
LINQ in Visual Basic

This section contains overviews, examples, and background information that will help you understand and use Visual Basic

and Language-Integrated Query (LINQ).

In This Section

Introduction to LINQ in Visual Basic

Provides an introduction to LINQ providers, operators, query structure, and language features.

How to: Query a Database by Using LINQ (Visual Basic)

Provides an example of how to connect to a SQL Server database and execute a query by using LINQ.

How to: Call a Stored Procedure by Using LINQ (Visual Basic)

Provides an example of how to connect to a SQL Server database and call a stored procedure by using LINQ.

How to: Modify Data in a Database by Using LINQ (Visual Basic)

Provides an example of how to connect to a SQL Server database and retrieve and modify data by using LINQ.

How to: Combine Data with LINQ by Using Joins (Visual Basic)

Provides examples of how to join data in a manner similar to database joins by using LINQ.

How to: Sort Query Results by Using LINQ (Visual Basic)

Provides an example of how to order the results of a query by using LINQ.

How to: Filter Query Results by Using LINQ (Visual Basic)

Provides an example of how to include search criteria in a query by using LINQ.

How to: Count, Sum, or Average Data by Using LINQ (Visual Basic)

Provides examples of how to include aggregate functions to Count, Sum, or Average data returned from a query by

using LINQ.

How to: Find the Minimum or Maximum Value in a Query Result by Using LINQ (Visual Basic)

Provides examples of how to include aggregate functions to determine the minimum and maximum values of data

returned from a query by using LINQ.

How to: Return a LINQ Query Result as a Specific Type (Visual Basic)

Provides an example of how to return the results of a LINQ query as a specific type instead of as an anonymous type.

See Also

LINQ (Language-Integrated Query)

Overview of LINQ to XML in Visual Basic

LINQ to DataSet Overview

LINQ to SQL

Visual Studio 2015

LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb385100(d=printer).aspx

1 of 2 02.09.2016 18:17

LINQ Samples

Walkthrough: Creating LINQ to SQL Classes (O/R Designer)

© 2016 Microsoft

LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb385100(d=printer).aspx

2 of 2 02.09.2016 18:17

Introduction to LINQ in Visual Basic

Language-Integrated Query (LINQ) adds query capabilities to Visual Basic and provides simple and powerful capabilities

when you work with all kinds of data. Rather than sending a query to a database to be processed, or working with different

query syntax for each type of data that you are searching, LINQ introduces queries as part of the Visual Basic language. It

uses a unified syntax regardless of the type of data.

LINQ enables you to query data from a SQL Server database, XML, in-memory arrays and collections, ADO.NET datasets, or

any other remote or local data source that supports LINQ. You can do all this with common Visual Basic language elements.

Because your queries are written in the Visual Basic language, your query results are returned as strongly-typed objects.

These objects support IntelliSense, which enables you to write code faster and catch errors in your queries at compile time

instead of at run time. LINQ queries can be used as the source of additional queries to refine results. They can also be bound

to controls so that users can easily view and modify your query results.

For example, the following code example shows a LINQ query that returns a list of customers from a collection and groups

them based on their location.

In this topic, you will find information about the following areas:

Visual Studio 2015

' Obtain a list of customers.

Dim customers As List(Of Customer) = GetCustomers()

' Return customers that are grouped based on country.

Dim countries = From cust In customers

Order By cust.Country, cust.City

Group By CountryName = cust.Country

Into CustomersInCountry = Group, Count()

Order By CountryName

' Output the results.

For Each country In countries

 Debug.WriteLine(country.CountryName & " count=" & country.Count)

For Each customer In country.CustomersInCountry

 Debug.WriteLine(" " & customer.CompanyName & " " & customer.City)

Next

Next

' Output:

' Canada count=2

' Contoso, Ltd Halifax

' Fabrikam, Inc. Vancouver

' United States count=1

' Margie's Travel Redmond

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

1 of 14 02.09.2016 18:18

Running the Examples

LINQ Providers

Structure of a LINQ Query

Visual Basic LINQ Query Operators

Connecting to a Database by Using LINQ to SQL

Visual Basic Features That Support LINQ

Deferred and Immediate Query Execution

XML in Visual Basic

Related Resources

How To and Walkthrough Topics

Running the Examples
To run the examples in the introduction and in the "Structure of a LINQ Query" section, include the following code, which

returns lists of customers and orders.

' Return a list of customers.

Private Function GetCustomers() As List(Of Customer)

Return New List(Of Customer) From

 {

New Customer With {.CustomerID = 1, .CompanyName = "Contoso, Ltd", .City =

"Halifax", .Country = "Canada"},

New Customer With {.CustomerID = 2, .CompanyName = "Margie's Travel", .City

= "Redmond", .Country = "United States"},

New Customer With {.CustomerID = 3, .CompanyName = "Fabrikam, Inc.", .City

= "Vancouver", .Country = "Canada"}

 }

End Function

' Return a list of orders.

Private Function GetOrders() As List(Of Order)

Return New List(Of Order) From

 {

New Order With {.CustomerID = 1, .Amount = "200.00"},

New Order With {.CustomerID = 3, .Amount = "600.00"},

New Order With {.CustomerID = 1, .Amount = "300.00"},

New Order With {.CustomerID = 2, .Amount = "100.00"},

New Order With {.CustomerID = 3, .Amount = "800.00"}

 }

End Function

' Customer Class.

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

2 of 14 02.09.2016 18:18

LINQ Providers
A LINQ provider maps your Visual Basic LINQ queries to the data source being queried. When you write a LINQ query, the

provider takes that query and translates it into commands that the data source will be able to execute. The provider also

converts data from the source to the objects that make up your query result. Finally, it converts objects to data when you

send updates to the data source.

Visual Basic includes the following LINQ providers.

Provider Description

LINQ to

Objects

The LINQ to Objects provider enables you to query in-memory collections and arrays. If an object

supports either the IEnumerable or IEnumerable(Of T) interface, the LINQ to Objects provider enables

you to query it.

You can enable the LINQ to Objects provider by importing the System.Linq namespace, which is imported

by default for all Visual Basic projects.

For more information about the LINQ to Objects provider, see LINQ to Objects.

LINQ to

SQL

The LINQ to SQL provider enables you to query and modify data in a SQL Server database. This makes it

easy to map the object model for an application to the tables and objects in a database.

Visual Basic makes it easier to work with LINQ to SQL by including the Object Relational Designer (O/R

Designer). This designer is used to create an object model in an application that maps to objects in a

database. The O/R Designer also provides functionality to map stored procedures and functions to

the DataContext object, which manages communication with the database and stores state for optimistic

concurrency checks.

For more information about the LINQ to SQL provider, see LINQ to SQL. For more information about the

Object Relational Designer, see Object Relational Designer (O/R Designer).

LINQ to

XML

The LINQ to XML provider enables you to query and modify XML. You can modify in-memory XML, or

you can load XML from and save XML to a file.

Additionally, the LINQ to XML provider enables XML literals and XML axis properties that enable you to

Private Class Customer

Public Property CustomerID As Integer

Public Property CompanyName As String

Public Property City As String

Public Property Country As String

End Class

' Order Class.

Private Class Order

Public Property CustomerID As Integer

Public Property Amount As Decimal

End Class

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

3 of 14 02.09.2016 18:18

write XML directly in your Visual Basic code. For more information, see XML in Visual Basic.

LINQ to

DataSet

The LINQ to DataSet provider enables you to query and update data in an ADO.NET dataset. You can add

the power of LINQ to applications that use datasets in order to simplify and extend your capabilities for

querying, aggregating, and updating the data in your dataset.

For more information, see LINQ to DataSet.

Structure of a LINQ Query
A LINQ query, often referred to as a query expression, consists of a combination of query clauses that identify the data

sources and iteration variables for the query. A query expression can also include instructions for sorting, filtering,

grouping, and joining, or calculations to apply to the source data. Query expression syntax resembles the syntax of SQL;

therefore, you may find much of the syntax familiar.

A query expression starts with a From clause. This clause identifies the source data for a query and the variables that are

used to refer to each element of the source data individually. These variables are named range variables or iteration

variables. The From clause is required for a query, except for Aggregate queries, where the From clause is optional. After

the scope and source of the query are identified in the From or Aggregate clauses, you can include any combination of

query clauses to refine the query. For details about query clauses, see Visual Basic LINQ Query Operators later in this topic.

For example, the following query identifies a source collection of customer data as the customers variable, and an

iteration variable named cust.

This example is a valid query by itself; however, the query becomes far more powerful when you add more query clauses

to refine the result. For example, you can add a Where clause to filter the result by one or more values. Query expressions

are a single line of code; you can just append additional query clauses to the end of the query. You can break up a query

across multiple lines of text to improve readability by using the underscore (_) line-continuation character. The following

code example shows an example of a query that includes a Where clause.

Dim customers = GetCustomers()

Dim queryResults = From cust In customers

For Each result In queryResults

 Debug.WriteLine(result.CompanyName & " " & result.Country)

Next

' Output:

' Contoso, Ltd Canada

' Margie's Travel United States

' Fabrikam, Inc. Canada

Dim queryResults = From cust In customers

Where cust.Country = "Canada"

VB

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

4 of 14 02.09.2016 18:18

Another powerful query clause is the Select clause, which enables you to return only selected fields from the data source.

LINQ queries return enumerable collections of strongly typed objects. A query can return a collection of anonymous types

or named types. You can use the Select clause to return only a single field from the data source. When you do this, the

type of the collection returned is the type of that single field. You can also use the Select clause to return multiple fields

from the data source. When you do this, the type of the collection returned is a new anonymous type. You can also match

the fields returned by the query to the fields of a specified named type. The following code example shows a query

expression that returns a collection of anonymous types that have members populated with data from the selected fields

from the data source.

LINQ queries can also be used to combine multiple sources of data and return a single result. This can be done with one

or more From clauses, or by using the Join or Group Join query clauses. The following code example shows a query

expression that combines customer and order data and returns a collection of anonymous types containing customer and

order data.

You can use the Group Join clause to create a hierarchical query result that contains a collection of customer objects.

Each customer object has a property that contains a collection of all orders for that customer. The following code

example shows a query expression that combines customer and order data as a hierarchical result and returns a collection

of anonymous types. The query returns a type that includes a CustomerOrders property that contains a collection of

order data for the customer. It also includes an OrderTotal property that contains the sum of the totals for all the orders

for that customer. (This query is equivalent to a LEFT OUTER JOIN.)

Dim queryResults = From cust In customers

Where cust.Country = "Canada"

Select cust.CompanyName, cust.Country

Dim customers = GetCustomers()

Dim orders = GetOrders()

Dim queryResults = From cust In customers, ord In orders

Where cust.CustomerID = ord.CustomerID

Select cust, ord

For Each result In queryResults

 Debug.WriteLine(result.ord.Amount & " " & result.ord.CustomerID & " " &

result.cust.CompanyName)

Next

' Output:

' 200.00 1 Contoso, Ltd

' 300.00 1 Contoso, Ltd

' 100.00 2 Margie's Travel

' 600.00 3 Fabrikam, Inc.

' 800.00 3 Fabrikam, Inc.

Dim customers = GetCustomers()

Dim orders = GetOrders()

VB

VB

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

5 of 14 02.09.2016 18:18

There are several additional LINQ query operators that you can use to create powerful query expressions. The next section

of this topic discusses the various query clauses that you can include in a query expression. For details about Visual Basic

query clauses, see Queries (Visual Basic).

