinds of relationship are hierarchical and containment.

Hierarchical Relationship

When classes are derived from more fundamental classes, they are said to have a hierarchical relationship. Class

hierarchies are useful when describing items that are a subtype of a more general class.

In the following example, suppose you want to define a special kind of Button that acts like a normal Button but also

exposes a method that reverses the foreground and background colors.

To define a class is derived from an already existing class

Use a Class Statement (Visual Basic) to define a class from which to create the object you need.

Public Class reversibleButton

Be sure an End Class statement follows the last line of code in your class. By default, the integrated

development environment (IDE) automatically generates an End Class when you enter a Class statement.

1.

Follow the Class statement immediately with an Inherits Statement. Specify the class from which your new class

derives.

Inherits System.Windows.Forms.Button

2.

Public Sub examineTimeZone()

 Dim tz As System.TimeZone = System.TimeZone.CurrentTimeZone

 Dim s As String = "Current time zone is "

 s &= CStr(tz.GetUtcOffset(Now).Hours) & " hours and "

 s &= CStr(tz.GetUtcOffset(Now).Minutes) & " minutes "

 s &= "different from UTC (coordinated universal time)"

 s &= vbCrLf & "and is currently "

 If tz.IsDaylightSavingTime(Now) = False Then s &= "not "

 s &= "on ""summer time""."

 MsgBox(s)

End Sub

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

6 of 8 02.09.2016 18:24

Your new class inherits all the members defined by the base class.

Add the code for the additional members your derived class exposes. For example, you might add a

reverseColors method, and your derived class might look as follows:

If you create an object from the reversibleButton class, it can access all the members of the Button class, as

well as the reverseColors method and any other new members you define on reversibleButton.

3.

Derived classes inherit members from the class they are based on, allowing you to add complexity as you progress in a

class hierarchy. For more information, see Inheritance Basics (Visual Basic).

Compiling the Code

Be sure the compiler can access the class from which you intend to derive your new class. This might mean fully

qualifying its name, as in the preceding example, or identifying its namespace in an Imports Statement (.NET

Namespace and Type). If the class is in a different project, you might need to add a reference to that project. For

more information, see Managing references in a project.

Containment Relationship

Another way that objects can be related is a containment relationship. Container objects logically encapsulate other

objects. For example, the OperatingSystem object logically contains a Version object, which it returns through its

Version property. Note that the container object does not physically contain any other object.

Collections

One particular type of object containment is represented by collections. Collections are groups of similar objects that

can be enumerated. Visual Basic supports a specific syntax in the For Each...Next Statement (Visual Basic) that allows

you to iterate through the items of a collection. Additionally, collections often allow you to use an Item to retrieve

elements by their index or by associating them with a unique string. Collections can be easier to use than arrays

because they allow you to add or remove items without using indexes. Because of their ease of use, collections are

often used to store forms and controls.

Public Class reversibleButton

 Inherits System.Windows.Forms.Button

 Public Sub reverseColors()

 Dim saveColor As System.Drawing.Color = Me.BackColor

 Me.BackColor = Me.ForeColor

 Me.ForeColor = saveColor

 End Sub

End Class

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

7 of 8 02.09.2016 18:24

Related Topics

Walkthrough: Defining Classes (Visual Basic)

Provides a step-by-step description of how to create a class.

Overloaded Properties and Methods (Visual Basic)

Overloaded Properties and Methods

Inheritance Basics (Visual Basic)

Covers inheritance modifiers, overriding methods and properties, MyClass, and MyBase.

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic)

Discusses creating and disposing of class instances.

Anonymous Types (Visual Basic)

Describes how to create and use anonymous types, which allow you to create objects without writing a class

definition for the data type.

Object Initializers: Named and Anonymous Types (Visual Basic)

Discusses object initializers, which are used to create instances of named and anonymous types by using a single

expression.

How to: Infer Property Names and Types in Anonymous Type Declarations (Visual Basic)

Explains how to infer property names and types in anonymous type declarations. Provides examples of successful

and unsuccessful inference.

© 2016 Microsoft

Objects and Classes in Visual Basic https://msdn.microsoft.com/en-us/library/527aztek(d=printer).aspx

8 of 8 02.09.2016 18:24

Walkthrough: Defining Classes (Visual Basic)

This walkthrough demonstrates how to define classes, which you can then use to create objects. It also shows you how to

add properties and methods to the new class, and demonstrates how to initialize an object.

Note

Your computer might show different names or locations for some of the Visual Studio user interface elements in the

following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.

For more information, see Personalizing the Visual Studio IDE.

To define a class

Create a project by clicking New Project on the File menu. The New Project dialog box appears.1.

Select Windows Application from the list of Visual Basic project templates to display the new project.2.

Add a new class to the project by clicking Add Class on the Project menu. The Add New Item dialog box appears.3.

Select the Class template.4.

Name the new class UserNameInfo.vb, and then click Add to display the code for the new class.

Note

You can use the Visual Basic Code Editor to add a class to your startup form by typing the Class keyword

followed by the name of the new class. The Code Editor provides a corresponding End Class statement for you.

5.

Define a private field for the class by adding the following code between the Class and End Class statements:

Declaring the field as Private means it can be used only within the class. You can make fields available from outside a

6.

Visual Studio 2015

Public Class UserNameInfo

End Class

Private userNameValue As String

VB

VB

Walkthrough: Defining Classes (Visual Basic) https://msdn.microsoft.com/en-us/library/xtka85tz(d=printer).aspx

1 of 3 02.09.2016 18:25

class by using access modifiers such as Public that provide more access. For more information, see Access Levels in

Visual Basic.

Define a property for the class by adding the following code:7.

Define a method for the class by adding the following code:8.

Define a parameterized constructor for the new class by adding a procedure named Sub New:

The Sub New constructor is called automatically when an object based on this class is created. This constructor sets

the value of the field that holds the user name.

9.

To create a button to test the class

Change the startup form to design mode by right-clicking its name in Solution Explorer and then clicking View

Designer. By default, the startup form for Windows Application projects is named Form1.vb. The main form will then

appear.

1.

Add a button to the main form and double-click it to display the code for the Button1_Click event handler. Add

the following code to call the test procedure:

2.

Public Property UserName() As String

Get

' Gets the property value.

Return userNameValue

End Get

Set(ByVal Value As String)

' Sets the property value.

 userNameValue = Value

End Set

End Property

Public Sub Capitalize()

' Capitalize the value of the property.

 userNameValue = UCase(userNameValue)

End Sub

Public Sub New(ByVal UserName As String)

' Set the property value.

Me.UserName = UserName

End Sub

VB

VB

VB

VB

Walkthrough: Defining Classes (Visual Basic) https://msdn.microsoft.com/en-us/library/xtka85tz(d=printer).aspx

2 of 3 02.09.2016 18:25

To run your application

Run your application by pressing F5. Click the button on the form to call the test procedure. It displays a message

stating that the original UserName is "MOORE, BOBBY", because the procedure called the Capitalize method of the

object.

1.

Click OK to dismiss the message box. The Button1 Click procedure changes the value of the UserName property

and displays a message stating that the new value of UserName is "Worden, Joe".

2.

See Also
Object-Oriented Programming (C# and Visual Basic)

Objects and Classes in Visual Basic

© 2016 Microsoft

' Create an instance of the class.

Dim user As New UserNameInfo("Moore, Bobby")

' Capitalize the value of the property.

user.Capitalize()

' Display the value of the property.

MsgBox("The original UserName is: " & user.UserName)

' Change the value of the property.

user.UserName = "Worden, Joe"

' Redisplay the value of the property.

