
Interfaces (Visual Basic)

Interfaces define the properties, methods, and events that classes can implement. Interfaces allow you to define features as

small groups of closely related properties, methods, and events; this reduces compatibility problems because you can

develop enhanced implementations for your interfaces without jeopardizing existing code. You can add new features at any

time by developing additional interfaces and implementations.

There are several other reasons why you might want to use interfaces instead of class inheritance:

Interfaces are better suited to situations in which your applications require many possibly unrelated object types to

provide certain functionality.

Interfaces are more flexible than base classes because you can define a single implementation that can implement

multiple interfaces.

Interfaces are better in situations in which you do not have to inherit implementation from a base class.

Interfaces are useful when you cannot use class inheritance. For example, structures cannot inherit from classes, but

they can implement interfaces.

Declaring Interfaces
Interface definitions are enclosed within the Interface and End Interface statements. Following the Interface statement,

you can add an optional Inherits statement that lists one or more inherited interfaces. The Inherits statements must

precede all other statements in the declaration except comments. The remaining statements in the interface definition

should be Event, Sub, Function, Property, Interface, Class, Structure, and Enum statements. Interfaces cannot contain

any implementation code or statements associated with implementation code, such as End Sub or End Property.

In a namespace, interface statements are Friend by default, but they can also be explicitly declared as Public or Friend.

Interfaces defined within classes, modules, interfaces, and structures are Public by default, but they can also be explicitly

declared as Public, Friend, Protected, or Private.

Note

The Shadows keyword can be applied to all interface members. The Overloads keyword can be applied to Sub,

Function, and Property statements declared in an interface definition. In addition, Property statements can have the

Default, ReadOnly, or WriteOnly modifiers. None of the other modifiers—Public, Private, Friend, Protected,

Shared, Overrides, MustOverride, or Overridable—are allowed. For more information, see Declaration Contexts and

Default Access Levels (Visual Basic).

For example, the following code defines an interface with one function, one property, and one event.

Visual Studio 2015

VB

Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/28e2e18x(d=printer).aspx

1 of 4 02.09.2016 16:28

Implementing Interfaces
The Visual Basic reserved word Implements is used in two ways. The Implements statement signifies that a class or

structure implements an interface. The Implements keyword signifies that a class member or structure member

implements a specific interface member.

Implements Statement

If a class or structure implements one or more interfaces, it must include the Implements statement immediately after

the Class or Structure statement. The Implements statement requires a comma-separated list of interfaces to be

implemented by a class. The class or structure must implement all interface members using the Implements keyword.

Implements Keyword

The Implements keyword requires a comma-separated list of interface members to be implemented. Generally, only a

single interface member is specified, but you can specify multiple members. The specification of an interface member

consists of the interface name, which must be specified in an implements statement within the class; a period; and the

name of the member function, property, or event to be implemented. The name of a member that implements an

interface member can use any legal identifier, and it is not limited to the InterfaceName_MethodName convention

used in earlier versions of Visual Basic.

For example, the following code shows how to declare a subroutine named Sub1 that implements a method of an

interface:

The parameter types and return types of the implementing member must match the interface property or member

declaration in the interface. The most common way to implement an element of an interface is with a member that has

the same name as the interface, as shown in the previous example.

To declare the implementation of an interface method, you can use any attributes that are legal on instance method

declarations, including Overloads, Overrides, Overridable, Public, Private, Protected, Friend, Protected Friend,

MustOverride, Default, and Static. The Shared attribute is not legal since it defines a class rather than an instance

Interface IAsset

Event ComittedChange(ByVal Success As Boolean)

Property Division() As String

Function GetID() As Integer

End Interface

Class Class1

Implements interfaceclass.interface2

Sub Sub1(ByVal i As Integer) Implements interfaceclass.interface2.Sub1

End Sub

End Class

VB

Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/28e2e18x(d=printer).aspx

2 of 4 02.09.2016 16:28

method.