Visual Basic LINQ Query Operators
The classes in the System.Linq namespace and the other namespaces that support LINQ queries include methods that you

can call to create and refine queries based on the needs of your application. Visual Basic includes keywords for the most

common query clauses, as described by the following table.

Term Definition

From Clause

(Visual Basic)

Either a From clause or an Aggregate clause is required to begin a query. A From clause specifies a

source collection and an iteration variable for a query. For example:

Dim queryResults = From cust In customers

Group Join ord In orders On

 cust.CustomerID Equals ord.CustomerID

Into CustomerOrders = Group,

 OrderTotal = Sum(ord.Amount)

Select cust.CompanyName, cust.CustomerID,

 CustomerOrders, OrderTotal

For Each result In queryResults

 Debug.WriteLine(result.OrderTotal & " " & result.CustomerID & " " &

result.CompanyName)

For Each ordResult In result.CustomerOrders

 Debug.WriteLine(" " & ordResult.Amount)

Next

Next

' Output:

' 500.00 1 Contoso, Ltd

' 200.00

' 300.00

' 100.00 2 Margie's Travel

' 100.00

' 1400.00 3 Fabrikam, Inc.

' 600.00

' 800.00

' Returns the company name for all customers for which

' the Country is equal to "Canada".

Dim names = From cust In customers

Where cust.Country = "Canada"

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

6 of 14 02.09.2016 18:18

Select Clause

(Visual Basic)

Optional. Declares a set of iteration variables for a query. For example:

If a Select clause is not specified, the iteration variables for the query consist of the iteration

variables specified by the From or Aggregate clause.

Where Clause

(Visual Basic)

Optional. Specifies a filtering condition for a query. For example:

Order By Clause

(Visual Basic)

Optional. Specifies the sort order for columns in a query. For example:

Join Clause

(Visual Basic)

Optional. Combines two collections into a single collection. For example:

Select cust.CompanyName

' Returns the company name and ID value for each

' customer as a collection of a new anonymous type.

Dim customerList = From cust In customers

Select cust.CompanyName, cust.CustomerID

' Returns all product names for which the Category of

' the product is "Beverages".

Dim names = From product In products

Where product.Category = "Beverages"

Select product.Name

' Returns a list of books sorted by price in

' ascending order.

Dim titlesAscendingPrice = From b In books

Order By b.price

' Returns a combined collection of all of the

' processes currently running and a descriptive

' name for the process taken from a list of

' descriptive names.

Dim processes = From proc In Process.GetProcesses

Join desc In processDescriptions

On proc.ProcessName Equals desc.ProcessName

Select proc.ProcessName, proc.Id, desc.Description

VB

VB

VB

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

7 of 14 02.09.2016 18:18

Group By

Clause (Visual

Basic)

Optional. Groups the elements of a query result. Can be used to apply aggregate functions to each

group. For example:

Group Join

Clause (Visual

Basic)

Optional. Combines two collections into a single hierarchical collection. For example:

Aggregate

Clause (Visual

Basic)

Either a From clause or an Aggregate clause is required to begin a query. An Aggregate clause

applies one or more aggregate functions to a collection. For example, you can use the Aggregate

clause to calculate a sum for all the elements returned by a query.

You can also use the Aggregate clause to modify a query. For example, you can use the Aggregate

clause to perform a calculation on a related query collection.

' Returns a list of orders grouped by the order date

' and sorted in ascending order by the order date.

Dim orderList = From order In orders

Order By order.OrderDate

Group By OrderDate = order.OrderDate

Into OrdersByDate = Group

' Returns a combined collection of customers and

' customer orders.

Dim customerList = From cust In customers

Group Join ord In orders On

 cust.CustomerID Equals ord.CustomerID

Into CustomerOrders = Group,

 TotalOfOrders = Sum(ord.Amount)

Select cust.CompanyName, cust.CustomerID,

 CustomerOrders, TotalOfOrders

' Returns the sum of all order amounts.

Dim orderTotal = Aggregate order In orders

Into Sum(order.Amount)

' Returns the customer company name and largest

' order amount for each customer.

Dim customerMax = From cust In customers

Aggregate order In cust.Orders

Into MaxOrder = Max(order.Amount)

Select cust.CompanyName, MaxOrder

VB

VB

VB

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

8 of 14 02.09.2016 18:18

Let Clause

(Visual Basic)

Optional. Computes a value and assigns it to a new variable in the query. For example:

Distinct Clause

(Visual Basic)

Optional. Restricts the values of the current iteration variable to eliminate duplicate values in query

results. For example:

Skip Clause

(Visual Basic)

Optional. Bypasses a specified number of elements in a collection and then returns the remaining

elements. For example:

Skip While

Clause (Visual

Basic)

Optional. Bypasses elements in a collection as long as a specified condition is true and then returns

the remaining elements. For example:

' Returns a list of products with a calculation of

' a ten percent discount.

Dim discountedProducts = From prod In products

Let Discount = prod.UnitPrice * 0.1

Where Discount >= 50

Select prod.Name, prod.UnitPrice, Discount

' Returns a list of cities with no duplicate entries.

Dim cities = From item In customers

Select item.City

Distinct

' Returns a list of customers. The first 10 customers

' are ignored and the remaining customers are

' returned.

Dim customerList = From cust In customers

Skip 10

' Returns a list of customers. The query ignores all

' customers until the first customer for whom

' IsSubscriber returns false. That customer and all

' remaining customers are returned.

Dim customerList = From cust In customers

Skip While IsSubscriber(cust)

VB

VB

VB

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

9 of 14 02.09.2016 18:18

Take Clause

(Visual Basic)

Optional. Returns a specified number of contiguous elements from the start of a collection. For

example:

Take While

Clause (Visual

Basic)

Optional. Includes elements in a collection as long as a specified condition is true and bypasses the

remaining elements. For example:

For details about Visual Basic query clauses, see Queries (Visual Basic).

You can use additional LINQ query features by calling members of the enumerable and queryable types provided by

LINQ. You can use these additional capabilities by calling a particular query operator on the result of a query expression.

For example, the following code example uses the Union(Of TSource) method to combine the results of two queries into

one query result. It uses the ToList(Of TSource) method to return the query result as a generic list.

For details about additional LINQ capabilities, see Standard Query Operators Overview.

Connecting to a Database by Using LINQ to SQL
In Visual Basic, you identify the SQL Server database objects, such as tables, views, and stored procedures, that you want

' Returns the first 10 customers.

Dim customerList = From cust In customers

Take 10

' Returns a list of customers. The query returns

' customers until the first customer for whom

' HasOrders returns false. That customer and all

' remaining customers are ignored.

Dim customersWithOrders = From cust In customers

Order By cust.Orders.Count Descending

Take While HasOrders(cust)

Public Function GetAllCustomers() As List(Of Customer)

Dim customers1 = From cust In domesticCustomers

Dim customers2 = From cust In internationalCustomers

Dim customerList = customers1.Union(customers2)

Return customerList.ToList()

End Function

VB

VB

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

10 of 14 02.09.2016 18:18

to access by using a LINQ to SQL file. A LINQ to SQL file has an extension of .dbml.

When you have a valid connection to a SQL Server database, you can add a LINQ to SQL Classes item template to your

project. This will display the Object Relational Designer (O/R designer). The O/R Designer enables you to drag the items

that you want to access in your code from the Server Explorer/Database Explorer onto the designer surface. The LINQ

to SQL file adds a DataContext object to your project. This object includes properties and collections for the tables and

views that you want access to, and methods for the stored procedures that you want to call. After you have saved your

changes to the LINQ to SQL (.dbml) file, you can access these objects in your code by referencing the DataContext object

that is defined by the O/R Designer. The DataContext object for your project is named based on the name of your LINQ to

SQL file. For example, a LINQ to SQL file that is named Northwind.dbml will create a DataContext object named

NorthwindDataContext.

For examples with step-by-step instructions, see How to: Query a Database by Using LINQ (Visual Basic) and How to: Call

a Stored Procedure by Using LINQ (Visual Basic).

Visual Basic Features That Support LINQ
Visual Basic includes other notable features that make the use of LINQ simple and reduce the amount of code that you

must write to perform LINQ queries. These include the following:

Anonymous types, which enable you to create a new type based on a query result.

Implicitly typed variables, which enable you to defer specifying a type and let the compiler infer the type based

on the query result.

Extension methods, which enable you to extend an existing type with your own methods without modifying the

type itself.

For details, see Visual Basic Features That Support LINQ.

Deferred and Immediate Query Execution
Query execution is separate from creating a query. After a query is created, its execution is triggered by a separate

mechanism. A query can be executed as soon as it is defined (immediate execution), or the definition can be stored and

the query can be executed later (deferred execution).

By default, when you create a query, the query itself does not execute immediately. Instead, the query definition is stored

in the variable that is used to reference the query result. When the query result variable is accessed later in code, such as in

a For…Next loop, the query is executed. This process is referred to as deferred execution.

Queries can also be executed when they are defined, which is referred to as immediate execution. You can trigger

immediate execution by applying a method that requires access to individual elements of the query result. This can be the

result of including an aggregate function, such as Count, Sum, Average, Min, or Max. For more information about

aggregate functions, see Aggregate Clause (Visual Basic).

Using the ToList or ToArray methods will also force immediate execution. This can be useful when you want to execute

the query immediately and cache the results. For more information about these methods, see Converting Data Types.

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

11 of 14 02.09.2016 18:18

For more information about query execution, see Writing Your First LINQ Query (Visual Basic).

XML in Visual Basic
The XML features in Visual Basic include XML literals and XML axis properties, which enable you easily to create, access,

query, and modify XML in your code. XML literals enable you to write XML directly in your code. The Visual Basic compiler

treats the XML as a first-class data object.

The following code example shows how to create an XML element, access its sub-elements and attributes, and query the

contents of the element by using LINQ.

For more information, see XML in Visual Basic.

Related Resources

Topic Description

' Place Imports statements at the top of your program.

Imports <xmlns:ns="http://SomeNamespace">

Module Sample1

Sub SampleTransform()

' Create test by using a global XML namespace prefix.

Dim contact =

 <ns:contact>

 <ns:name>Patrick Hines</ns:name>

 <ns:phone ns:type="home">206‐555‐0144</ns:phone>

 <ns:phone ns:type="work">425‐555‐0145</ns:phone>

 </ns:contact>

Dim phoneTypes =

 <phoneTypes>

 <%= From phone In contact.<ns:phone>

Select <type><%= phone.@ns:type %></type>

 %>

 </phoneTypes>

 Console.WriteLine(phoneTypes)

End Sub

End Module

VB

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

12 of 14 02.09.2016 18:18

XML in Visual Basic Describes the XML features in Visual Basic that can be queried and that enable you to

include XML as first-class data objects in your Visual Basic code.

Queries (Visual Basic) Provides reference information about the query clauses that are available in Visual Basic.

LINQ (Language-

Integrated Query)

Includes general information, programming guidance, and samples for LINQ.

LINQ to SQL Includes general information, programming guidance, and samples for LINQ to SQL.

LINQ to Objects Includes general information, programming guidance, and samples for LINQ to Objects.

LINQ to ADO.NET

(Portal Page)

Includes links to general information, programming guidance, and samples for LINQ to

ADO.NET.

LINQ to XML Includes general information, programming guidance, and samples for LINQ to XML.