MsgBox("The new UserName is: " & user.UserName)

Walkthrough: Defining Classes (Visual Basic) https://msdn.microsoft.com/en-us/library/xtka85tz(d=printer).aspx

3 of 3 02.09.2016 18:25

Overloaded Properties and Methods (Visual
Basic)

Overloading is the creation of more than one procedure, instance constructor, or property in a class with the same name but

different argument types.

Overloading Usage
Overloading is especially useful when your object model dictates that you employ identical names for procedures that

operate on different data types. For example, a class that can display several different data types could have Display

procedures that look like this:

Without overloading, you would need to create distinct names for each procedure, even though they do the same thing,

as shown next:

Overloading makes it easier to use properties or methods because it provides a choice of data types that can be used. For

example, the overloaded Display method discussed previously can be called with any of the following lines of code:

Visual Studio 2015

Overloads Sub Display(ByVal theChar As Char)

' Add code that displays Char data.

End Sub

Overloads Sub Display(ByVal theInteger As Integer)

' Add code that displays Integer data.

End Sub

Overloads Sub Display(ByVal theDouble As Double)

' Add code that displays Double data.

End Sub

Sub DisplayChar(ByVal theChar As Char)

' Add code that displays Char data.

End Sub

Sub DisplayInt(ByVal theInteger As Integer)

' Add code that displays Integer data.

End Sub

Sub DisplayDouble(ByVal theDouble As Double)

' Add code that displays Double data.

End Sub

VB

VB

VB

Overloaded Properties and Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/1z71zbeh(d=printer).aspx

1 of 4 02.09.2016 18:26

At run time, Visual Basic calls the correct procedure based on the data types of the parameters you specify.

Overloading Rules
You create an overloaded member for a class by adding two or more properties or methods with the same name. Except

for overloaded derived members, each overloaded member must have different parameter lists, and the following items

cannot be used as a differentiating feature when overloading a property or procedure:

Modifiers, such as ByVal or ByRef, that apply to a member, or parameters of the member.

Names of parameters

Return types of procedures

The Overloads keyword is optional when overloading, but if any overloaded member uses the Overloads keyword, then

all other overloaded members with the same name must also specify this keyword.

Derived classes can overload inherited members with members that have identical parameters and parameter types, a

process known as shadowing by name and signature. If the Overloads keyword is used when shadowing by name and

signature, the derived class's implementation of the member will be used instead of the implementation in the base class,

and all other overloads for that member will be available to instances of the derived class.

If the Overloads keyword is omitted when overloading an inherited member with a member that has identical parameters

and parameter types, then the overloading is called shadowing by name. Shadowing by name replaces the inherited

implementation of a member, and it makes all other overloads unavailable to instances of the derived class and its

decedents.

The Overloads and Shadows modifiers cannot both be used with the same property or method.

Example

The following example creates overloaded methods that accept either a String or Decimal representation of a dollar

amount and return a string containing the sales tax.

To use this example to create an overloaded method

Open a new project and add a class named TaxClass.1.

Add the following code to the TaxClass class.2.

' Call Display with a literal of type Char.

Display("9"c)

' Call Display with a literal of type Integer.

Display(9)

' Call Display with a literal of type Double.

Display(9.9R)

VB

Overloaded Properties and Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/1z71zbeh(d=printer).aspx

2 of 4 02.09.2016 18:26

Add the following procedure to your form.3.

Add a button to your form and call the ShowTax procedure from the Button1_Click event of the button.4.

Run the project and click the button on the form to test the overloaded ShowTax procedure.5.

At run time, the compiler chooses the appropriate overloaded function that matches the parameters being used. When

you click the button, the overloaded method is called first with a Price parameter that is a string and the message,

"Price is a String. Tax is $5.12" is displayed. TaxAmount is called with a Decimal value the second time and the

message, "Price is a Decimal. Tax is $5.12" is displayed.

See Also
Objects and Classes in Visual Basic

Shadowing in Visual Basic

Sub Statement (Visual Basic)

Inheritance Basics (Visual Basic)

Shadows (Visual Basic)

Public Class TaxClass

Overloads Function TaxAmount(ByVal decPrice As Decimal,

ByVal TaxRate As Single) As String

 TaxAmount = "Price is a Decimal. Tax is $" &

 (CStr(decPrice * TaxRate))

End Function

Overloads Function TaxAmount(ByVal strPrice As String,

ByVal TaxRate As Single) As String

 TaxAmount = "Price is a String. Tax is $" &

CStr((CDec(strPrice) * TaxRate))

End Function

End Class

Sub ShowTax()

' 8% tax rate.

Const TaxRate As Single = 0.08

' $64.00 Purchase as a String.

Dim strPrice As String = "64.00"

' $64.00 Purchase as a Decimal.

Dim decPrice As Decimal = 64

Dim aclass As New TaxClass

'Call the same method with two different kinds of data.

 MsgBox(aclass.TaxAmount(strPrice, TaxRate))

 MsgBox(aclass.TaxAmount(decPrice, TaxRate))

End Sub

VB

Overloaded Properties and Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/1z71zbeh(d=printer).aspx

3 of 4 02.09.2016 18:26

ByVal (Visual Basic)

ByRef (Visual Basic)

Overloads (Visual Basic)

Shadows (Visual Basic)

© 2016 Microsoft

Overloaded Properties and Methods (Visual Basic) https://msdn.microsoft.com/en-us/library/1z71zbeh(d=printer).aspx

4 of 4 02.09.2016 18:26

Inheritance Basics (Visual Basic)

The Inherits statement is used to declare a new class, called a derived class, based on an existing class, known as a base class.

Derived classes inherit, and can extend, the properties, methods, events, fields, and constants defined in the base class. The

following section describes some of the rules for inheritance, and the modifiers you can use to change the way classes inherit

or are inherited:

By default, all classes are inheritable unless marked with the NotInheritable keyword. Classes can inherit from other

classes in your project or from classes in other assemblies that your project references.

Unlike languages that allow multiple inheritance, Visual Basic allows only single inheritance in classes; that is, derived

classes can have only one base class. Although multiple inheritance is not allowed in classes, classes can implement

multiple interfaces, which can effectively accomplish the same ends.

To prevent exposing restricted items in a base class, the access type of a derived class must be equal to or more

restrictive than its base class. For example, a Public class cannot inherit a Friend or a Private class, and a Friend class

cannot inherit a Private class.

Inheritance Modifiers
Visual Basic introduces the following class-level statements and modifiers to support inheritance:

Inherits statement — Specifies the base class.

NotInheritable modifier — Prevents programmers from using the class as a base class.

MustInherit modifier — Specifies that the class is intended for use as a base class only. Instances of MustInherit

classes cannot be created directly; they can only be created as base class instances of a derived class. (Other

programming languages, such as C++ and C#, use the term abstract class to describe such a class.)

Overriding Properties and Methods in Derived Classes
By default, a derived class inherits properties and methods from its base class. If an inherited property or method has to

behave differently in the derived class it can be overridden. That is, you can define a new implementation of the method in

the derived class. The following modifiers are used to control how properties and methods are overridden:

Overridable — Allows a property or method in a class to be overridden in a derived class.

Overrides — Overrides an Overridable property or method defined in the base class.

NotOverridable — Prevents a property or method from being overridden in an inheriting class. By default, Public

Visual Studio 2015

Inheritance Basics (Visual Basic) https://msdn.microsoft.com/en-us/library/c8shwxa5(d=printer).aspx

1 of 5 02.09.2016 18:26

methods are NotOverridable.

MustOverride — Requires that a derived class override the property or method. When the MustOverride

keyword is used, the method definition consists of just the Sub, Function, or Property statement. No other

statements are allowed, and specifically there is no End Sub or End Function statement. MustOverride methods

must be declared in MustInherit classes.