Using Implements, you can also write a single method that implements multiple methods defined in an interface, as in

the following example:

You can use a private member to implement an interface member. When a private member implements a member of

an interface, that member becomes available by way of the interface even though it is not available directly on object

variables for the class.

Interface Implementation Examples

Classes that implement an interface must implement all its properties, methods, and events.

The following example defines two interfaces. The second interface, Interface2, inherits Interface1 and defines an

additional property and method.

The next example implements Interface1, the interface defined in the previous example:

Class Class2

Implements I1, I2

Protected Sub M1() Implements I1.M1, I1.M2, I2.M3, I2.M4

End Sub

End Class

Interface Interface1

Sub sub1(ByVal i As Integer)

End Interface

' Demonstrates interface inheritance.

Interface Interface2

Inherits Interface1

Sub M1(ByVal y As Integer)

ReadOnly Property Num() As Integer

End Interface

Public Class ImplementationClass1

Implements Interface1

Sub Sub1(ByVal i As Integer) Implements Interface1.sub1

' Insert code here to implement this method.

End Sub

End Class

VB

VB

VB

Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/28e2e18x(d=printer).aspx

3 of 4 02.09.2016 16:28

The final example implements Interface2, including a method inherited from Interface1:

You can implement a readonly property with a readwrite property (that is, you do not have to declare it readonly in the

implementing class). Implementing an interface promises to implement at least the members that the interface

declares, but you can offer more functionality, such as allowing your property to be writable.

Related Topics

Title Description

Walkthrough: Creating and

Implementing Interfaces (Visual Basic)

Provides a detailed procedure that takes you through the process of

defining and implementing your own interface.

Variance in Generic Interfaces (C# and

Visual Basic)

Discusses covariance and contravariance in generic interfaces and provides

a list of variant generic interfaces in the .NET Framework.

© 2016 Microsoft

Public Class ImplementationClass2

Implements Interface2

Dim INum As Integer = 0

Sub sub1(ByVal i As Integer) Implements Interface2.sub1

' Insert code here that implements this method.

End Sub

Sub M1(ByVal x As Integer) Implements Interface2.M1

' Insert code here to implement this method.

End Sub

ReadOnly Property Num() As Integer Implements Interface2.Num

Get

 Num = INum

End Get

End Property

End Class

VB

Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/28e2e18x(d=printer).aspx

4 of 4 02.09.2016 16:28

Variance in Generic Interfaces (Visual Basic)

.NET Framework 4 introduced variance support for several existing generic interfaces. Variance support enables implicit

conversion of classes that implement these interfaces. The following interfaces are now variant:

IEnumerable(Of T) (T is covariant)

IEnumerator(Of T) (T is covariant)

IQueryable(Of T) (T is covariant)

IGrouping(Of TKey, TElement) (TKey and TElement are covariant)

IComparer(Of T) (T is contravariant)

IEqualityComparer(Of T) (T is contravariant)

IComparable(Of T) (T is contravariant)

Covariance permits a method to have a more derived return type than that defined by the generic type parameter of the

interface. To illustrate the covariance feature, consider these generic interfaces: IEnumerable(Of Object) and

IEnumerable(Of String). The IEnumerable(Of String) interface does not inherit the IEnumerable(Of Object)

interface. However, the String type does inherit the Object type, and in some cases you may want to assign objects of

these interfaces to each other. This is shown in the following code example.

In earlier versions of the .NET Framework, this code causes a compilation error in Visual Basic with Option Strict On. But

now you can use strings instead of objects, as shown in the previous example, because the IEnumerable(Of T) interface is

covariant.

Contravariance permits a method to have argument types that are less derived than that specified by the generic parameter

of the interface. To illustrate contravariance, assume that you have created a BaseComparer class to compare instances of

the BaseClass class. The BaseComparer class implements the IEqualityComparer(Of BaseClass) interface. Because the

IEqualityComparer(Of T) interface is now contravariant, you can use BaseComparer to compare instances of classes that

inherit the BaseClass class. This is shown in the following code example.