How To and Walkthrough Topics
How to: Query a Database by Using LINQ (Visual Basic)

How to: Call a Stored Procedure by Using LINQ (Visual Basic)

How to: Modify Data in a Database by Using LINQ (Visual Basic)

How to: Combine Data with LINQ by Using Joins (Visual Basic)

How to: Sort Query Results by Using LINQ (Visual Basic)

How to: Filter Query Results by Using LINQ (Visual Basic)

How to: Count, Sum, or Average Data by Using LINQ (Visual Basic)

How to: Find the Minimum or Maximum Value in a Query Result by Using LINQ (Visual Basic)

Walkthrough: Creating LINQ to SQL Classes (O/R Designer)

How to: Assign Stored Procedures to Perform Updates, Inserts, and Deletes (O/R Designer)

Featured Book Chapters
Chapter 17: LINQ in Programming Visual Basic 2008

See Also
LINQ (Language-Integrated Query)

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

13 of 14 02.09.2016 18:18

Overview of LINQ to XML in Visual Basic

LINQ to DataSet Overview

LINQ to SQL

LINQ Samples

Object Relational Designer (O/R Designer)

DataContext Methods (O/R Designer)

© 2016 Microsoft

Introduction to LINQ in Visual Basic https://msdn.microsoft.com/en-us/library/bb763068(d=printer).aspx

14 of 14 02.09.2016 18:18

How to: Modify Data in a Database by Using
LINQ (Visual Basic)

Language-Integrated Query (LINQ) queries make it easy to access database information and modify values in the database.

The following example shows how to create a new application that retrieves and updates information in a SQL Server

database.

The examples in this topic use the Northwind sample database. If you do not have the Northwind sample database on your

development computer, you can download it from the Microsoft Download Center Web site. For instructions, see

Downloading Sample Databases.

To create a connection to a database

In Visual Studio, open Server Explorer/Database Explorer by clicking the View menu, and then select Server

Explorer/Database Explorer.

1.

Right-click Data Connections in Server Explorer/Database Explorer, and click Add Connection.2.

Specify a valid connection to the Northwind sample database.3.

To add a Project with a LINQ to SQL file

In Visual Studio, on the File menu, point to New and then click Project. Select Visual Basic Windows Forms

Application as the project type.

1.

On the Project menu, click Add New Item. Select the LINQ to SQL Classes item template.2.

Name the file northwind.dbml. Click Add. The Object Relational Designer (O/R Designer) is opened for the

northwind.dbml file.

3.

To add tables to query and modify to the designer

In Server Explorer/Database Explorer, expand the connection to the Northwind database. Expand the Tables

folder.

If you have closed the O/R Designer, you can reopen it by double-clicking the northwind.dbml file that you added

earlier.

1.

Click the Customers table and drag it to the left pane of the designer.

The designer creates a new Customer object for your project.

2.

Visual Studio 2015

How to: Modify Data in a Database by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb907191(d=printer).aspx

1 of 4 02.09.2016 18:19

Save your changes and close the designer.3.

Save your project.4.

To add code to modify the database and display the results

From the Toolbox, drag a DataGridView control onto the default Windows Form for your project, Form1.1.

When you added tables to the O/R Designer, the designer added a DataContext object to your project. This object

contains code that you can use to access the Customers table. It also contains code that defines a local Customer

object and a Customers collection for the table. The DataContext object for your project is named based on the name

of your .dbml file. For this project, the DataContext object is named northwindDataContext.

You can create an instance of the DataContext object in your code and query and modify the Customers collection

specified by the O/R Designer. Changes that you make to the Customers collection are not reflected in the database

until you submit them by calling the SubmitChanges method of the DataContext object.

Double-click the Windows Form, Form1, to add code to the Load event to query the Customers table that is exposed

as a property of your DataContext. Add the following code:

2.

From the Toolbox, drag three Button controls onto the form. Select the first Button control. In the Properties

window, set the Name of the Button control to AddButton and the Text to Add. Select the second button and set

the Name property to UpdateButton and the Text property to Update. Select the third button and set the Name

property to DeleteButton and the Text property to Delete.

3.

Double-click the Add button to add code to its Click event. Add the following code:4.

Private db As northwindDataContext

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs

) Handles MyBase.Load

 db = New northwindDataContext()

 RefreshData()

End Sub

Private Sub RefreshData()

Dim customers = From cust In db.Customers

Where cust.City(0) = "W"

Select cust

 DataGridView1.DataSource = customers

End Sub

Private Sub AddButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs

) Handles AddButton.Click

VB

VB

How to: Modify Data in a Database by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb907191(d=printer).aspx

2 of 4 02.09.2016 18:19

Double-click the Update button to add code to its Click event. Add the following code:5.

Double-click the Delete button to add code to its Click event. Add the following code:6.

Dim cust As New Customer With {

 .City = "Wellington",

 .CompanyName = "Blue Yonder Airlines",

 .ContactName = "Jill Frank",

 .Country = "New Zealand",

 .CustomerID = "JILLF"}

 db.Customers.InsertOnSubmit(cust)

Try

 db.SubmitChanges()

Catch

' Handle exception.

End Try

 RefreshData()

End Sub

Private Sub UpdateButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs

) Handles UpdateButton.Click

Dim updateCust = (From cust In db.Customers

Where cust.CustomerID = "JILLF").ToList()(0)

 updateCust.ContactName = "Jill Shrader"

Try

 db.SubmitChanges()

Catch

' Handle exception.

End Try

 RefreshData()

End Sub

Private Sub DeleteButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs

) Handles DeleteButton.Click

Dim deleteCust = (From cust In db.Customers

Where cust.CustomerID = "JILLF").ToList()(0)

 db.Customers.DeleteOnSubmit(deleteCust)

Try

VB

VB

How to: Modify Data in a Database by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb907191(d=printer).aspx

3 of 4 02.09.2016 18:19

Press F5 to run your project. Click Add to add a new record. Click Update to modify the new record. Click Delete to

delete the new record.

7.

See Also
LINQ in Visual Basic

Queries (Visual Basic)

LINQ to SQL

DataContext Methods (O/R Designer)

How to: Assign Stored Procedures to Perform Updates, Inserts, and Deletes (O/R Designer)

Walkthrough: Creating LINQ to SQL Classes (O/R Designer)

© 2016 Microsoft

 db.SubmitChanges()

Catch

' Handle exception.

End Try

 RefreshData()

End Sub

How to: Modify Data in a Database by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb907191(d=printer).aspx

4 of 4 02.09.2016 18:19

How to: Combine Data with LINQ by Using
Joins (Visual Basic)

Visual Basic provides the Join and Group Join query clauses to enable you to combine the contents of multiple collections

based on common values between the collections. These values are known as key values. Developers familiar with relational

database concepts will recognize the Join clause as an INNER JOIN and the Group Join clause as, effectively, a LEFT OUTER

JOIN.

The examples in this topic demonstrate a few ways to combine data by using the Join and Group Join query clauses.

Create a Project and Add Sample Data

To create a project that contains sample data and types

To run the samples in this topic, open Visual Studio and add a new Visual Basic Console Application project.

Double-click the Module1.vb file created by Visual Basic.

1.

The samples in this topic use the Person and Pet types and data from the following code example. Copy this code

into the default Module1 module created by Visual Basic.

2.

Visual Studio 2015

Private _people As List(Of Person)

Private _pets As List(Of Pet)

Function GetPeople() As List(Of Person)

If _people Is Nothing Then CreateLists()

Return _people

End Function

Function GetPets(ByVal people As List(Of Person)) As List(Of Pet)

If _pets Is Nothing Then CreateLists()

Return _pets

End Function

Private Sub CreateLists()

Dim pers As Person

 _people = New List(Of Person)

 _pets = New List(Of Pet)

 pers = New Person With {.FirstName = "Magnus", .LastName = "Hedlund"}

 _people.Add(pers)

 _pets.Add(New Pet With {.Name = "Daisy", .Owner = pers})

VB

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

1 of 7 02.09.2016 18:20

Perform an Inner Join by Using the Join Clause
An INNER JOIN combines data from two collections. Items for which the specified key values match are included. Any

items from either collection that do not have a matching item in the other collection are excluded.

In Visual Basic, LINQ provides two options for performing an INNER JOIN: an implicit join and an explicit join.

An implicit join specifies the collections to be joined in a From clause and identifies the matching key fields in a Where

clause. Visual Basic implicitly joins the two collections based on the specified key fields.

You can specify an explicit join by using the Join clause when you want to be specific about which key fields to use in the

join. In this case, a Where clause can still be used to filter the query results.

To perform an Inner Join by using the Join clause

 pers = New Person With {.FirstName = "Terry", .LastName = "Adams"}

 _people.Add(pers)

 _pets.Add(New Pet With {.Name = "Barley", .Owner = pers})

 _pets.Add(New Pet With {.Name = "Boots", .Owner = pers})

 _pets.Add(New Pet With {.Name = "Blue Moon", .Owner = pers})

 pers = New Person With {.FirstName = "Charlotte", .LastName = "Weiss"}

 _people.Add(pers)

 _pets.Add(New Pet With {.Name = "Whiskers", .Owner = pers})

' Add a person with no pets for the sake of Join examples.

 _people.Add(New Person With {.FirstName = "Arlene", .LastName = "Huff"})

 pers = New Person With {.FirstName = "Don", .LastName = "Hall"}

' Do not add person to people list for the sake of Join examples.

 _pets.Add(New Pet With {.Name = "Spot", .Owner = pers})

' Add a pet with no owner for the sake of Join examples.

 _pets.Add(New Pet With {.Name = "Unknown",

 .Owner = New Person With {.FirstName = String.Empty,

 .LastName = String.Empty}})

End Sub

Class Person

Public Property FirstName As String

Public Property LastName As String

End Class

Class Pet

Public Property Name As String

Public Property Owner As Person

End Class

VB

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

2 of 7 02.09.2016 18:20

Add the following code to the Module1 module in your project to see examples of both an implicit and explicit

inner join.

1.

Perform a Left Outer Join by Using the Group Join Clause
A LEFT OUTER JOIN includes all the items from the left-side collection of the join and only matching values from the

Sub InnerJoinExample()

' Create two lists.

Dim people = GetPeople()

Dim pets = GetPets(people)

' Implicit Join.

Dim petOwners = From pers In people, pet In pets

Where pet.Owner Is pers

Select pers.FirstName, PetName = pet.Name

' Display grouped results.

Dim output As New System.Text.StringBuilder

For Each pers In petOwners

 output.AppendFormat(

 pers.FirstName & ":" & vbTab & pers.PetName & vbCrLf)

Next

 Console.WriteLine(output)

' Explicit Join.

Dim petOwnersJoin = From pers In people

Join pet In pets

On pet.Owner Equals pers

Select pers.FirstName, PetName = pet.Name

' Display grouped results.

 output = New System.Text.StringBuilder()

For Each pers In petOwnersJoin

 output.AppendFormat(

 pers.FirstName & ":" & vbTab & pers.PetName & vbCrLf)

Next

 Console.WriteLine(output)

' Both queries produce the following output:

'

' Magnus: Daisy

' Terry: Barley

' Terry: Boots

' Terry: Blue Moon

' Charlotte: Whiskers

End Sub

VB

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

3 of 7 02.09.2016 18:20

right-side collection of the join. Any items from the right-side collection of the join that do not have a matching item in

the left-side collection are excluded from the query result.

The Group Join clause performs, in effect, a LEFT OUTER JOIN. The difference between what is typically known as a LEFT

OUTER JOIN and what the Group Join clause returns is that the Group Join clause groups results from the right-side

collection of the join for each item in the left-side collection. In a relational database, a LEFT OUTER JOIN returns an

ungrouped result in which each item in the query result contains matching items from both collections in the join. In this

case, the items from the left-side collection of the join are repeated for each matching item from the right-side collection.

You will see what this looks like when you complete the next procedure.