Suppose you want to define classes to handle payroll. You could define a generic Payroll class that contains a

RunPayroll method that calculates payroll for a typical week. You could then use Payroll as a base class for a more

specialized BonusPayroll class, which could be used when distributing employee bonuses.

The BonusPayroll class can inherit, and override, the PayEmployee method defined in the base Payroll class.

The following example defines a base class, Payroll, and a derived class, BonusPayroll, which overrides an inherited

method, PayEmployee. A procedure, RunPayroll, creates and then passes a Payroll object and a BonusPayroll object

to a function, Pay, that executes the PayEmployee method of both objects.

VB

Inheritance Basics (Visual Basic) https://msdn.microsoft.com/en-us/library/c8shwxa5(d=printer).aspx

2 of 5 02.09.2016 18:26

The MyBase Keyword
The MyBase keyword behaves like an object variable that refers to the base class of the current instance of a class.

MyBase is frequently used to access base class members that are overridden or shadowed in a derived class. In particular,

MyBase.New is used to explicitly call a base class constructor from a derived class constructor.

For example, suppose you are designing a derived class that overrides a method inherited from the base class. The

overridden method can call the method in the base class and modify the return value as shown in the following code

fragment:

Const BonusRate As Decimal = 1.45D

Const PayRate As Decimal = 14.75D

Class Payroll

Overridable Function PayEmployee(

ByVal HoursWorked As Decimal,

ByVal PayRate As Decimal) As Decimal

 PayEmployee = HoursWorked * PayRate

End Function

End Class

Class BonusPayroll

Inherits Payroll

Overrides Function PayEmployee(

ByVal HoursWorked As Decimal,

ByVal PayRate As Decimal) As Decimal

' The following code calls the original method in the base

' class, and then modifies the returned value.

 PayEmployee = MyBase.PayEmployee(HoursWorked, PayRate) * BonusRate

End Function

End Class

Sub RunPayroll()

Dim PayrollItem As Payroll = New Payroll

Dim BonusPayrollItem As New BonusPayroll

Dim HoursWorked As Decimal = 40

 MsgBox("Normal pay is: " &

 PayrollItem.PayEmployee(HoursWorked, PayRate))

 MsgBox("Pay with bonus is: " &

 BonusPayrollItem.PayEmployee(HoursWorked, PayRate))

End Sub

Class DerivedClass

Inherits BaseClass

Public Overrides Function CalculateShipping(

VB

Inheritance Basics (Visual Basic) https://msdn.microsoft.com/en-us/library/c8shwxa5(d=printer).aspx

3 of 5 02.09.2016 18:26

The following list describes restrictions on using MyBase:

MyBase refers to the immediate base class and its inherited members. It cannot be used to access Private

members in the class.

MyBase is a keyword, not a real object. MyBase cannot be assigned to a variable, passed to procedures, or used

in an Is comparison.

The method that MyBase qualifies does not have to be defined in the immediate base class; it may instead be

defined in an indirectly inherited base class. In order for a reference qualified by MyBase to compile correctly,

some base class must contain a method matching the name and types of parameters that appear in the call.

You cannot use MyBase to call MustOverride base class methods.

MyBase cannot be used to qualify itself. Therefore, the following code is not valid:

MyBase.MyBase.BtnOK_Click()

MyBase cannot be used in modules.

MyBase cannot be used to access base class members that are marked as Friend if the base class is in a different

assembly.

For more information and another example, see How to: Access a Variable Hidden by a Derived Class (Visual Basic).

The MyClass Keyword
The MyClass keyword behaves like an object variable that refers to the current instance of a class as originally

implemented. MyClass resembles Me, but every method and property call on MyClass is treated as if the method or

property were NotOverridable (Visual Basic). Therefore, the method or property is not affected by overriding in a derived

class.

MyClass is a keyword, not a real object. MyClass cannot be assigned to a variable, passed to procedures, or used

in an Is comparison.

MyClass refers to the containing class and its inherited members.

MyClass can be used as a qualifier for Shared members.

MyClass cannot be used inside a Shared method, but can be used inside an instance method to access a shared

member of a class.

ByVal Dist As Double,

ByVal Rate As Double) As Double

' Call the method in the base class and modify the return value.

Return MyBase.CalculateShipping(Dist, Rate) * 2

End Function

End Class

Inheritance Basics (Visual Basic) https://msdn.microsoft.com/en-us/library/c8shwxa5(d=printer).aspx

4 of 5 02.09.2016 18:26

MyClass cannot be used in standard modules.

MyClass can be used to qualify a method that is defined in a base class and that has no implementation of the

method provided in that class. Such a reference has the same meaning as MyBase.Method.

The following example compares Me and MyClass.

Even though derivedClass overrides testMethod, the MyClass keyword in useMyClass nullifies the effects of

overriding, and the compiler resolves the call to the base class version of testMethod.

See Also
Inherits Statement

Me, My, MyBase, and MyClass in Visual Basic

© 2016 Microsoft

Class baseClass

 Public Overridable Sub testMethod()

 MsgBox("Base class string")

 End Sub

 Public Sub useMe()

 ' The following call uses the calling class's method, even if

 ' that method is an override.

 Me.testMethod()

 End Sub

 Public Sub useMyClass()

 ' The following call uses this instance's method and not any

 ' override.

 MyClass.testMethod()

 End Sub

End Class

Class derivedClass : Inherits baseClass

 Public Overrides Sub testMethod()

 MsgBox("Derived class string")

 End Sub

End Class

Class testClasses

 Sub startHere()

 Dim testObj As derivedClass = New derivedClass()

 ' The following call displays "Derived class string".

 testObj.useMe()

 ' The following call displays "Base class string".

 testObj.useMyClass()

 End Sub

End Class

Inheritance Basics (Visual Basic) https://msdn.microsoft.com/en-us/library/c8shwxa5(d=printer).aspx

5 of 5 02.09.2016 18:26

Object Lifetime: How Objects Are Created
and Destroyed (Visual Basic)

An instance of a class, an object, is created by using the New keyword. Initialization tasks often must be performed on new

objects before they are used. Common initialization tasks include opening files, connecting to databases, and reading values

of registry keys. Visual Basic controls the initialization of new objects using procedures called constructors (special methods

that allow control over initialization).

After an object leaves scope, it is released by the common language runtime (CLR). Visual Basic controls the release of

system resources using procedures called destructors. Together, constructors and destructors support the creation of robust

and predictable class libraries.

Using Constructors and Destructors
Constructors and destructors control the creation and destruction of objects. The Sub New and Sub Finalize procedures

in Visual Basic initialize and destroy objects; they replace the Class_Initialize and Class_Terminate methods used in

Visual Basic 6.0 and earlier versions.

Sub New

The Sub New constructor can run only once when a class is created. It cannot be called explicitly anywhere other than

in the first line of code of another constructor from either the same class or from a derived class. Furthermore, the code

in the Sub New method always runs before any other code in a class. Visual Basic 2005 and later versions implicitly

create a Sub New constructor at run time if you do not explicitly define a Sub New procedure for a class.

To create a constructor for a class, create a procedure named Sub New anywhere in the class definition. To create a

parameterized constructor, specify the names and data types of arguments to Sub New just as you would specify

arguments for any other procedure, as in the following code:

Constructors are frequently overloaded, as in the following code:

When you define a class derived from another class, the first line of a constructor must be a call to the constructor of

the base class, unless the base class has an accessible constructor that takes no parameters. A call to the base class that

contains the above constructor, for example, would be MyBase.New(s). Otherwise, MyBase.New is optional, and the

Visual Basic runtime calls it implicitly.

