
Events (Visual Basic)

While you might visualize a Visual Studio project as a series of procedures that execute in a sequence, in reality, most

programs are event driven—meaning the flow of execution is determined by external occurrences called events.

An event is a signal that informs an application that something important has occurred. For example, when a user clicks a

control on a form, the form can raise a Click event and call a procedure that handles the event. Events also allow separate

tasks to communicate. Say, for example, that your application performs a sort task separately from the main application. If a

user cancels the sort, your application can send a cancel event instructing the sort process to stop.

Event Terms and Concepts
This section describes the terms and concepts used with events in Visual Basic.

Declaring Events

You declare events within classes, structures, modules, and interfaces using the Event keyword, as in the following

example:

Raising Events

An event is like a message announcing that something important has occurred. The act of broadcasting the message is

called raising the event. In Visual Basic, you raise events with the RaiseEvent statement, as in the following example:

Events must be raised within the scope of the class, module, or structure where they are declared. For example, a

derived class cannot raise events inherited from a base class.

Event Senders

Any object capable of raising an event is an event sender, also known as an event source. Forms, controls, and

user-defined objects are examples of event senders.

Visual Studio 2015

Event AnEvent(ByVal EventNumber As Integer)

RaiseEvent AnEvent(EventNumber)

VB

VB

Events (Visual Basic) https://msdn.microsoft.com/en-us/library/ms172877(d=printer).aspx

1 of 6 02.09.2016 16:33

Event Handlers

Event handlers are procedures that are called when a corresponding event occurs. You can use any valid subroutine

with a matching signature as an event handler. You cannot use a function as an event handler, however, because it

cannot return a value to the event source.

Visual Basic uses a standard naming convention for event handlers that combines the name of the event sender, an

underscore, and the name of the event. For example, the Click event of a button named button1 would be named Sub

button1_Click.

Note

We recommend that you use this naming convention when defining event handlers for your own events, but it is not

required; you can use any valid subroutine name.

Associating Events with Event Handlers
Before an event handler becomes usable, you must first associate it with an event by using either the Handles or

AddHandler statement.

WithEvents and the Handles Clause

The WithEvents statement and Handles clause provide a declarative way of specifying event handlers. An event raised

by an object declared with the WithEvents keyword can be handled by any procedure with a Handles statement for

that event, as shown in the following example:

' Declare a WithEvents variable.

Dim WithEvents EClass As New EventClass

' Call the method that raises the object's events.

Sub TestEvents()

 EClass.RaiseEvents()

End Sub

' Declare an event handler that handles multiple events.

Sub EClass_EventHandler() Handles EClass.XEvent, EClass.YEvent

 MsgBox("Received Event.")

End Sub

Class EventClass

Public Event XEvent()

Public Event YEvent()

' RaiseEvents raises both events.

Sub RaiseEvents()

VB

Events (Visual Basic) https://msdn.microsoft.com/en-us/library/ms172877(d=printer).aspx

2 of 6 02.09.2016 16:33

The WithEvents statement and the Handles clause are often the best choice for event handlers because the declarative

syntax they use makes event handling easier to code, read and debug. However, be aware of the following limitations

on the use of WithEvents variables:

You cannot use a WithEvents variable as an object variable. That is, you cannot declare it as Object—you must

specify the class name when you declare the variable.

Because shared events are not tied to class instances, you cannot use WithEvents to declaratively handle shared

events. Similarly, you cannot use WithEvents or Handles to handle events from a Structure. In both cases, you

can use the AddHandler statement to handle those events.

You cannot create arrays of WithEvents variables.

WithEvents variables allow a single event handler to handle one or more kind of event, or one or more event handlers

to handle the same kind of event.

Although the Handles clause is the standard way of associating an event with an event handler, it is limited to

associating events with event handlers at compile time.

In some cases, such as with events associated with forms or controls, Visual Basic automatically stubs out an empty

event handler and associates it with an event. For example, when you double-click a command button on a form in

design mode, Visual Basic creates an empty event handler and a WithEvents variable for the command button, as in

the following code:

AddHandler and RemoveHandler

The AddHandler statement is similar to the Handles clause in that both allow you to specify an event handler.

However, AddHandler, used with RemoveHandler, provides greater flexibility than the Handles clause, allowing you

to dynamically add, remove, and change the event handler associated with an event. If you want to handle shared

events or events from a structure, you must use AddHandler.