You can retrieve the results of a Group Join query as an ungrouped result by extending your query to return an item for

each grouped query result. To accomplish this, you have to ensure that you query on the DefaultIfEmpty method of the

grouped collection. This ensures that items from the left-side collection of the join are still included in the query result

even if they have no matching results from the right-side collection. You can add code to your query to provide a default

result value when there is no matching value from the right-side collection of the join.

To perform a Left Outer Join by using the Group Join clause

Add the following code to the Module1 module in your project to see examples of both a grouped left outer join

and an ungrouped left outer join.

1.

Sub LeftOuterJoinExample()

' Create two lists.

Dim people = GetPeople()

Dim pets = GetPets(people)

' Grouped results.

Dim petOwnersGrouped = From pers In people

Group Join pet In pets

On pers Equals pet.Owner

Into PetList = Group

Select pers.FirstName, pers.LastName,

 PetList

' Display grouped results.

Dim output As New System.Text.StringBuilder

For Each pers In petOwnersGrouped

 output.AppendFormat(pers.FirstName & ":" & vbCrLf)

For Each pt In pers.PetList

 output.AppendFormat(vbTab & pt.Name & vbCrLf)

Next

Next

 Console.WriteLine(output)

' This code produces the following output:

'

' Magnus:

' Daisy

' Terry:

' Barley

' Boots

VB

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

4 of 7 02.09.2016 18:20

Perform a Join by Using a Composite Key
You can use the And keyword in a Join or Group Join clause to identify multiple key fields to use when matching values

from the collections being joined. The And keyword specifies that all specified key fields must match for items to be

joined.

To perform a Join by using a composite key

Add the following code to the Module1 module in your project to see examples of a join that uses a composite

key.

1.

' Blue Moon

' Charlotte:

' Whiskers

' Arlene:

' "Flat" results.

Dim petOwners = From pers In people

Group Join pet In pets On pers Equals pet.Owner

Into PetList = Group

From pet In PetList.DefaultIfEmpty()

Select pers.FirstName, pers.LastName,

 PetName =

If(pet Is Nothing, String.Empty, pet.Name)

' Display "flat" results.

 output = New System.Text.StringBuilder()

For Each pers In petOwners

 output.AppendFormat(

 pers.FirstName & ":" & vbTab & pers.PetName & vbCrLf)

Next

 Console.WriteLine(output.ToString())

' This code produces the following output:

'

' Magnus: Daisy

' Terry: Barley

' Terry: Boots

' Terry: Blue Moon

' Charlotte: Whiskers

' Arlene:

End Sub

Sub CompositeKeyJoinExample()

' Create two lists.

Dim people = GetPeople()

Dim pets = GetPets(people)

VB

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

5 of 7 02.09.2016 18:20

Run the Code

To add code to run the examples

Replace the Sub Main in the Module1 module in your project with the following code to run the examples in this

topic.

1.

Press F5 to run the examples.2.

See Also
LINQ in Visual Basic

' Implicit Join.

Dim petOwners = From pers In people

Join pet In pets On

 pet.Owner.FirstName Equals pers.FirstName And

 pet.Owner.LastName Equals pers.LastName

Select pers.FirstName, PetName = pet.Name

' Display grouped results.

Dim output As New System.Text.StringBuilder

For Each pers In petOwners

 output.AppendFormat(

 pers.FirstName & ":" & vbTab & pers.PetName & vbCrLf)

Next

 Console.WriteLine(output)

' This code produces the following output:

'

' Magnus: Daisy

' Terry: Barley

' Terry: Boots

' Terry: Blue Moon

' Charlotte: Whiskers

End Sub

Sub Main()

 InnerJoinExample()

 LeftOuterJoinExample()

 CompositeKeyJoinExample()

 Console.ReadLine()

End Sub

VB

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

6 of 7 02.09.2016 18:20

Introduction to LINQ in Visual Basic

Join Clause (Visual Basic)

Group Join Clause (Visual Basic)

From Clause (Visual Basic)

Where Clause (Visual Basic)

Queries (Visual Basic)

Data Transformations with LINQ (C#)

© 2016 Microsoft

How to: Combine Data with LINQ by Using Joins (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918093(d=printer).aspx

7 of 7 02.09.2016 18:20

How to: Count, Sum, or Average Data by
Using LINQ (Visual Basic)

Language-Integrated Query (LINQ) makes it easy to access database information and execute queries.

The following example shows how to create a new application that performs queries against a SQL Server database. The

sample counts, sums, and averages the results by using the Aggregate and Group By clauses. For more information, see

Aggregate Clause (Visual Basic) and Group By Clause (Visual Basic).

The examples in this topic use the Northwind sample database. If you do not have the Northwind sample database on your

development computer, you can download it from the Microsoft Download Center Web site. For instructions, see

Downloading Sample Databases.

Note

Your computer might show different names or locations for some of the Visual Studio user interface elements in the

following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.

For more information, see Personalizing the Visual Studio IDE.

To create a connection to a database

In Visual Studio, open Server Explorer/Database Explorer by clicking Server Explorer/Database Explorer on the

View menu.

1.

Right-click Data Connections in Server Explorer/Database Explorer and then click Add Connection.2.

Specify a valid connection to the Northwind sample database.3.

To add a project that contains a LINQ to SQL file

In Visual Studio, on the File menu, point to New and then click Project. Select Visual Basic Windows Forms

Application as the project type.

1.

On the Project menu, click Add New Item. Select the LINQ to SQL Classes item template.2.

Name the file northwind.dbml. Click Add. The Object Relational Designer (O/R Designer) is opened for the

northwind.dbml file.

3.

To add tables to query to the O/R Designer

Visual Studio 2015

How to: Count, Sum, or Average Data by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918069(d=printer).aspx

1 of 3 02.09.2016 18:21

In Server Explorer/Database Explorer, expand the connection to the Northwind database. Expand the Tables

folder.

If you have closed the O/R Designer, you can reopen it by double-clicking the northwind.dbml file that you added

earlier.

1.

Click the Customers table and drag it to the left pane of the designer. Click the Orders table and drag it to the left

pane of the designer.

The designer creates new Customer and Order objects for your project. Notice that the designer automatically

detects relationships between the tables and creates child properties for related objects. For example, IntelliSense will

show that the Customer object has an Orders property for all orders related to that customer.

2.

Save your changes and close the designer.3.

Save your project.4.

To add code to query the database and display the results

From the Toolbox, drag a DataGridView control onto the default Windows Form for your project, Form1.1.

Double-click Form1 to add code to the Load event of the form.2.

When you added tables to the O/R Designer, the designer added a DataContext object for your project. This object

contains the code that you must have to access those tables, and to access individual objects and collections for each

table. The DataContext object for your project is named based on the name of your .dbml file. For this project, the

DataContext object is named northwindDataContext.

You can create an instance of the DataContext in your code and query the tables specified by the O/R Designer.

Add the following code to the Load event to query the tables that are exposed as properties of your DataContext

and count, sum, and average the results. The sample uses the Aggregate clause to query for a single result, and the

Group By clause to show an average for grouped results.

3.

Dim db As New northwindDataContext

Dim msg = ""

Dim londonCustomerCount = Aggregate cust In db.Customers

Where cust.City = "London"

Into Count()

msg &= "Count of London Customers: " & londonCustomerCount & vbCrLf

Dim averageOrderCount = Aggregate cust In db.Customers

Where cust.City = "London"

Into Average(cust.Orders.Count)

msg &= "Average number of Orders per customer: " &

 averageOrderCount & vbCrLf

Dim venezuelaTotalOrders = Aggregate cust In db.Customers

Where cust.Country = "Venezuela"

VB

How to: Count, Sum, or Average Data by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918069(d=printer).aspx

2 of 3 02.09.2016 18:21

Press F5 to run your project and view the results.4.

See Also
LINQ in Visual Basic

Queries (Visual Basic)

LINQ to SQL

DataContext Methods (O/R Designer)

Walkthrough: Creating LINQ to SQL Classes (O/R Designer)

Aggregate Clause (Visual Basic)

Group By Clause (Visual Basic)

© 2016 Microsoft

Into Sum(cust.Orders.Count)

msg &= "Total number of orders from Customers in Venezuela: " &

 venezuelaTotalOrders & vbCrLf

MsgBox(msg)

Dim averageCustomersByCity = From cust In db.Customers

Group By cust.City

Into Average(cust.Orders.Count)

Order By Average

DataGridView1.DataSource = averageCustomersByCity

How to: Count, Sum, or Average Data by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918069(d=printer).aspx

3 of 3 02.09.2016 18:21

How to: Return a LINQ Query Result as a
Specific Type (Visual Basic)

Language-Integrated Query (LINQ) makes it easy to access database information and execute queries. By default, LINQ

queries return a list of objects as an anonymous type. You can also specify that a query return a list of a specific type by

using the Select clause.

The following example shows how to create a new application that performs queries against a SQL Server database and

projects the results as a specific named type. For more information, see Anonymous Types (Visual Basic) and Select Clause

(Visual Basic).

The examples in this topic use the Northwind sample database. If you do not have the Northwind sample database on your

development computer, you can download it from the Microsoft Download Center Web site. For instructions, see

Downloading Sample Databases.

Note

Your computer might show different names or locations for some of the Visual Studio user interface elements in the

following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.

For more information, see Personalizing the Visual Studio IDE.

To create a connection to a database

In Visual Studio, open Server Explorer/Database Explorer by clicking Server Explorer/Database Explorer on the

View menu.

1.

Right-click Data Connections in Server Explorer/Database Explorer and then click Add Connection.2.

Specify a valid connection to the Northwind sample database.3.

To add a project that contains a LINQ to SQL file

In Visual Studio, on the File menu, point to New and then click Project. Select Visual Basic Windows Forms

Application as the project type.

1.

On the Project menu, click Add New Item. Select the LINQ to SQL Classes item template.2.

Name the file northwind.dbml. Click Add. The Object Relational Designer (O/R Designer) is opened for the

northwind.dbml file.

3.

Visual Studio 2015

How to: Return a LINQ Query Result as a Specific Type (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918115(d=printer).aspx

1 of 3 02.09.2016 18:22

To add tables to query to the O/R Designer

In Server Explorer/Database Explorer, expand the connection to the Northwind database. Expand the Tables

folder.

If you have closed the O/R Designer, you can reopen it by double-clicking the northwind.dbml file that you added

earlier.

1.

Click the Customers table and drag it to the left pane of the designer.

The designer creates a new Customer object for your project. You can project a query result as the Customer type or

as a type that you create. This sample will create a new type in a later procedure and project a query result as that

type.

2.

Save your changes and close the designer.3.

Save your project.4.

To add code to query the database and display the results

From the Toolbox, drag a DataGridView control onto the default Windows Form for your project, Form1.1.

Double-click Form1 to modify the Form1 class.2.

After the End Class statement of the Form1 class, add the following code to create a CustomerInfo type to hold

the query results for this sample.

3.

When you added tables to the O/R Designer, the designer added a DataContext object to your project. This object

contains the code that you must have to access those tables, and to access individual objects and collections for each

table. The DataContext object for your project is named based on the name of your .dbml file. For this project, the

DataContext object is named northwindDataContext.

You can create an instance of the DataContext in your code and query the tables specified by the O/R Designer.

In the Load event of the Form1 class, add the following code to query the tables that are exposed as properties of

your data context. The Select clause of the query will create a new CustomerInfo type instead of an anonymous

type for each item of the query result.

4.