Visual Studio 2015

Sub New(ByVal s As String)

Sub New(ByVal s As String, i As Integer)

VB

VB

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

1 of 6 02.09.2016 18:26

After you write the code to call the parent object's constructor, you can add any additional initialization code to the

Sub New procedure. Sub New can accept arguments when called as a parameterized constructor. These parameters

are passed from the procedure calling the constructor, for example, Dim AnObject As New ThisClass(X).

Sub Finalize

Before releasing objects, the CLR automatically calls the Finalize method for objects that define a Sub Finalize

procedure. The Finalize method can contain code that needs to execute just before an object is destroyed, such as

code for closing files and saving state information. There is a slight performance penalty for executing Sub Finalize, so

you should define a Sub Finalize method only when you need to release objects explicitly.

Note

The garbage collector in the CLR does not (and cannot) dispose of unmanaged objects, objects that the operating

system executes directly, outside the CLR environment. This is because different unmanaged objects must be

disposed of in different ways. That information is not directly associated with the unmanaged object; it must be

found in the documentation for the object. A class that uses unmanaged objects must dispose of them in its

Finalize method.

The Finalize destructor is a protected method that can be called only from the class it belongs to, or from derived

classes. The system calls Finalize automatically when an object is destroyed, so you should not explicitly call Finalize

from outside of a derived class's Finalize implementation.

Unlike Class_Terminate, which executes as soon as an object is set to nothing, there is usually a delay between when

an object loses scope and when Visual Basic calls the Finalize destructor. Visual Basic 2005 and later versions allow for

a second kind of destructor, Dispose, which can be explicitly called at any time to immediately release resources.

Note

A Finalize destructor should not throw exceptions, because they cannot be handled by the application and can

cause the application to terminate.

How New and Finalize Methods Work in a Class Hierarchy

Whenever an instance of a class is created, the common language runtime (CLR) attempts to execute a procedure

named New, if it exists in that object. New is a type of procedure called a constructor that is used to initialize new

objects before any other code in an object executes. A New constructor can be used to open files, connect to

databases, initialize variables, and take care of any other tasks that need to be done before an object can be used.

When an instance of a derived class is created, the Sub New constructor of the base class executes first, followed by

constructors in derived classes. This happens because the first line of code in a Sub New constructor uses the syntax

MyBase.New()to call the constructor of the class immediately above itself in the class hierarchy. The Sub New

constructor is then called for each class in the class hierarchy until the constructor for the base class is reached. At that

point, the code in the constructor for the base class executes, followed by the code in each constructor in all derived

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

2 of 6 02.09.2016 18:26

classes and the code in the most derived classes is executed last.

When an object is no longer needed, the CLR calls the Finalize method for that object before freeing its memory. The

Finalize method is called a destructor because it performs cleanup tasks, such as saving state information, closing files

and connections to databases, and other tasks that must be done before releasing the object.

IDisposable Interface
Class instances often control resources not managed by the CLR, such as Windows handles and database connections.

These resources must be disposed of in the Finalize method of the class, so that they will be released when the object is

destroyed by the garbage collector. However, the garbage collector destroys objects only when the CLR requires more

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

3 of 6 02.09.2016 18:26

free memory. This means that the resources may not be released until long after the object goes out of scope.

To supplement garbage collection, your classes can provide a mechanism to actively manage system resources if they

implement the IDisposable interface. IDisposable has one method, Dispose, which clients should call when they finish

using an object. You can use the Dispose method to immediately release resources and perform tasks such as closing files

and database connections. Unlike the Finalize destructor, the Dispose method is not called automatically. Clients of a

class must explicitly call Dispose when you want to immediately release resources.

Implementing IDisposable

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

4 of 6 02.09.2016 18:26

A class that implements the IDisposable interface should include these sections of code:

A field for keeping track of whether the object has been disposed:

An overload of the Dispose that frees the class's resources. This method should be called by the Dispose and

Finalize methods of the base class:

An implementation of Dispose that contains only the following code:

An override of the Finalize method that contains only the following code:

Deriving from a Class that Implements IDisposable

A class that derives from a base class that implements the IDisposable interface does not need to override any of the

base methods unless it uses additional resources that need to be disposed. In that situation, the derived class should

override the base class's Dispose(disposing) method to dispose of the derived class's resources. This override must

call the base class's Dispose(disposing) method.

Protected disposed As Boolean = False

Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 If Not Me.disposed Then

 If disposing Then

 ' Insert code to free managed resources.

 End If

 ' Insert code to free unmanaged resources.

 End If

 Me.disposed = True

End Sub

Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()

 Dispose(False)

 MyBase.Finalize()

End Sub

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

5 of 6 02.09.2016 18:26

A derived class should not override the base class's Dispose and Finalize methods. When those methods are called

from an instance of the derived class, the base class's implementation of those methods call the derived class's override

of the Dispose(disposing) method.

Garbage Collection and the Finalize Destructor
The .NET Framework uses the reference-tracing garbage collection system to periodically release unused resources. Visual

Basic 6.0 and earlier versions used a different system called reference counting to manage resources. Although both

systems perform the same function automatically, there are a few important differences.

The CLR periodically destroys objects when the system determines that such objects are no longer needed. Objects are

released more quickly when system resources are in short supply, and less frequently otherwise. The delay between when

an object loses scope and when the CLR releases it means that, unlike with objects in Visual Basic 6.0 and earlier versions,

you cannot determine exactly when the object will be destroyed. In such a situation, objects are said to have

non-deterministic lifetime. In most cases, non-deterministic lifetime does not change how you write applications, as long

as you remember that the Finalize destructor may not immediately execute when an object loses scope.

Another difference between the garbage-collection systems involves the use of Nothing. To take advantage of reference

counting in Visual Basic 6.0 and earlier versions, programmers sometimes assigned Nothing to object variables to release

the references those variables held. If the variable held the last reference to the object, the object's resources were

released immediately. In later versions of Visual Basic, while there may be cases in which this procedure is still valuable,

performing it never causes the referenced object to release its resources immediately. To release resources immediately,

use the object's Dispose method, if available. The only time you should set a variable to Nothing is when its lifetime is

long relative to the time the garbage collector takes to detect orphaned objects.

See Also
Dispose

Initialization and Termination of Components

New Operator (Visual Basic)

Cleaning Up Unmanaged Resources

Nothing (Visual Basic)

© 2016 Microsoft

Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 If Not Me.disposed Then

 If disposing Then

 ' Insert code to free managed resources.

 End If

 ' Insert code to free unmanaged resources.

 End If

 MyBase.Dispose(disposing)

End Sub

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

6 of 6 02.09.2016 18:26

Object Initializers: Named and Anonymous
Types (Visual Basic)

Object initializers enable you to specify properties for a complex object by using a single expression. They can be used to

create instances of named types and of anonymous types.

Declarations
Declarations of instances of named and anonymous types can look almost identical, but their effects are not the same.

Each category has abilities and restrictions of its own. The following example shows a convenient way to declare and

initialize an instance of a named class, Customer, by using an object initializer list. Notice that the name of the class is

specified after the keyword New.

An anonymous type has no usable name. Therefore an instantiation of an anonymous type cannot include a class name.

The requirements and results of the two declarations are not the same. For namedCust, a Customer class that has a Name

property must already exist, and the declaration creates an instance of that class. For anonymousCust, the compiler

defines a new class that has one property, a string called Name, and creates a new instance of that class.

Named Types
Object initializers provide a simple way to call the constructor of a type and then set the values of some or all properties

in a single statement. The compiler invokes the appropriate constructor for the statement: the default constructor if no

arguments are presented, or a parameterized constructor if one or more arguments are sent. After that, the specified

properties are initialized in the order in which they are presented in the initializer list.