Visual Studio 2015

Dim strings As IEnumerable(Of String) = New List(Of String)

Dim objects As IEnumerable(Of Object) = strings

' Simple hierarchy of classes.

Class BaseClass

End Class

VB

VB

Variance in Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654071(d=printer).aspx

1 of 3 02.09.2016 16:30

For more examples, see Using Variance in Interfaces for Generic Collections (Visual Basic).

Variance in generic interfaces is supported for reference types only. Value types do not support variance. For example,

IEnumerable(Of Integer) cannot be implicitly converted to IEnumerable(Of Object), because integers are

represented by a value type.

It is also important to remember that classes that implement variant interfaces are still invariant. For example, although

List(Of T) implements the covariant interface IEnumerable(Of T), you cannot implicitly convert List(Of Object) to

List(Of String). This is illustrated in the following code example.

Class DerivedClass

Inherits BaseClass

End Class

' Comparer class.

Class BaseComparer

Implements IEqualityComparer(Of BaseClass)

Public Function Equals1(ByVal x As BaseClass,

ByVal y As BaseClass) As Boolean _

Implements IEqualityComparer(Of BaseClass).Equals

Return (x.Equals(y))

End Function

Public Function GetHashCode1(ByVal obj As BaseClass) As Integer _

Implements IEqualityComparer(Of BaseClass).GetHashCode

Return obj.GetHashCode

End Function

End Class

Sub Test()

Dim baseComparer As IEqualityComparer(Of BaseClass) = New BaseComparer

' Implicit conversion of IEqualityComparer(Of BaseClass) to

' IEqualityComparer(Of DerivedClass).

Dim childComparer As IEqualityComparer(Of DerivedClass) = baseComparer

End Sub

Dim integers As IEnumerable(Of Integer) = New List(Of Integer)

' The following statement generates a compiler error

' with Option Strict On, because Integer is a value type.

' Dim objects As IEnumerable(Of Object) = integers

' The following statement generates a compiler error

' because classes are invariant.

' Dim list As List(Of Object) = New List(Of String)

' You can use the interface object instead.

Dim listObjects As IEnumerable(Of Object) = New List(Of String)

VB

VB

Variance in Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654071(d=printer).aspx

2 of 3 02.09.2016 16:30

See Also

Using Variance in Interfaces for Generic Collections (Visual Basic)

Creating Variant Generic Interfaces (Visual Basic)

Generic Interfaces

Variance in Delegates (Visual Basic)

© 2016 Microsoft

Variance in Generic Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654071(d=printer).aspx

3 of 3 02.09.2016 16:30

Walkthrough: Creating and Implementing
Interfaces (Visual Basic)

Interfaces describe the characteristics of properties, methods, and events, but leave the implementation details up to

structures or classes.

This walkthrough demonstrates how to declare and implement an interface.

Note

This walkthrough doesn't provide information about how to create a user interface.

Note

Your computer might show different names or locations for some of the Visual Studio user interface elements in the

following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.

For more information, see Personalizing the Visual Studio IDE.

To define an interface

Open a new Visual Basic Windows Application project.1.

Add a new module to the project by clicking Add Module on the Project menu.2.

Name the new module Module1.vb and click Add. The code for the new module is displayed.3.

Define an interface named TestInterface within Module1 by typing Interface TestInterface between the

Module and End Module statements, and then pressing ENTER. The Code Editor indents the Interface keyword and

adds an End Interface statement to form a code block.

4.

Define a property, method, and event for the interface by placing the following code between the Interface and End

Interface statements:

5.