Public Class CustomerInfo

Public Property CompanyName As String

Public Property ContactName As String

End Class

Dim db As New northwindDataContext

Dim customerList =

From cust In db.Customers

VB

VB

How to: Return a LINQ Query Result as a Specific Type (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918115(d=printer).aspx

2 of 3 02.09.2016 18:22

Press F5 to run your project and view the results.5.

See Also
LINQ in Visual Basic

Queries (Visual Basic)

LINQ to SQL

DataContext Methods (O/R Designer)

Walkthrough: Creating LINQ to SQL Classes (O/R Designer)

© 2016 Microsoft

Where cust.CompanyName.StartsWith("L")

Select New CustomerInfo With {.CompanyName = cust.CompanyName,

 .ContactName = cust.ContactName}

DataGridView1.DataSource = customerList

How to: Return a LINQ Query Result as a Specific Type (Visual Basic) https://msdn.microsoft.com/en-us/library/bb918115(d=printer).aspx

3 of 3 02.09.2016 18:22

Visual Basic Features That Support LINQ

The name Language-Integrated Query (LINQ) refers to technology in Visual Basic that supports query syntax and other

language constructs directly in the language. With LINQ, you do not have to learn a new language to query against an

external data source. You can query against data in relational databases, XML stores, or objects by using Visual Basic. This

integration of query capabilities into the language enables compile-time checking for syntax errors and type safety. This

integration also ensures that you already know most of what you have to know to write rich, varied queries in Visual Basic.

The following sections describe the language constructs that support LINQ in enough detail to enable you to get started in

reading the introductory documentation, code examples, and sample applications. You can also click the links to find more

detailed explanations of how the language features come together to enable language-integrated query. A good place to

start is Walkthrough: Writing Queries in Visual Basic.

Query Expressions
Query expressions in Visual Basic can be expressed in a declarative syntax similar to that of SQL or XQuery. At compile

time, query syntax is converted into method calls to a LINQ provider's implementation of the standard query operator

extension methods. Applications control which standard query operators are in scope by specifying the appropriate

namespace with an Imports statement. Syntax for a Visual Basic query expression looks like this:

For more information, see Introduction to LINQ in Visual Basic.

Implicitly Typed Variables
Instead of explicitly specifying a type when you declare and initialize a variable, you can enable the compiler to infer and

assign the type. This is referred to as local type inference.

Variables whose types are inferred are strongly typed, just like variables whose type you specify explicitly. Local type

inference works only when you are defining a local variable inside a method body. For more information, see Option Infer

Statement and Local Type Inference (Visual Basic).

The following example illustrates local type inference. To use this example, you must set Option Infer to On.

Visual Studio 2015

Dim londonCusts = From cust In customers

Where cust.City = "London"

Order By cust.Name Ascending

Select cust.Name, cust.Phone

' The variable aNumber will be typed as an integer.

Dim aNumber = 5

VB

VB

Visual Basic Features That Support LINQ https://msdn.microsoft.com/en-us/library/bb384991(d=printer).aspx

1 of 5 03.09.2016 0:10

Local type inference also makes it possible to create anonymous types, which are described later in this section and are

necessary for LINQ queries.

In the following LINQ example, type inference occurs if Option Infer is either On or Off. A compile-time error occurs if

Option Infer is Off and Option Strict is On.

Object Initializers
Object initializers are used in query expressions when you have to create an anonymous type to hold the results of a

query. They also can be used to initialize objects of named types outside of queries. By using an object initializer, you can

initialize an object in a single line without explicitly calling a constructor. Assuming that you have a class named

Customer that has public Name and Phone properties, along with other properties, an object initializer can be used in this

manner:

For more information, see Object Initializers: Named and Anonymous Types (Visual Basic).

Anonymous Types
Anonymous types provide a convenient way to temporarily group a set of properties into an element that you want to

include in a query result. This enables you to choose any combination of available fields in the query, in any order, without

defining a named data type for the element.

An anonymous type is constructed dynamically by the compiler. The name of the type is assigned by the compiler, and it

might change with each new compilation. Therefore, the name cannot be used directly. Anonymous types are initialized in

the following way:

' The variable aName will be typed as a String.

Dim aName = "Virginia"

' Query example.

' If numbers is a one‐dimensional array of integers, num will be typed

' as an integer and numQuery will be typed as IEnumerable(Of Integer)‐‐

' basically a collection of integers.

Dim numQuery = From num In numbers

Where num Mod 2 = 0

Select num

Dim aCust = New Customer With {.Name = "Mike",

 .Phone = "555‐0212"}

VB

VB

VB

Visual Basic Features That Support LINQ https://msdn.microsoft.com/en-us/library/bb384991(d=printer).aspx

2 of 5 03.09.2016 0:10

For more information, see Anonymous Types (Visual Basic).

Extension Methods
Extension methods enable you to add methods to a data type or interface from outside the definition. This feature

enables you to, in effect, add new methods to an existing type without actually modifying the type. The standard query

operators are themselves a set of extension methods that provide LINQ query functionality for any type that implements

IEnumerable(Of T). Other extensions to IEnumerable(Of T) include Count, Union, and Intersect.

The following extension method adds a print method to the String class.

The method is called like an ordinary instance method of String:

For more information, see Extension Methods (Visual Basic).

Lambda Expressions
A lambda expression is a function without a name that calculates and returns a single value. Unlike named functions, a

' Outside a query.

Dim product = New With {.Name = "paperclips", .Price = 1.29}

' Inside a query.

' You can use the existing member names of the selected fields, as was

' shown previously in the Query Expressions section of this topic.

Dim londonCusts1 = From cust In customers

Where cust.City = "London"

Select cust.Name, cust.Phone

' Or you can specify new names for the selected fields.

Dim londonCusts2 = From cust In customers

Where cust.City = "London"

Select CustomerName = cust.Name,

 CustomerPhone = cust.Phone

' Import System.Runtime.CompilerServices to use the Extension attribute.

<Extension()>

Public Sub Print(ByVal str As String)

 Console.WriteLine(str)

End Sub

Dim greeting As String = "Hello"

greeting.Print()

VB

VB

Visual Basic Features That Support LINQ https://msdn.microsoft.com/en-us/library/bb384991(d=printer).aspx

3 of 5 03.09.2016 0:10

lambda expression can be defined and executed at the same time. The following example displays 4.

You can assign the lambda expression definition to a variable name and then use the name to call the function. The

following example also displays 4.

In LINQ, lambda expressions underlie many of the standard query operators. The compiler creates lambda expressions to

capture the calculations that are defined in fundamental query methods such as Where, Select, Order By, Take While,

and others.

For example, the following code defines a query that returns all senior students from a list of students.

The query definition is compiled into code that is similar to the following example, which uses two lambda expressions to

specify the arguments for Where and Select.

Either version can be run by using a For Each loop:

For more information, see Lambda Expressions (Visual Basic).

See Also
Language-Integrated Query (LINQ) (Visual Basic)

Console.WriteLine((Function(num As Integer) num + 1)(3))

Dim add1 = Function(num As Integer) num + 1

Console.WriteLine(add1(3))

Dim seniorsQuery = From stdnt In students

Where stdnt.Year = "Senior"

Select stdnt

Dim seniorsQuery2 = students.

Where(Function(st) st.Year = "Senior").

Select(Function(s) s)

For Each senior In seniorsQuery

 Console.WriteLine(senior.Last & ", " & senior.First)

Next

VB

VB

VB

VB

VB

Visual Basic Features That Support LINQ https://msdn.microsoft.com/en-us/library/bb384991(d=printer).aspx

4 of 5 03.09.2016 0:10

Getting Started with LINQ in Visual Basic

LINQ and Strings (Visual Basic)

Option Infer Statement

Option Strict Statement

© 2016 Microsoft

Visual Basic Features That Support LINQ https://msdn.microsoft.com/en-us/library/bb384991(d=printer).aspx

5 of 5 03.09.2016 0:10

How to: Query an ArrayList with LINQ (Visual
Basic)

When using LINQ to query non-generic IEnumerable collections such as ArrayList, you must explicitly declare the type of the

range variable to reflect the specific type of the objects in the collection. For example, if you have an ArrayList of Student

objects, your From Clause (Visual Basic) should look like this:

By specifying the type of the range variable, you are casting each item in the ArrayList to a Student.

The use of an explicitly typed range variable in a query expression is equivalent to calling the Cast(Of TResult) method.

Cast(Of TResult) throws an exception if the specified cast cannot be performed. Cast(Of TResult) and OfType(Of TResult) are

the two Standard Query Operator methods that operate on non-generic IEnumerable types. In Visual Basic, you must

explicitly call the Cast(Of TResult) method on the data source to ensure a specific range variable type. For more information,

seeType Relationships in Query Operations (Visual Basic).

Example
The following example shows a simple query over an ArrayList. Note that this example uses object initializers when the code

calls the Add method, but this is not a requirement.

Visual Studio 2015

Dim query = From student As Student In arrList

...

Imports System.Collections

Imports System.Linq

Module Module1

Public Class Student

Public Property FirstName As String

Public Property LastName As String

Public Property Scores As Integer()

End Class

Sub Main()

Dim student1 As New Student With {.FirstName = "Svetlana",

 .LastName = "Omelchenko",

 .Scores = New Integer() {98, 92, 81, 60}}

VB

How to: Query an ArrayList with LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692817(d=printer).aspx

1 of 2 03.09.2016 0:17

See Also
LINQ to Objects (Visual Basic)

© 2016 Microsoft

Dim student2 As New Student With {.FirstName = "Claire",

 .LastName = "O'Donnell",

 .Scores = New Integer() {75, 84, 91, 39}}

Dim student3 As New Student With {.FirstName = "Cesar",

 .LastName = "Garcia",

 .Scores = New Integer() {97, 89, 85, 82}}

Dim student4 As New Student With {.FirstName = "Sven",

 .LastName = "Mortensen",

 .Scores = New Integer() {88, 94, 65, 91}}

Dim arrList As New ArrayList()

 arrList.Add(student1)

 arrList.Add(student2)

 arrList.Add(student3)

 arrList.Add(student4)

' Use an explicit type for non‐generic collections

Dim query = From student As Student In arrList

Where student.Scores(0) > 95

Select student

For Each student As Student In query

 Console.WriteLine(student.LastName & ": " & student.Scores(0))

Next

' Keep the console window open in debug mode.

 Console.WriteLine("Press any key to exit.")

 Console.ReadKey()

End Sub

End Module

' Output:

' Omelchenko: 98

' Garcia: 97

How to: Query an ArrayList with LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692817(d=printer).aspx

2 of 2 03.09.2016 0:17

How to: Query An Assembly's Metadata with
Reflection (LINQ) (Visual Basic)

The following example shows how LINQ can be used with reflection to retrieve specific metadata about methods that match

a specified search criterion. In this case, the query will find the names of all the methods in the assembly that return

enumerable types such as arrays.

Example

The example uses the GetTypes method to return an array of types in the specified assembly. The Where Clause (Visual Basic)

filter is applied so that only public types are returned. For each public type, a subquery is generated by using the

Visual Studio 2015

Imports System.Reflection

Imports System.IO

Imports System.Linq

Module Module1

Sub Main()

Dim asmbly As Assembly =

Assembly.Load("System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=

b77a5c561934e089")

Dim pubTypesQuery = From type In asmbly.GetTypes()

Where type.IsPublic

From method In type.GetMethods()

Where method.ReturnType.IsArray = True

Let name = method.ToString()

Let typeName = type.ToString()

Group name By typeName Into methodNames = Group

 Console.WriteLine("Getting ready to iterate")

For Each item In pubTypesQuery

 Console.WriteLine(item.methodNames)

For Each type In item.methodNames

 Console.WriteLine(" " & type)

Next

Next

 Console.ReadKey()

End Sub

End Module

VB

How to: Query An Assembly's Metadata with Reflection (LINQ) (Visual ... https://msdn.microsoft.com/en-us/library/mt692787(d=printer).aspx

1 of 2 03.09.2016 0:13

MethodInfo array that is returned from the GetMethods call. These results are filtered to return only those methods whose

return type is an array or else a type that implements IEnumerable(Of T). Finally, these results are grouped by using the type

name as a key.