Each initialization in the initializer list consists of the assignment of an initial value to a member of the class. The names

and data types of the members are determined when the class is defined. In the following examples, the Customer class

must exist, and must have members named Name and City that can accept string values.

Visual Studio 2015

Dim namedCust = New Customer With {.Name = "Terry Adams"}

Dim anonymousCust = New With {.Name = "Hugo Garcia"}

Dim cust0 As Customer = New Customer With {.Name = "Toni Poe",

VB

VB

VB

Object Initializers: Named and Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385125(d=printer).aspx

1 of 6 02.09.2016 18:27

Alternatively, you can obtain the same result by using the following code:

Each of these declarations is equivalent to the following example, which creates a Customer object by using the default

constructor, and then specifies initial values for the Name and City properties by using a With statement.

If the Customer class contains a parameterized constructor that enables you to send in a value for Name, for example, you

can also declare and initialize a Customer object in the following ways:

You do not have to initialize all properties, as the following code shows.

However, the initialization list cannot be empty. Uninitialized properties retain their default values.

Type Inference with Named Types

 .City = "Louisville"}

Dim cust1 As New Customer With {.Name = "Toni Poe",

 .City = "Louisville"}

Dim cust2 As New Customer()

With cust2

 .Name = "Toni Poe"

 .City = "Louisville"

End With

Dim cust3 As Customer =

New Customer("Toni Poe") With {.City = "Louisville"}

' ‐‐or‐‐

Dim cust4 As New Customer("Toni Poe") With {.City = "Louisville"}

Dim cust5 As Customer = New Customer With {.Name = "Toni Poe"}

VB

VB

VB

VB

Object Initializers: Named and Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385125(d=printer).aspx

2 of 6 02.09.2016 18:27

You can shorten the code for the declaration of cust1 by combining object initializers and local type inference. This

enables you to omit the As clause in the variable declaration. The data type of the variable is inferred from the type of

the object that is created by the assignment. In the following example, the type of cust6 is Customer.

Remarks About Named Types

A class member cannot be initialized more than one time in the object initializer list. The declaration of cust7

causes an error.

A member can be used to initialize itself or another field. If a member is accessed before it has been initialized, as

in the following declaration for cust8, the default value will be used. Remember that when a declaration that

uses an object initializer is processed, the first thing that happens is that the appropriate constructor is invoked.

After that, the individual fields in the initializer list are initialized. In the following examples, the default value for

Name is assigned for cust8, and an initialized value is assigned in cust9.

The following example uses the parameterized constructor from cust3 and cust4 to declare and initialize

cust10 and cust11.

Object initializers can be nested. In the following example, AddressClass is a class that has two properties,

City and State, and the Customer class has an Address property that is an instance of AddressClass.

Dim cust6 = New Customer With {.Name = "Toni Poe",

 .City = "Louisville"}

'' This code does not compile because Name is initialized twice.

' Dim cust7 = New Customer With {.Name = "Toni Poe",

' .City = "Louisville",

' .Name = "Blue Yonder Airlines"}

Dim cust8 = New Customer With {.Name = .Name & ", President"}

Dim cust9 = New Customer With {.Name = "Toni Poe",

 .Title = .Name & ", President"}

Dim cust10 = New Customer("Toni Poe") With {.Name = .Name & ", President"}

' ‐‐or‐‐

Dim cust11 As New Customer("Toni Poe") With {.Name = .Name & ", President"}

Dim cust12 =

VB

VB

VB

VB

VB

Object Initializers: Named and Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385125(d=printer).aspx

3 of 6 02.09.2016 18:27

The initialization list cannot be empty.

The instance being initialized cannot be of type Object.

Class members being initialized cannot be shared members, read-only members, constants, or method calls.

Class members being initialized cannot be indexed or qualified. The following examples raise compiler errors:

'' Not valid.

' Dim c1 = New Customer With {.OrderNumbers(0) = 148662}

' Dim c2 = New Customer with {.Address.City = "Springfield"}

Anonymous Types
Anonymous types use object initializers to create instances of new types that you do not explicitly define and name.

Instead, the compiler generates a type according to the properties you designate in the object initializer list. Because the

name of the type is not specified, it is referred to as an anonymous type. For example, compare the following declaration

to the earlier one for cust6.

The only difference syntactically is that no name is specified after New for the data type. However, what happens is quite

different. The compiler defines a new anonymous type that has two properties, Name and City, and creates an instance of

it with the specified values. Type inference determines the types of Name and City in the example to be strings.

Caution

The name of the anonymous type is generated by the compiler, and may vary from compilation to compilation. Your

code should not use or rely on the name of an anonymous type.

Because the name of the type is not available, you cannot use an As clause to declare cust13. Its type must be inferred.

Without using late binding, this limits the use of anonymous types to local variables.

Anonymous types provide critical support for LINQ queries. For more information about the use of anonymous types in

New Customer With {.Name = "Toni Poe",

 .Address =

New AddressClass With {.City = "Louisville",

 .State = "Kentucky"}}

Console.WriteLine(cust12.Address.State)

Dim cust13 = New With {.Name = "Toni Poe",

 .City = "Louisville"}

VB

Object Initializers: Named and Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385125(d=printer).aspx

4 of 6 02.09.2016 18:27

queries, see Anonymous Types (Visual Basic) and Introduction to LINQ in Visual Basic.

Remarks About Anonymous Types

Typically, all or most of the properties in an anonymous type declaration will be key properties, which are

indicated by typing the keyword Key in front of the property name.

For more information about key properties, see Key (Visual Basic).

Like named types, initializer lists for anonymous type definitions must declare at least one property.

When an instance of an anonymous type is declared, the compiler generates a matching anonymous type

definition. The names and data types of the properties are taken from the instance declaration, and are included

by the compiler in the definition. The properties are not named and defined in advance, as they would be for a

named type. Their types are inferred. You cannot specify the data types of the properties by using an As clause.

Anonymous types can also establish the names and values of their properties in several other ways. For example,

an anonymous type property can take both the name and the value of a variable, or the name and value of a

property of another object.

For more information about the options for defining properties in anonymous types, see How to: Infer Property

Names and Types in Anonymous Type Declarations (Visual Basic).

Dim anonymousCust1 = New With {Key .Name = "Hugo Garcia",

 Key .City = "Louisville"}

Dim anonymousCust = New With {.Name = "Hugo Garcia"}

' Create a variable, Name, and give it an initial value.

Dim Name = "Hugo Garcia"

' Variable anonymousCust2 will have one property, Name, with

' "Hugo Garcia" as its initial value.

Dim anonymousCust2 = New With {Key Name}

' The next declaration uses a property from namedCust, defined

' in an earlier example. After the declaration, anonymousCust3 will

' have one property, Name, with "Terry Adams" as its value.

Dim anonymousCust3 = New With {Key namedCust.Name}

VB

VB

VB

Object Initializers: Named and Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385125(d=printer).aspx

5 of 6 02.09.2016 18:27

See Also
Local Type Inference (Visual Basic)

Anonymous Types (Visual Basic)

Introduction to LINQ in Visual Basic

How to: Infer Property Names and Types in Anonymous Type Declarations (Visual Basic)

Key (Visual Basic)

How to: Declare an Object by Using an Object Initializer (Visual Basic)

© 2016 Microsoft

Object Initializers: Named and Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb385125(d=printer).aspx

6 of 6 02.09.2016 18:27

How to: Declare an Object by Using an
Object Initializer (Visual Basic)

Object initializers enable you to declare and instantiate an instance of a class in a single statement. In addition, you can

initialize one or more members of the instance at the same time, without invoking a parameterized constructor.

When you use an object initializer to create an instance of a named type, the default constructor for the class is called,

followed by initialization of designated members in the order you specify.