Visual Studio 2015

Property Prop1() As Integer

Sub Method1(ByVal X As Integer)

Event Event1()

VB

Walkthrough: Creating and Implementing Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/cd43d244(d=printer).aspx

1 of 4 02.09.2016 16:29

Implementation
You may notice that the syntax used to declare interface members is different from the syntax used to declare class

members. This difference reflects the fact that interfaces cannot contain implementation code.

To implement the interface

Add a class named ImplementationClass by adding the following statement to Module1, after the End

Interface statement but before the End Module statement, and then pressing ENTER:

If you are working within the integrated development environment, the Code Editor supplies a matching End

Class statement when you press ENTER.

1.

Add the following Implements statement to ImplementationClass, which names the interface the class

implements:

When listed separately from other items at the top of a class or structure, the Implements statement indicates that

the class or structure implements an interface.

If you are working within the integrated development environment, the Code Editor implements the class

members required by TestInterface when you press ENTER, and you can skip the next step.

2.

If you are not working within the integrated development environment, you must implement all the members of

the interface MyInterface. Add the following code to ImplementationClass to implement Event1, Method1,

and Prop1:

The Implements statement names the interface and interface member being implemented.

3.

Class ImplementationClass

Implements TestInterface

Event Event1() Implements TestInterface.Event1

Public Sub Method1(ByVal X As Integer) Implements TestInterface.Method1

End Sub

Public Property Prop1() As Integer Implements TestInterface.Prop1

Get

End Get

Set(ByVal value As Integer)

End Set

End Property

VB

VB

VB

Walkthrough: Creating and Implementing Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/cd43d244(d=printer).aspx

2 of 4 02.09.2016 16:29

Complete the definition of Prop1 by adding a private field to the class that stored the property value:

Return the value of the pval from the property get accessor.

Set the value of pval in the property set accessor.

4.

Complete the definition of Method1 by adding the following code.5.

To test the implementation of the interface

Right-click the startup form for your project in the Solution Explorer, and click View Code. The editor displays

the class for your startup form. By default, the startup form is called Form1.

1.

Add the following testInstance field to the Form1 class:

By declaring testInstance as WithEvents, the Form1 class can handle its events.

2.

Add the following event handler to the Form1 class to handle events raised by testInstance:3.

Add a subroutine named Test to the Form1 class to test the implementation class:4.

' Holds the value of the property.

Private pval As Integer

Return pval

pval = value

MsgBox("The X parameter for Method1 is " & X)

RaiseEvent Event1()

Dim WithEvents testInstance As TestInterface

Sub EventHandler() Handles testInstance.Event1

 MsgBox("The event handler caught the event.")

End Sub

VB

VB

VB

VB

VB

VB

Walkthrough: Creating and Implementing Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/cd43d244(d=printer).aspx

3 of 4 02.09.2016 16:29

The Test procedure creates an instance of the class that implements MyInterface, assigns that instance to the

testInstance field, sets a property, and runs a method through the interface.

Add code to call the Test procedure from the Form1 Load procedure of your startup form:5.

Run the Test procedure by pressing F5. The message "Prop1 was set to 9" is displayed. After you click OK, the

message "The X parameter for Method1 is 5" is displayed. Click OK, and the message "The event handler caught

the event" is displayed.

6.

See Also
Implements Statement

Interfaces (Visual Basic)

Interface Statement (Visual Basic)

Event Statement

© 2016 Microsoft

Sub Test()

' Create an instance of the class.

Dim T As New ImplementationClass

' Assign the class instance to the interface.

' Calls to the interface members are

' executed through the class instance.

 testInstance = T

' Set a property.

 testInstance.Prop1 = 9

' Read the property.

 MsgBox("Prop1 was set to " & testInstance.Prop1)

' Test the method and raise an event.

 testInstance.Method1(5)

End Sub

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

 Test() ' Test the class.

End Sub

VB

VB

Walkthrough: Creating and Implementing Interfaces (Visual Basic) https://msdn.microsoft.com/en-us/library/cd43d244(d=printer).aspx

4 of 4 02.09.2016 16:29