Compiling the Code
Create a project that targets the .NET Framework version 3.5 or higher with a reference to System.Core.dll and a Imports

statement for the System.Linq namespace.

See Also
LINQ to Objects (Visual Basic)

© 2016 Microsoft

How to: Query An Assembly's Metadata with Reflection (LINQ) (Visual ... https://msdn.microsoft.com/en-us/library/mt692787(d=printer).aspx

2 of 2 03.09.2016 0:13

LINQ and File Directories (Visual Basic)

Many file system operations are essentially queries and are therefore well-suited to the LINQ approach.

Note that the queries in this section are non-destructive. They are not used to change the contents of the original files or

folders. This follows the rule that queries should not cause any side-effects. In general, any code (including queries that

perform create / update / delete operators) that modifies source data should be kept separate from the code that just

queries the data.

This section contains the following topics:

How to: Query for Files with a Specified Attribute or Name (Visual Basic)

Shows how to search for files by examining one or more properties of its FileInfo object.

How to: Group Files by Extension (LINQ) (Visual Basic)

Shows how to return groups of FileInfo object based on their file name extension.

How to: Query for the Total Number of Bytes in a Set of Folders (LINQ) (Visual Basic)

Shows how to return the total number of bytes in all the files in a specified directory tree.

How to: Compare the Contents of Two Folders (LINQ) (Visual Basic)s

Shows how to return all the files that are present in two specified folders, and also all the files that are present in one

folder but not the other.

How to: Query for the Largest File or Files in a Directory Tree (LINQ) (Visual Basic)

Shows how to return the largest or smallest file, or a specified number of files, in a directory tree.

How to: Query for Duplicate Files in a Directory Tree (LINQ) (Visual Basic)

Shows how to group for all file names that occur in more than one location in a specified directory tree. Also shows

how to perform more complex comparisons based on a custom comparer.

How to: Query the Contents of Files in a Folder (LINQ) (Visual Basic)

Shows how to iterate through folders in a tree, open each file, and query the file's contents.

Comments

Visual Studio 2015

LINQ and File Directories (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692818(d=printer).aspx

1 of 2 03.09.2016 0:14

There is some complexity involved in creating a data source that accurately represents the contents of the file system and

handles exceptions gracefully. The examples in this section create a snapshot collection of FileInfo objects that represents

all the files under a specified root folder and all its subfolders. The actual state of each FileInfo may change in the time

between when you begin and end executing a query. For example, you can create a list of FileInfo objects to use as a data

source. If you try to access the Length property in a query, the FileInfo object will try to access the file system to update

the value of Length. If the file no longer exists, you will get a FileNotFoundException in your query, even though you are

not querying the file system directly. Some queries in this section use a separate method that consumes these particular

exceptions in certain cases. Another option is to keep your data source updated dynamically by using the

FileSystemWatcher.

See Also

LINQ to Objects (Visual Basic)

© 2016 Microsoft

LINQ and File Directories (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692818(d=printer).aspx

2 of 2 03.09.2016 0:14

How to: Add Custom Methods for LINQ
Queries (Visual Basic)

You can extend the set of methods that you can use for LINQ queries by adding extension methods to the IEnumerable(Of 

T) interface. For example, in addition to the standard average or maximum operations, you can create a custom aggregate

method to compute a single value from a sequence of values. You can also create a method that works as a custom filter or a

specific data transform for a sequence of values and returns a new sequence. Examples of such methods are Distinct(Of 

TSource), Skip(Of TSource), and Reverse(Of TSource).

When you extend the IEnumerable(Of T) interface, you can apply your custom methods to any enumerable collection. For

more information, see Extension Methods (Visual Basic).

Adding an Aggregate Method
An aggregate method computes a single value from a set of values. LINQ provides several aggregate methods, including

Average(Of TSource), Min(Of TSource), and Max(Of TSource). You can create your own aggregate method by adding an

extension method to the IEnumerable(Of T) interface.

The following code example shows how to create an extension method called Median to compute a median for a

sequence of numbers of type double.

Visual Studio 2015

Imports System.Runtime.CompilerServices

Module LINQExtension

' Extension method for the IEnumerable(of T) interface.

' The method accepts only values of the Double type.

 <Extension()>

Function Median(ByVal source As IEnumerable(Of Double)) As Double

If source.Count = 0 Then

Throw New InvalidOperationException("Cannot compute median for an empty

set.")

End If

Dim sortedSource = From number In source

Order By number

Dim itemIndex = sortedSource.Count \ 2

If sortedSource.Count Mod 2 = 0 Then

' Even number of items in list.

Return (sortedSource(itemIndex) + sortedSource(itemIndex ‐ 1)) / 2

Else

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

1 of 5 03.09.2016 0:15

You call this extension method for any enumerable collection in the same way you call other aggregate methods from the

IEnumerable(Of T) interface.

Note

 In Visual Basic, you can either use a method call or standard query syntax for the Aggregate or Group By clause. For

more information, see Aggregate Clause (Visual Basic) and Group By Clause (Visual Basic).

The following code example shows how to use the Median method for an array of type double.

Overloading an Aggregate Method to Accept Various Types

You can overload your aggregate method so that it accepts sequences of various types. The standard approach is to

create an overload for each type. Another approach is to create an overload that will take a generic type and convert it

to a specific type by using a delegate. You can also combine both approaches.

To create an overload for each type

You can create a specific overload for each type that you want to support. The following code example shows an

overload of the Median method for the integer type.

' Odd number of items in list.

Return sortedSource(itemIndex)

End If

End Function

End Module

Dim numbers1() As Double = {1.9, 2, 8, 4, 5.7, 6, 7.2, 0}

Dim query1 = Aggregate num In numbers1 Into Median()

Console.WriteLine("Double: Median = " & query1)

' This code produces the following output:

'

' Double: Median = 4.85

' Integer overload

<Extension()>

Function Median(ByVal source As IEnumerable(Of Integer)) As Double

Return Aggregate num In source Select CDbl(num) Into med = Median()

VB

VB

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

2 of 5 03.09.2016 0:15

You can now call the Median overloads for both integer and double types, as shown in the following code:

To create a generic overload

You can also create an overload that accepts a sequence of generic objects. This overload takes a delegate as a

parameter and uses it to convert a sequence of objects of a generic type to a specific type.

The following code shows an overload of the Median method that takes the Func(Of T, TResult) delegate as a

parameter. This delegate takes an object of generic type T and returns an object of type double.

You can now call the Median method for a sequence of objects of any type. If the type does not have its own

method overload, you have to pass a delegate parameter. In Visual Basic, you can use a lambda expression for this

purpose. Also, if you use the Aggregate or Group By clause instead of the method call, you can pass any value or

End Function

Dim numbers1() As Double = {1.9, 2, 8, 4, 5.7, 6, 7.2, 0}

Dim query1 = Aggregate num In numbers1 Into Median()

Console.WriteLine("Double: Median = " & query1)

Dim numbers2() As Integer = {1, 2, 3, 4, 5}

Dim query2 = Aggregate num In numbers2 Into Median()

Console.WriteLine("Integer: Median = " & query2)

' This code produces the following output:

'

' Double: Median = 4.85

' Integer: Median = 3

' Generic overload.

<Extension()>

Function Median(Of T)(ByVal source As IEnumerable(Of T),

ByVal selector As Func(Of T, Double)) As Double

Return Aggregate num In source Select selector(num) Into med = Median()

End Function

VB

VB

VB

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

3 of 5 03.09.2016 0:15

expression that is in the scope this clause.

The following example code shows how to call the Median method for an array of integers and an array of strings.

For strings, the median for the lengths of strings in the array is calculated. The example shows how to pass the

Func(Of T, TResult) delegate parameter to the Median method for each case.

Adding a Method That Returns a Collection
You can extend the IEnumerable(Of T) interface with a custom query method that returns a sequence of values. In this

case, the method must return a collection of type IEnumerable(Of T). Such methods can be used to apply filters or data

transforms to a sequence of values.

The following example shows how to create an extension method named AlternateElements that returns every other

element in a collection, starting from the first element.

Dim numbers3() As Integer = {1, 2, 3, 4, 5}

' You can use num as a parameter for the Median method

' so that the compiler will implicitly convert its value to double.

' If there is no implicit conversion, the compiler will

' display an error message.

Dim query3 = Aggregate num In numbers3 Into Median(num)

Console.WriteLine("Integer: Median = " & query3)

Dim numbers4() As String = {"one", "two", "three", "four", "five"}

' With the generic overload, you can also use numeric properties of objects.

Dim query4 = Aggregate str In numbers4 Into Median(str.Length)

Console.WriteLine("String: Median = " & query4)

' This code produces the following output:

'

' Integer: Median = 3

' String: Median = 4

' Extension method for the IEnumerable(of T) interface.

' The method returns every other element of a sequence.

<Extension()>

Function AlternateElements(Of T)(

VB

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

4 of 5 03.09.2016 0:15

You can call this extension method for any enumerable collection just as you would call other methods from the

IEnumerable(Of T) interface, as shown in the following code:

See Also
IEnumerable(Of T)

Extension Methods (Visual Basic)

© 2016 Microsoft

ByVal source As IEnumerable(Of T)

) As IEnumerable(Of T)

Dim list As New List(Of T)

Dim i = 0

For Each element In source

If (i Mod 2 = 0) Then

 list.Add(element)

End If

 i = i + 1

Next

Return list

End Function

Dim strings() As String = {"a", "b", "c", "d", "e"}

Dim query = strings.AlternateElements()

For Each element In query

 Console.WriteLine(element)

Next

' This code produces the following output:

'

' a

' c

' e

VB

How to: Add Custom Methods for LINQ Queries (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692813(d=printer).aspx

5 of 5 03.09.2016 0:15

LINQ and Strings (Visual Basic)

LINQ can be used to query and transform strings and collections of strings. It can be especially useful with semi-structured

data in text files. LINQ queries can be combined with traditional string functions and regular expressions. For example, you

can use the Split or Split method to create an array of strings that you can then query or modify by using LINQ. You can use

the IsMatch method in the where clause of a LINQ query. And you can use LINQ to query or modify the

MatchCollection results returned by a regular expression.

You can also use the techniques described in this section to transform semi-structured text data to XML. For more

information, see How to: Generate XML from CSV Files.

The examples in this section fall into two categories:

Querying a Block of Text
You can query, analyze, and modify text blocks by splitting them into a queryable array of smaller strings by using the

Split method or the Split method. You can split the source text into words, sentences, paragraphs, pages, or any other

criteria, and then perform additional splits if they are required in your query.

How to: Count Occurrences of a Word in a String (LINQ) (Visual Basic)

Shows how to use LINQ for simple querying over text.

How to: Query for Sentences that Contain a Specified Set of Words (LINQ) (Visual Basic)

Shows how to split text files on arbitrary boundaries and how to perform queries against each part.

How to: Query for Characters in a String (LINQ) (Visual Basic)

Demonstrates that a string is a queryable type.