The following procedure shows how to create an instance of a Student class in three different ways. The class has first name,

last name, and class year properties, among others. Each of the three declarations creates a new instance of Student, with

property First set to "Michael", property Last set to "Tucker", and all other members set to their default values. The result

of each declaration in the procedure is equivalent to the following example, which does not use an object initializer.

For an implementation of the Student class, see How to: Create a List of Items. You can copy the code from that topic to set

up the class and create a list of Student objects to work with.

To create an object of a named class by using an object initializer

Begin the declaration as if you planned to use a constructor.

Dim student1 As New Student

1.

Type the keyword With, followed by an initialization list in braces.

Dim student1 As New Student With { <initialization list> }

2.

In the initialization list, include each property that you want to initialize and assign an initial value to it. The name of

the property is preceded by a period.

3.

Visual Studio 2015

Dim student0 As New Student

With student0

 .First = "Michael"

 .Last = "Tucker"

End With

Dim student1 As New Student With {.First = "Michael",

 .Last = "Tucker"}

VB

VB

How to: Declare an Object by Using an Object Initializer (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531244(d=printer).aspx

1 of 2 02.09.2016 18:27

You can initialize one or more members of the class.

Alternatively, you can declare a new instance of the class and then assign a value to it. First, declare an instance of

Student:

Dim student2 As Student

4.

Begin the creation of an instance of Student in the normal way.

Dim student2 As Student = New Student

5.

Type With and then an object initializer to initialize one or more members of the new instance.6.

You can simplify the definition in the previous step by omitting As Student. If you do this, the compiler determines

that student3 is an instance of Student by using local type inference.

For more information, see Local Type Inference (Visual Basic).

7.

See Also
Local Type Inference (Visual Basic)

How to: Create a List of Items

Object Initializers: Named and Anonymous Types (Visual Basic)

Anonymous Types (Visual Basic)

© 2016 Microsoft

Dim student2 As Student = New Student With {.First = "Michael",

 .Last = "Tucker"}

Dim student3 = New Student With {.First = "Michael",

 .Last = "Tucker"}

VB

VB

How to: Declare an Object by Using an Object Initializer (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531244(d=printer).aspx

2 of 2 02.09.2016 18:27

Anonymous Types (Visual Basic)

Visual Basic supports anonymous types, which enable you to create objects without writing a class definition for the data

type. Instead, the compiler generates a class for you. The class has no usable name, inherits directly from Object, and

contains the properties you specify in declaring the object. Because the name of the data type is not specified, it is referred

to as an anonymous type.

The following example declares and creates variable product as an instance of an anonymous type that has two properties,

Name and Price.

A query expression uses anonymous types to combine columns of data selected by a query. You cannot define the type of

the result in advance, because you cannot predict the columns a particular query might select. Anonymous types enable you

to write a query that selects any number of columns, in any order. The compiler creates a data type that matches the

specified properties and the specified order.

In the following examples, products is a list of product objects, each of which has many properties. Variable

namePriceQuery holds the definition of a query that, when it is executed, returns a collection of instances of an anonymous

type that has two properties, Name and Price.

Variable nameQuantityQuery holds the definition of a query that, when it is executed, returns a collection of instances of an

anonymous type that has two properties, Name and OnHand.

For more information about the code created by the compiler for an anonymous type, see Anonymous Type Definition

(Visual Basic).

Caution

Visual Studio 2015

' Variable product is an instance of a simple anonymous type.

Dim product = New With {Key .Name = "paperclips", .Price = 1.29}

Dim namePriceQuery = From prod In products

Select prod.Name, prod.Price

Dim nameQuantityQuery = From prod In products

Select prod.Name, prod.OnHand

VB

VB

VB

Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384767(d=printer).aspx

1 of 6 02.09.2016 18:27

The name of the anonymous type is compiler generated and may vary from compilation to compilation. Your code

should not use or rely on the name of an anonymous type because the name might change when a project is recompiled.

Declaring an Anonymous Type
The declaration of an instance of an anonymous type uses an initializer list to specify the properties of the type. You can

specify only properties when you declare an anonymous type, not other class elements such as methods or events. In the

following example, product1 is an instance of an anonymous type that has two properties: Name and Price.

If you designate properties as key properties, you can use them to compare two anonymous type instances for equality.

However, the values of key properties cannot be changed. See the Key Properties section later in this topic for more

information.

Notice that declaring an instance of an anonymous type is like declaring an instance of a named type by using an object

initializer:

For more information about other ways to specify anonymous type properties, see How to: Infer Property Names and

Types in Anonymous Type Declarations (Visual Basic).

Key Properties
Key properties differ from non-key properties in several fundamental ways:

Only the values of key properties are compared in order to determine whether two instances are equal.

The values of key properties are read-only and cannot be changed.

Only key property values are included in the compiler-generated hash code algorithm for an anonymous type.

Equality

Instances of anonymous types can be equal only if they are instances of the same anonymous type. The compiler treats

' Variable product1 is an instance of a simple anonymous type.

Dim product1 = New With {.Name = "paperclips", .Price = 1.29}

' ‐or‐

' product2 is an instance of an anonymous type with key properties.

Dim product2 = New With {Key .Name = "paperclips", Key .Price = 1.29}

' Variable product3 is an instance of a class named Product.

Dim product3 = New Product With {.Name = "paperclips", .Price = 1.29}

VB

VB

Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384767(d=printer).aspx

2 of 6 02.09.2016 18:27

two instances as instances of the same type if they meet the following conditions:

They are declared in the same assembly.

Their properties have the same names, the same inferred types, and are declared in the same order. Name

comparisons are not case-sensitive.

The same properties in each are marked as key properties.

At least one property in each declaration is a key property.

An instance of an anonymous types that has no key properties is equal only to itself.

Two instances of the same anonymous type are equal if the values of their key properties are equal. The following

examples illustrate how equality is tested.

' prod1 and prod2 have no key values.

Dim prod1 = New With {.Name = "paperclips", .Price = 1.29}

Dim prod2 = New With {.Name = "paperclips", .Price = 1.29}

' The following line displays False, because prod1 and prod2 have no

' key properties.

Console.WriteLine(prod1.Equals(prod2))

' The following statement displays True because prod1 is equal to itself.

Console.WriteLine(prod1.Equals(prod1))

Dim prod3 = New With {Key .Name = "paperclips", Key .Price = 1.29}

Dim prod4 = New With {Key .Name = "paperclips", Key .Price = 1.29}

' The following line displays True, because prod3 and prod4 are

' instances of the same anonymous type, and the values of their

' key properties are equal.

Console.WriteLine(prod3.Equals(prod4))

Dim prod5 = New With {Key .Name = "paperclips", Key .Price = 1.29}

Dim prod6 = New With {Key .Name = "paperclips", Key .Price = 1.29,

 .OnHand = 423}

' The following line displays False, because prod5 and prod6 do not

' have the same properties.

Console.WriteLine(prod5.Equals(prod6))

Dim prod7 = New With {Key .Name = "paperclips", Key .Price = 1.29,

 .OnHand = 24}

Dim prod8 = New With {Key .Name = "paperclips", Key .Price = 1.29,

 .OnHand = 423}

' The following line displays True, because prod7 and prod8 are

' instances of the same anonymous type, and the values of their

' key properties are equal. The equality check does not compare the

VB

VB

Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384767(d=printer).aspx

3 of 6 02.09.2016 18:27

Read-Only Values

The values of key properties cannot be changed. For example, in prod8 in the previous example, the Name and Price

fields are read-only, but OnHand can be changed.