How to: Combine LINQ Queries with Regular Expressions (Visual Basic)

Shows how to use regular expressions in LINQ queries for complex pattern matching on filtered query results.

Querying Semi-Structured Data in Text Format
Many different types of text files consist of a series of lines, often with similar formatting, such as tab- or comma-

delimited files or fixed-length lines. After you read such a text file into memory, you can use LINQ to query and/or modify

the lines. LINQ queries also simplify the task of combining data from multiple sources.

How to: Find the Set Difference Between Two Lists (LINQ) (Visual Basic)

Shows how to find all the strings that are present in one list but not the other.

How to: Sort or Filter Text Data by Any Word or Field (LINQ) (Visual Basic)

Shows how to sort text lines based on any word or field.

How to: Reorder the Fields of a Delimited File (LINQ) (Visual Basic)

Visual Studio 2015

LINQ and Strings (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692781(d=printer).aspx

1 of 2 03.09.2016 0:12

Shows how to reorder fields in a line in a .csv file.

How to: Combine and Compare String Collections (LINQ) (Visual Basic)

Shows how to combine string lists in various ways.

How to: Populate Object Collections from Multiple Sources (LINQ) (Visual Basic)

Shows how to create object collections by using multiple text files as data sources.

How to: Join Content from Dissimilar Files (LINQ) (Visual Basic)

Shows how to combine strings in two lists into a single string by using a matching key.

How to: Split a File Into Many Files by Using Groups (LINQ) (Visual Basic)

Shows how to create new files by using a single file as a data source.

How to: Compute Column Values in a CSV Text File (LINQ) (Visual Basic)

Shows how to perform mathematical computations on text data in .csv files.

See Also
Language-Integrated Query (LINQ) (Visual Basic)

How to: Generate XML from CSV Files

© 2016 Microsoft

LINQ and Strings (Visual Basic) https://msdn.microsoft.com/en-us/library/mt692781(d=printer).aspx

2 of 2 03.09.2016 0:12

How to: Transform XML by Using LINQ
(Visual Basic)

XML Literals (Visual Basic) make it easy to read XML from one source and transform it to a new XML format. You can take

advantage of LINQ queries to retrieve the content to transform, or change content in an existing document to a new XML

format.

The example in this topic transforms content from an XML source document to HTML to be viewed in a browser.

Note

Your computer might show different names or locations for some of the Visual Studio user interface elements in the

following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.

For more information, see Personalizing the Visual Studio IDE.

To transform an XML document

In Visual Studio, create a new Visual Basic project in the Console Application project template.1.

Double-click the Module1.vb file created in the project to modify the Visual Basic code. Add the following code to

the Sub Main of the Module1 module. This code creates the source XML document as an XDocument object.

2.

Visual Studio 2015

Dim catalog =

 <?xml version="1.0"?>

 <Catalog>

 <Book id="bk101">

 <Author>Garghentini, Davide</Author>

 <Title>XML Developer's Guide</Title>

 <Price>44.95</Price>

 <Description>

 An in‐depth look at creating applications

with <technology>XML</technology>. For

 <audience>beginners</audience> or

 <audience>advanced</audience> developers.

 </Description>

 </Book>

 <Book id="bk331">

 <Author>Spencer, Phil</Author>

 <Title>Developing Applications with Visual Basic .NET</Title>

 <Price>45.95</Price>

 <Description>

VB

How to: Transform XML by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384773(d=printer).aspx

1 of 4 03.09.2016 0:33

How to: Load XML from a File, String, or Stream (Visual Basic).

After the code to create the source XML document, add the following code to retrieve all the <Book> elements from

the object and transform them into an HTML document. The list of <Book> elements is created by using a LINQ

query that returns a collection of XElement objects that contain the transformed HTML. You can use embedded

expressions to put the values from the source document in the new XML format.

The resulting HTML document is written to a file by using the Save method.

3.

After Sub Main of Module1, add a new method (Sub) to transform a <Description> node into the specified HTML

format. This method is called by the code in the previous step and is used to preserve the format of the

<Description> elements.

This method replaces sub-elements of the <Description> element with HTML. The ReplaceWith method is used to

preserve the location of the sub-elements. The transformed content of the <Description> element is included in an

HTML paragraph (<p>) element. The Nodes property is used to retrieve the transformed content of the

<Description> element. This ensures that sub-elements are included in the transformed content.

Add the following code after Sub Main of Module1.

4.

Get the expert insights, practical code samples,

and best practices you need

to advance your expertise with <technology>Visual

 Basic .NET</technology>.

 Learn how to create faster, more reliable applications

 based on professional,

 pragmatic guidance by today's top <audience>developers</audience>.

 </Description>

 </Book>

 </Catalog>

Dim htmlOutput =

 <html>

 <body>

 <%= From book In catalog.<Catalog>.<Book>

Select <div>

 <h1><%= book.<Title>.Value %></h1>

 <h3><%= "By " & book.<Author>.Value %></h3>

 <h3><%= "Price = " & book.<Price>.Value %></h3>

 <h2>Description</h2>

 <%= TransformDescription(book.<Description>(0)) %>

 <hr/>

 </div> %>

 </body>

 </html>

htmlOutput.Save("BookDescription.html")

Public Function TransformDescription(ByVal desc As XElement) As XElement

VB

VB

How to: Transform XML by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384773(d=printer).aspx

2 of 4 03.09.2016 0:33

Save your changes.5.

Press F5 to run the code. The resulting saved document will resemble the following:6.

' Replace <technology> elements with .

Dim content = (From element In desc...<technology>).ToList()

If content.Count > 0 Then

For i = 0 To content.Count ‐ 1

 content(i).ReplaceWith(<%= content(i).Value %>)

Next

End If

' Replace <audience> elements with <i>.

 content = (From element In desc...<audience>).ToList()

If content.Count > 0 Then

For i = 0 To content.Count ‐ 1

 content(i).ReplaceWith(<i><%= content(i).Value %></i>)

Next

End If

' Return the updated contents of the <Description> element.

Return <p><%= desc.Nodes %></p>

End Function

<?xml version="1.0"?>

<html>

 <body>

 <div>

 <h1>XML Developer's Guide</h1>

 <h3>By Garghentini, Davide</h3>

 <h3>Price = 44.95</h3>

 <h2>Description</h2>

 <p>

 An in‐depth look at creating applications

 with XML. For

 <i>beginners</i> or

 <i>advanced</i> developers.

 </p>

 <hr />

 </div>

 <div>

 <h1>Developing Applications with Visual Basic .NET</h1>

 <h3>By Spencer, Phil</h3>

 <h3>Price = 45.95</h3>

 <h2>Description</h2>

 <p>

 Get the expert insights, practical code

 samples, and best practices you need

How to: Transform XML by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384773(d=printer).aspx

3 of 4 03.09.2016 0:33

See Also

XML Literals (Visual Basic)

Manipulating XML in Visual Basic

XML in Visual Basic

How to: Load XML from a File, String, or Stream (Visual Basic)

LINQ in Visual Basic

Introduction to LINQ in Visual Basic

© 2016 Microsoft

 to advance your expertise with Visual

 Basic .NET. Learn how to create faster,

 more reliable applications based on

 professional, pragmatic guidance by today's

 top <i>developers</i>.

 </p>

 <hr />

 </div>

 </body>

</html>

How to: Transform XML by Using LINQ (Visual Basic) https://msdn.microsoft.com/en-us/library/bb384773(d=printer).aspx

4 of 4 03.09.2016 0:33

Accessing XML in Visual Basic

Visual Basic provides XML axis properties for accessing and navigating LINQ to XML structures. These properties use a

special syntax to enable you to access elements and attributes by specifying the XML names.

The following table lists the language features that enable you to access XML elements and attributes in Visual Basic.

XML Axis Properties

Property

description
Example Description

child axis contact.<phone> Gets all phone elements that are child elements of the contact

element.

attribute axis phone.@type Gets all type attributes of the phone element.

descendant axis contacts...<name> Gets all name elements of the contacts element, regardless of how

deep in the hierarchy they occur.

extension indexer contacts...

<name>(0)

Gets the first name element from the sequence.

value contacts...

<name>.Value

Gets the string representation of the first object in the sequence, or

Nothing if the sequence is empty.

In This Section

How to: Access XML Descendant Elements (Visual Basic)

Shows how to use a descendant axis property to access all XML elements that have a specified name and that are

contained under a specified XML element.

How to: Access XML Child Elements (Visual Basic)

Shows how to use a child axis property to access all XML child elements that have a specified name in an XML

element.

How to: Access XML Attributes (Visual Basic)

Shows how to use an attribute axis property to access all XML attributes that have a specified name in an XML

element.

How to: Declare and Use XML Namespace Prefixes (Visual Basic)

Shows how to declare an XML namespace prefix and use it to create and access XML elements.

Visual Studio 2015

Accessing XML in Visual Basic https://msdn.microsoft.com/en-us/library/bb384974(d=printer).aspx

1 of 2 03.09.2016 0:34

Related Sections

XML Axis Properties (Visual Basic)

Provides links to sections describing the various XML access properties.

Overview of LINQ to XML in Visual Basic

Provides an introduction to using LINQ to XML in Visual Basic.

Creating XML in Visual Basic

Provides an introduction to using XML literals in Visual Basic.

Manipulating XML in Visual Basic

Provides links to sections about loading and modifying XML in Visual Basic.

XML in Visual Basic

Provides links to sections describing how to use LINQ to XML in Visual Basic.

© 2016 Microsoft

Accessing XML in Visual Basic https://msdn.microsoft.com/en-us/library/bb384974(d=printer).aspx

2 of 2 03.09.2016 0:34

Querying Typed DataSets

If the schema of the DataSet is known at application design time, we recommend that you use a typed DataSet when using

LINQ to DataSet. A typed DataSet is a class that derives from a DataSet. As such, it inherits all the methods, events, and

properties of a DataSet. Additionally, a typed DataSet provides strongly typed methods, events, and properties. This means

that you can access tables and columns by name, instead of using collection-based methods. This makes queries simpler and

more readable. For more information, see Typed DataSets.

LINQ to DataSet also supports querying over a typed DataSet. With a typed DataSet, you do not have to use the generic

Field method or SetField method to access column data. Property names are available at compile time because the type

information is included in the DataSet. LINQ to DataSet provides access to column values as the correct type, so that type

mismatch errors are caught when the code is compiled instead of at run time.

Before you can begin querying a typed DataSet, you must generate the class by using the DataSet Designer in Visual Studio

2008. For more information, see How to: Create a Typed Dataset.

Example
The following example shows a query over a typed DataSet:

See Also

.NET Framework (current version)

Dim orders = ds.Tables("SalesOrderHeader")

Dim query = _

From o In orders _

Where o.OnlineOrderFlag = True _

Select New {SalesOrderID := o.SalesOrderID, _

 OrderDate := o.OrderDate, _

 SalesOrderNumber := o.SalesOrderNumber}

For Each Dim onlineOrder In query

 Console.WriteLine("{0}\t{1:d}\t{2}", _

 onlineOrder.SalesOrderID, _

 onlineOrder.OrderDate, _

 onlineOrder.SalesOrderNumber)

Next

VB

Querying Typed DataSets https://msdn.microsoft.com/en-us/library/bb399351(d=printer,v=vs.110).aspx

1 of 2 03.09.2016 0:38

Querying DataSets (LINQ to DataSet)

Cross-Table Queries (LINQ to DataSet)

Single-Table Queries (LINQ to DataSet)

© 2016 Microsoft

Querying Typed DataSets https://msdn.microsoft.com/en-us/library/bb399351(d=printer,v=vs.110).aspx

2 of 2 03.09.2016 0:38

Generic Field and SetField Methods (LINQ to
DataSet)

LINQ to DataSet provides extension methods to the DataRow class for accessing column values: the Field method and the

SetField method. These methods provide easier access to column values for developers, especially regarding null values. The

DataSet uses Value to represent null values, whereas LINQ uses the nullable type support introduced in the .NET

Framework 2.0. Using the pre-existing column accessor in DataRow requires you to cast the return object to the appropriate

type. If a particular field in a DataRow can be null, you must explicitly check for a null value because returning Value and

implicitly casting it to another type throws an InvalidCastException. In the following example, if the IsNull method was not

used to check for a null value, an exception would be thrown if the indexer returned Value and tried to cast it to a String.

The Field method provides access to the column values of a DataRow and the SetField sets column values in a DataRow.

Both the Field method and SetField method handle nullable types, so you do not have to explicitly check for null values as in

the previous example. Both methods are generic methods, also, so you do not have to cast the return type.

The following example uses the Field method.

.NET Framework (current version)

' Fill the DataSet.

Dim ds As New DataSet()

ds.Locale = CultureInfo.InvariantCulture

' See the FillDataSet method in the Loading Data Into a DataSet topic.

FillDataSet(ds)

Dim products As DataTable = ds.Tables("Product")

Dim query = _

From product In products.AsEnumerable() _

Where product!Color IsNot DBNull.Value AndAlso product!Color = "Red" _

Select New With _

 { _

 .Name = product!Name, _

 .ProductNumber = product!ProductNumber, _

 .ListPrice = product!ListPrice _

 }

For Each product In query

 Console.WriteLine("Name: " & product.Name)

 Console.WriteLine("Product number: " & product.ProductNumber)

 Console.WriteLine("List price: $" & product.ListPrice & vbNewLine)

Next

' Fill the DataSet.

VB

VB

Generic Field and SetField Methods (LINQ to DataSet) https://msdn.microsoft.com/en-us/library/bb386916(d=printer,v=vs.110).aspx

1 of 2 03.09.2016 0:39

Note that the data type specified in the generic parameter T of the Field method and the SetField method must match the

type of the underlying value. Otherwise, an InvalidCastException exception will be thrown. The specified column name must

also match the name of a column in the DataSet, or an ArgumentException will be thrown. In both cases, the exception is

thrown at run time during the enumeration of the data when the query is executed.

The SetField method itself does not perform any type conversions. This does not mean, however, that a type conversion will

not occur. The SetField method exposes the ADO.NET 2.0 behavior of the DataRow class. A type conversion could be

performed by the DataRow object and the converted value would then be saved to the DataRow object.

See Also

DataRowExtensions

© 2016 Microsoft

Dim ds As New DataSet()

ds.Locale = CultureInfo.InvariantCulture

' See the FillDataSet method in the Loading Data Into a DataSet topic.

FillDataSet(ds)

Dim products As DataTable = ds.Tables("Product")

Dim query = _

From product In products.AsEnumerable() _

Where product.Field(Of String)("Color") = "Red" _

Select New With _

 { _

 .Name = product.Field(Of String)("Name"), _

 .ProductNumber = product.Field(Of String)("ProductNumber"), _

 .ListPrice = product.Field(Of Decimal)("ListPrice") _

 }

For Each product In query

 Console.WriteLine("Name: " & product.Name)

 Console.WriteLine("Product number: " & product.ProductNumber)

 Console.WriteLine("List price: $ " & product.ListPrice & vbNewLine)

Next

Generic Field and SetField Methods (LINQ to DataSet) https://msdn.microsoft.com/en-us/library/bb386916(d=printer,v=vs.110).aspx

2 of 2 03.09.2016 0:39

Queries in LINQ to DataSet

A query is an expression that retrieves data from a data source. Queries are usually expressed in a specialized query

language, such as SQL for relational databases and XQuery for XML. Therefore, developers have had to learn a new query

language for each type of data source or data format that they query. Language-Integrated Query (LINQ) offers a simpler,

consistent model for working with data across various kinds of data sources and formats. In a LINQ query, you always work

with programming objects.

A LINQ query operation consists of three actions: obtain the data source or sources, create the query, and execute the query.

Data sources that implement the IEnumerable(Of T) generic interface can be queried through LINQ. Calling AsEnumerable

on a DataTable returns an object which implements the generic IEnumerable(Of T) interface, which serves as the data source

for LINQ to DataSet queries.

In the query, you specify exactly the information that you want to retrieve from the data source. A query can also specify

how that information should be sorted, grouped, and shaped before it is returned. In LINQ, a query is stored in a variable. If

the query is designed to return a sequence of values, the query variable itself must be a enumerable type. This query variable

takes no action and returns no data; it only stores the query information. After you create a query you must execute that

query to retrieve any data.

In a query that returns a sequence of values, the query variable itself never holds the query results and only stores the query

commands. Execution of the query is deferred until the query variable is iterated over in a foreach or For Each loop. This is

called deferred execution; that is, query execution occurs some time after the query is constructed. This means that you can

execute a query as often as you want to. This is useful when, for example, you have a database that is being updated by other

applications. In your application, you can create a query to retrieve the latest information and repeatedly execute the query,

returning the updated information every time.

In contrast to deferred queries, which return a sequence of values, queries that return a singleton value are executed

immediately. Some examples of singleton queries are Count, Max, Average, and First. These execute immediately because

the query results are required to calculate the singleton result. For example, in order to find the average of the query results

the query must be executed so that the averaging function has input data to work with. You can also use the ToList(Of 

TSource) or ToArray(Of TSource) methods on a query to force immediate execution of a query that does not produce a

singleton value. These techniques to force immediate execution can be useful when you want to cache the results of a query.

For more information about deferred and immediate query execution, see 6cc9af04-950a-4cc3-83d4-2aeb4abe4de9.

Queries
LINQ to DataSet queries can be formulated in two different syntaxes: query expression syntax and method-based query

syntax.

Query Expression Syntax

Query expressions are a declarative query syntax. This syntax enables a developer to write queries in C# or Visual Basic

in a format similar to SQL. By using query expression syntax, you can perform even complex filtering, ordering, and

grouping operations on data sources with minimal code. For more information, see LINQ Query Expressions (C#

Programming Guide) and Basic Query Operations (Visual Basic).

.NET Framework (current version)

Queries in LINQ to DataSet https://msdn.microsoft.com/en-us/library/bb552415(d=printer,v=vs.110).aspx

1 of 4 03.09.2016 0:40

Query expression syntax is new in C# 3.0 and Visual Basic 2008. However, the .NET Framework common language

runtime (CLR) cannot read the query expression syntax itself. Therefore, at compile time, query expressions are

translated to something that the CLR does understand: method calls. These methods are referred to as the standard

query operators. As a developer, you have the option of calling them directly by using method syntax, instead of using

query syntax. For more information, see Query Syntax and Method Syntax in LINQ (C#). For more information about

how to use the standard query operators, see NOT IN BUILD: LINQ General Programming Guide.

The following example uses Select(Of TSource, TResult) to return all the rows from Product table and display the

product names.

Method-Based Query Syntax

The other way to formulate LINQ to DataSet queries is by using method-based queries. The method-based query

syntax is a sequence of direct method calls to LINQ operator methods, passing lambda expressions as the parameters.

For more information, see Lambda Expressions (C# Programming Guide).

This example uses Select(Of TSource, TResult) to return all the rows from Product and display the product names.

' Fill the DataSet.

Dim ds As New DataSet()

ds.Locale = CultureInfo.InvariantCulture

' See the FillDataSet method in the Loading Data Into a DataSet topic.

FillDataSet(ds)

Dim products As DataTable = ds.Tables("Product")

Dim query = From product In products.AsEnumerable() _

Select product

Console.WriteLine("Product Names:")

For Each p In query

 Console.WriteLine(p.Field(Of String)("Name"))

Next

' Fill the DataSet.

Dim ds As New DataSet()

ds.Locale = CultureInfo.InvariantCulture

' See the FillDataSet method in the Loading Data Into a DataSet topic.

FillDataSet(ds)

Dim products As DataTable = ds.Tables("Product")

Dim query = products.AsEnumerable() _

 .Select(Function(product As DataRow) New With _

 { _

 .ProductName = product.Field(Of String)("Name"), _

 .ProductNumber = product.Field(Of String)("ProductNumber"), _

 .Price = product.Field(Of Decimal)("ListPrice") _

VB

VB

Queries in LINQ to DataSet https://msdn.microsoft.com/en-us/library/bb552415(d=printer,v=vs.110).aspx

2 of 4 03.09.2016 0:40

Composing Queries
As mentioned earlier in this topic, the query variable itself only stores the query commands when the query is designed to

return a sequence of values. If the query does not contain a method that will cause immediate execution, the actual

execution of the query is deferred until you iterate over the query variable in a foreach or For Each loop. Deferred

execution enables multiple queries to be combined or a query to be extended. When a query is extended, it is modified to

include the new operations, and the eventual execution will reflect the changes. In the following example, the first query

returns all the products. The second query extends the first by using Where to return all the products of size "L":

After a query has been executed, no additional queries can be composed, and all subsequent queries will use the

in-memory LINQ operators. Query execution will occur when you iterate over the query variable in a foreach or For Each

statement, or by a call to one of the LINQ conversion operators that cause immediate execution. These operators include

the following: ToList(Of TSource), ToArray(Of TSource), ToLookup, and ToDictionary.

In the following example, the first query returns all the products ordered by list price. The ToArray(Of TSource) method is

used to force immediate query execution:

 })

Console.WriteLine("Product Info:")

For Each product In query

 Console.Write("Product name: " & product.ProductName)

 Console.Write("Product number: " & product.ProductNumber)

 Console.WriteLine("List price: $ " & product.Price)

Next

' Fill the DataSet.

Dim ds As New DataSet()

ds.Locale = CultureInfo.InvariantCulture

' See the FillDataSet method in the Loading Data Into a DataSet topic.

FillDataSet(ds)

Dim products As DataTable = ds.Tables("Product")

Dim productsQuery = From product In products.AsEnumerable() _

Select product

Dim largeProducts = _

 productsQuery.Where(Function(p) p.Field(Of String)("Size") = "L")

Console.WriteLine("Products of size 'L':")

For Each product In largeProducts

 Console.WriteLine(product.Field(Of String)("Name"))

Next

VB

VB

Queries in LINQ to DataSet https://msdn.microsoft.com/en-us/library/bb552415(d=printer,v=vs.110).aspx

3 of 4 03.09.2016 0:40

See Also
Programming Guide (LINQ to DataSet)

Querying DataSets (LINQ to DataSet)

Getting Started with LINQ in C#

Getting Started with LINQ in Visual Basic

© 2016 Microsoft

' Fill the DataSet.

Dim ds As New DataSet()

ds.Locale = CultureInfo.InvariantCulture

' See the FillDataSet method in the Loading Data Into a DataSet topic.

FillDataSet(ds)

Dim products As DataTable = ds.Tables("Product")

Dim query = _

From product In products.AsEnumerable() _

Order By product.Field(Of Decimal)("ListPrice") Descending _

Select product

' Force immediate execution of the query.

Dim productsArray = query.ToArray()

Console.WriteLine("Every price From highest to lowest:")

For Each prod In productsArray

 Console.WriteLine(prod.Field(Of Decimal)("ListPrice"))

Next

Queries in LINQ to DataSet https://msdn.microsoft.com/en-us/library/bb552415(d=printer,v=vs.110).aspx

4 of 4 03.09.2016 0:40