Anonymous Types from Query Expressions
Query expressions do not always require the creation of anonymous types. When possible, they use an existing type to

hold the column data. This occurs when the query returns either whole records from the data source, or only one field

from each record. In the following code examples, customers is a collection of objects of a Customer class. The class has

many properties, and you can include one or more of them in the query result, in any order. In the first two examples, no

anonymous types are required because the queries select elements of named types:

custs1 contains a collection of strings, because cust.Name is a string.

custs2 contains a collection of Customer objects, because each element of customers is a Customer object, and

the whole element is selected by the query.

However, appropriate named types are not always available. You might want to select customer names and addresses for

one purpose, customer ID numbers and locations for another, and customer names, addresses, and order histories for a

third. Anonymous types enable you to select any combination of properties, in any order, without first declaring a new

' values of the non‐key field.

Console.WriteLine(prod7.Equals(prod8))

' The following statement will not compile, because Name is a key

' property and its value cannot be changed.

' prod8.Name = "clamps"

' OnHand is not a Key property. Its value can be changed.

prod8.OnHand = 22

Dim custs1 = From cust In customers

Select cust.Name

Dim custs2 = From cust In customers

Select cust

VB

VB

VB

Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384767(d=printer).aspx

4 of 6 02.09.2016 18:27

named type to hold the result. Instead, the compiler creates an anonymous type for each compilation of properties. The

following query selects only the customer's name and ID number from each Customer object in customers. Therefore,

the compiler creates an anonymous type that contains only those two properties.

Both the names and the data types of the properties in the anonymous type are taken from the arguments to Select,

cust.Name and cust.ID. The properties in an anonymous type that is created by a query are always key properties.

When custs3 is executed in the following For Each loop, the result is a collection of instances of an anonymous type with

two key properties, Name and ID.

The elements in the collection represented by custs3 are strongly typed, and you can use IntelliSense to navigate

through the available properties and to verify their types.

For more information, see Introduction to LINQ in Visual Basic.

Deciding Whether to Use Anonymous Types
Before you create an object as an instance of an anonymous class, consider whether that is the best option. For example, if

you want to create a temporary object to contain related data, and you have no need for other fields and methods that a

complete class might contain, an anonymous type is a good solution. Anonymous types are also convenient if you want a

different selection of properties for each declaration, or if you want to change the order of the properties. However, if

your project includes several objects that have the same properties, in a fixed order, you can declare them more easily by

using a named type with a class constructor. For example, with an appropriate constructor, it is easier to declare several

instances of a Product class than it is to declare several instances of an anonymous type.

Another advantage of named types is that the compiler can catch an accidental mistyping of a property name. In the

Dim custs3 = From cust In customers

Select cust.Name, cust.ID

For Each selectedCust In custs3

 Console.WriteLine(selectedCust.ID & ": " & selectedCust.Name)

Next

' Declaring instances of a named type.

Dim firstProd1 As New Product("paperclips", 1.29)

Dim secondProd1 As New Product("desklamp", 28.99)

Dim thirdProd1 As New Product("stapler", 5.09)

' Declaring instances of an anonymous type.

Dim firstProd2 = New With {Key .Name = "paperclips", Key .Price = 1.29}

Dim secondProd2 = New With {Key .Name = "desklamp", Key .Price = 28.99}

Dim thirdProd2 = New With {Key .Name = "stapler", Key .Price = 5.09}

VB

VB

VB

Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384767(d=printer).aspx

5 of 6 02.09.2016 18:27

previous examples, firstProd2, secondProd2, and thirdProd2 are intended to be instances of the same anonymous

type. However, if you were to accidentally declare thirdProd2 in one of the following ways, its type would be different

from that of firstProd2 and secondProd2.

More importantly, there are limitations on the use of anonymous types that do not apply to instances of named types.

firstProd2, secondProd2, and thirdProd2 are instances of the same anonymous type. However, the name for the

shared anonymous type is not available and cannot appear where a type name is expected in your code. For example, an

anonymous type cannot be used to define a method signature, to declare another variable or field, or in any type

declaration. As a result, anonymous types are not appropriate when you have to share information across methods.

An Anonymous Type Definition
In response to the declaration of an instance of an anonymous type, the compiler creates a new class definition that

contains the specified properties.

If the anonymous type contains at least one key property, the definition overrides three members inherited from Object:

Equals, GetHashCode, and ToString. The code produced for testing equality and determining the hash code value

considers only the key properties. If the anonymous type contains no key properties, only ToString is overridden.

Explicitly named properties of an anonymous type cannot conflict with these generated methods. That is, you cannot use

.Equals, .GetHashCode, or .ToString to name a property.

Anonymous type definitions that have at least one key property also implement the System.IEquatable(Of T) interface,

where T is the type of the anonymous type.

For more information about the code created by the compiler and the functionality of the overridden methods, see

Anonymous Type Definition (Visual Basic).

See Also
Object Initializers: Named and Anonymous Types (Visual Basic)

Local Type Inference (Visual Basic)

Introduction to LINQ in Visual Basic

How to: Infer Property Names and Types in Anonymous Type Declarations (Visual Basic)

Anonymous Type Definition (Visual Basic)

Key (Visual Basic)

© 2016 Microsoft

' Dim thirdProd2 = New With {Key .Nmae = "stapler", Key .Price = 5.09}

' Dim thirdProd2 = New With {Key .Name = "stapler", Key .Price = "5.09"}

' Dim thirdProd2 = New With {Key .Name = "stapler", .Price = 5.09}

VB

Anonymous Types (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384767(d=printer).aspx

6 of 6 02.09.2016 18:27

How to: Infer Property Names and Types in
Anonymous Type Declarations (Visual Basic)

Anonymous types provide no mechanism for directly specifying the data types of properties. Types of all properties are

inferred. In the following example, the types of Name and Price are inferred directly from the values that are used to

initialize them.

Anonymous types can also infer property names and types from other sources. The sections that follow provide a list of the

circumstances where inference is possible, and examples of situations where it is not.

Successful Inference

Anonymous types can infer property names and types from the following sources:

From variable names. Anonymous type anonProduct will have two properties, productName and productPrice.

Their data types will be those of the original variables, String and Double, respectively.

From property or field names of other objects. For example, consider a car object of a CarClass type that

includes Name and ID properties. To create a new anonymous type instance, car1, with Name and ID properties

that are initialized with the values from the car object, you can write the following:

The previous declaration is equivalent to the longer line of code that defines anonymous type car2.

Visual Studio 2015

' Variable product is an instance of a simple anonymous type.

Dim product = New With {Key .Name = "paperclips", .Price = 1.29}

Dim productName As String = "paperclips"

Dim productPrice As Double = 1.29

Dim anonProduct = New With {Key productName, Key productPrice}

' To create uppercase variable names for the new properties,

' assign variables productName and productPrice to uppercase identifiers.

Dim anonProduct1 = New With {Key .Name = productName, Key .Price = productPrice}

Dim car1 = New With {Key car.Name, Key car.ID}

VB

VB

VB

How to: Infer Property Names and Types in Anonymous Type Declaration... https://msdn.microsoft.com/en-us/library/bb531357(d=printer).aspx

1 of 4 02.09.2016 18:28

From XML member names.

The resulting type for anon would have one property, Book, of type IEnumerable(Of XElement).

From a function that has no parameters, such as SomeFunction in the following example.

Dim sc As New SomeClass

Dim anon1 = New With {Key sc.SomeFunction()}

The variable anon2 in the following code is an anonymous type that has one property, a character named First.

This code will display a letter "E," the letter that is returned by function First(Of TSource).

Inference Failures

Name inference will fail in many circumstances, including the following:

The inference derives from the invocation of a method, a constructor, or a parameterized property that requires

arguments. The previous declaration of anon1 fails if someFunction has one or more arguments.

' Not valid.

' Dim anon3 = New With {Key sc.someFunction(someArg)}

Assignment to a new property name solves the problem.

' Valid.

Dim car2 = New With {Key .Name = car.Name, Key .ID = car.ID}

Dim books = <Books>

 <Book Author="Jesper Aaberg">

 Advanced Programming Methods

 </Book>

 </Books>

Dim anon = New With {books...<Book>}

Dim aString As String = "Example String"

Dim anon2 = New With {Key aString.First()}

' The variable anon2 has one property, First.

Console.WriteLine(anon2.First)

VB

VB

VB

How to: Infer Property Names and Types in Anonymous Type Declaration... https://msdn.microsoft.com/en-us/library/bb531357(d=printer).aspx

2 of 4 02.09.2016 18:28

Dim anon4 = New With {Key .FunResult = sc.someFunction(someArg)}

The inference derives from a complex expression.

The error can be resolved by assigning the result of the expression to a property name.

Inference for multiple properties produces two or more properties that have the same name. Referring back to

declarations in earlier examples, you cannot list both product.Name and car1.Name as properties of the same

anonymous type. This is because the inferred identifier for each of these would be Name.

' Not valid.

' Dim anon5 = New With {Key product.Name, Key car1.Name}

The problem can be solved by assigning the values to distinct property names.

Note that changes in case (changes between uppercase and lowercase letters) do not make two names distinct.

Dim price = 0

' Not valid, because Price and price are the same name.

' Dim anon7 = New With {Key product.Price, Key price}

The initial type and value of one property depends on another property that is not yet established. For example,

.IDName = .LastName is not valid in an anonymous type declaration unless .LastName is already initialized.

' Not valid.

' Dim anon8 = New With {Key .IDName = .LastName, Key .LastName = "Jones"}

In this example, you can fix the problem by reversing the order in which the properties are declared.

Dim aString As String = "Act "

' Not valid.

' Dim label = New With {Key aString & "IV"}

' Valid.

Dim label1 = New With {Key .someLabel = aString & "IV"}

' Valid.

Dim anon6 = New With {Key .ProductName = product.Name, Key .CarName = car1.Name}

' Valid.

VB

VB

VB

How to: Infer Property Names and Types in Anonymous Type Declaration... https://msdn.microsoft.com/en-us/library/bb531357(d=printer).aspx

3 of 4 02.09.2016 18:28

A property name of the anonymous type is the same as the name of a member of Object. For example, the

following declaration fails because Equals is a method of Object.

' Not valid.

' Dim relationsLabels1 = New With {Key .Equals = "equals", Key .Greater = _

' "greater than", Key .Less = "less than"}

You can fix the problem by changing the property name:

See Also
Object Initializers: Named and Anonymous Types (Visual Basic)

Local Type Inference (Visual Basic)

Anonymous Types (Visual Basic)

Key (Visual Basic)

© 2016 Microsoft

Dim anon9 = New With {Key .LastName = "Jones", Key .IDName = .LastName}

' Valid

Dim relationsLabels2 = New With {Key .EqualString = "equals",

 Key .GreaterString = "greater than",

 Key .LessString = "less than"}

VB

How to: Infer Property Names and Types in Anonymous Type Declaration... https://msdn.microsoft.com/en-us/library/bb531357(d=printer).aspx

4 of 4 02.09.2016 18:28

Anonymous Type Definition (Visual Basic)

In response to the declaration of an instance of an anonymous type, the compiler creates a new class definition that contains

the specified properties for the type.

Compiler-Generated Code
For the following definition of product, the compiler creates a new class definition that contains properties Name, Price,

and OnHand.

The class definition contains property definitions similar to the following. Notice that there is no Set method for the key

properties. The values of key properties are read-only.

Visual Studio 2015

' Variable product is an instance of an anonymous type.

Dim product = New With {Key .Name = "paperclips", Key .Price = 1.29, .OnHand = 24}

VB

VB

Anonymous Type Definition (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531354(d=printer).aspx

1 of 4 02.09.2016 18:28

In addition, anonymous type definitions contain a default constructor. Constructors that require parameters are not

permitted.

If an anonymous type declaration contains at least one key property, the type definition overrides three members

inherited from Object: Equals, GetHashCode, and ToString. If no key properties are declared, only ToString is overridden.

The overrides provide the following functionality:

Equals returns True if two anonymous type instances are the same instance, or if they meet the following

conditions:

They have the same number of properties.

The properties are declared in the same order, with the same names and the same inferred types. Name

comparisons are not case-sensitive.

At least one of the properties is a key property, and the Key keyword is applied to the same properties.

Comparison of each corresponding pair of key properties returns True.

For example, in the following examples, Equals returns True only for employee01 and employee08. The comment

before each line specifies the reason why the new instance does not match employee01.

Public Class $Anonymous1

Private _name As String

Private _price As Double

Private _onHand As Integer

Public ReadOnly Property Name() As String

Get

Return _name

End Get

End Property

Public ReadOnly Property Price() As Double

Get

Return _price

End Get

End Property

Public Property OnHand() As Integer

Get

Return _onHand

End Get

Set(ByVal Value As Integer)

 _onHand = Value

End Set

End Property

End Class

Dim employee01 = New With {Key .Name = "Bob", Key .Category = 3, .InOffice = False}

VB

Anonymous Type Definition (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531354(d=printer).aspx

2 of 4 02.09.2016 18:28

GetHashcode provides an appropriately unique GetHashCode algorithm. The algorithm uses only the key

properties to compute the hash code.

ToString returns a string of concatenated property values, as shown in the following example. Both key and

non-key properties are included.

Explicitly named properties of an anonymous type cannot conflict with these generated methods. That is, you cannot use

.Equals, .GetHashCode, or .ToString to name a property.

Anonymous type definitions that include at least one key property also implement the System.IEquatable(Of T) interface,

where T is the type of the anonymous type.

Note

' employee02 has no InOffice property.

Dim employee02 = New With {Key .Name = "Bob", Key .Category = 3}

' The first property has a different name.

Dim employee03 = New With {Key .FirstName = "Bob", Key .Category = 3, .InOffice =

False}

' Property Category has a different value.

Dim employee04 = New With {Key .Name = "Bob", Key .Category = 2, .InOffice = False}

' Property Category has a different type.

Dim employee05 = New With {Key .Name = "Bob", Key .Category = 3.2, .InOffice =

False}

' The properties are declared in a different order.

Dim employee06 = New With {Key .Category = 3, Key .Name = "Bob", .InOffice = False}

' Property Category is not a key property.

Dim employee07 = New With {Key .Name = "Bob", .Category = 3, .InOffice = False}

' employee01 and employee 08 meet all conditions for equality. Note

' that the values of the non‐key field need not be the same.

Dim employee08 = New With {Key .Name = "Bob", Key .Category = 2 + 1, .InOffice =

True}

' Equals returns True only for employee01 and employee08.

Console.WriteLine(employee01.Equals(employee08))

Console.WriteLine(employee01.ToString())

Console.WriteLine(employee01)

' The preceding statements both display the following:

' { Name = Bob, Category = 3, InOffice = False }

VB

Anonymous Type Definition (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531354(d=printer).aspx

3 of 4 02.09.2016 18:28

Anonymous type declarations create the same anonymous type only if they occur in the same assembly, their

properties have the same names and the same inferred types, the properties are declared in the same order, and the

same properties are marked as key properties.

See Also
Anonymous Types (Visual Basic)

How to: Infer Property Names and Types in Anonymous Type Declarations (Visual Basic)

© 2016 Microsoft

Anonymous Type Definition (Visual Basic) https://msdn.microsoft.com/en-us/library/bb531354(d=printer).aspx

4 of 4 02.09.2016 18:28