AddHandler takes two arguments: the name of an event from an event sender such as a control, and an expression that

evaluates to a delegate. You do not need to explicitly specify the delegate class when using AddHandler, since the

AddressOf statement always returns a reference to the delegate. The following example associates an event handler

with an event raised by an object:

RaiseEvent XEvent()

RaiseEvent YEvent()

End Sub

End Class

Friend WithEvents Button1 As System.Windows.Forms.Button

Protected Sub Button1_Click() Handles Button1.Click

End Sub

VB

VB

Events (Visual Basic) https://msdn.microsoft.com/en-us/library/ms172877(d=printer).aspx

3 of 6 02.09.2016 16:33

RemoveHandler, which disconnects an event from an event handler, uses the same syntax as AddHandler. For

example:

In the following example, an event handler is associated with an event, and the event is raised. The event handler

catches the event and displays a message.

Then the first event handler is removed and a different event handler is associated with the event. When the event is

raised again, a different message is displayed.

Finally, the second event handler is removed and the event is raised for a third time. Because there is no longer an event

handler associated with the event, no action is taken.

AddHandler Obj.XEvent, AddressOf Me.XEventHandler

RemoveHandler Obj.XEvent, AddressOf Me.XEventHandler

Module Module1

Sub Main()

Dim c1 As New Class1

' Associate an event handler with an event.

AddHandler c1.AnEvent, AddressOf EventHandler1

' Call a method to raise the event.

 c1.CauseTheEvent()

' Stop handling the event.

RemoveHandler c1.AnEvent, AddressOf EventHandler1

' Now associate a different event handler with the event.

AddHandler c1.AnEvent, AddressOf EventHandler2

' Call a method to raise the event.

 c1.CauseTheEvent()

' Stop handling the event.

RemoveHandler c1.AnEvent, AddressOf EventHandler2

' This event will not be handled.

 c1.CauseTheEvent()

End Sub

Sub EventHandler1()

' Handle the event.

 MsgBox("EventHandler1 caught event.")

End Sub

Sub EventHandler2()

' Handle the event.

 MsgBox("EventHandler2 caught event.")

End Sub

Public Class Class1

' Declare an event.

VB

VB

Events (Visual Basic) https://msdn.microsoft.com/en-us/library/ms172877(d=printer).aspx

4 of 6 02.09.2016 16:33

Handling Events Inherited from a Base Class
Derived classes—classes that inherit characteristics from a base class—can handle events raised by their base class using

the Handles MyBase statement.

To handle events from a base class

Declare an event handler in the derived class by adding a Handles MyBase.eventname statement to the

declaration line of your event-handler procedure, where eventname is the name of the event in the base class you

are handling. For example:

Related Sections

Title Description

Walkthrough: Declaring and Raising Events

(Visual Basic)

Provides a step-by-step description of how to declare and raise

events for a class.

Walkthrough: Handling Events (Visual Basic) Demonstrates how to write an event-handler procedure.

Public Event AnEvent()

Sub CauseTheEvent()

' Raise an event.

RaiseEvent AnEvent()

End Sub

End Class

End Module

Public Class BaseClass

Public Event BaseEvent(ByVal i As Integer)

' Place methods and properties here.

End Class

Public Class DerivedClass

Inherits BaseClass

Sub EventHandler(ByVal x As Integer) Handles MyBase.BaseEvent

' Place code to handle events from BaseClass here.

End Sub

End Class

VB

Events (Visual Basic) https://msdn.microsoft.com/en-us/library/ms172877(d=printer).aspx

5 of 6 02.09.2016 16:33

How to: Declare Custom Events To Avoid

Blocking (Visual Basic)

Demonstrates how to define a custom event that allows its event

handlers to be called asynchronously.

How to: Declare Custom Events To Conserve

Memory (Visual Basic)

Demonstrates how to define a custom event that uses memory only

when the event is handled.

Troubleshooting Inherited Event Handlers in

Visual Basic

Lists common issues that arise with event handlers in inherited

components.

Handling and Raising Events Provides an overview of the event model in the .NET Framework.

Creating Event Handlers in Windows Forms Describes how to work with events associated with Windows Forms

objects.

Delegates (Visual Basic) Provides an overview of delegates in Visual Basic.

© 2016 Microsoft

Events (Visual Basic) https://msdn.microsoft.com/en-us/library/ms172877(d=printer).aspx

6 of 6 02.09.2016 16:33

Walkthrough: Declaring and Raising Events
(Visual Basic)

This walkthrough demonstrates how to declare and raise events for a class named Widget. After you complete the steps, you

might want to read the companion topic, Walkthrough: Handling Events (Visual Basic), which shows how to use events from

Widget objects to provide status information in an application.

The Widget Class
Assume for the moment that you have a Widget class. Your Widget class has a method that can take a long time to

execute, and you want your application to be able to put up some kind of completion indicator.

Of course, you could make the Widget object show a percent-complete dialog box, but then you would be stuck with

that dialog box in every project in which you used the Widget class. A good principle of object design is to let the

application that uses an object handle the user interface—unless the whole purpose of the object is to manage a form or

dialog box.

The purpose of Widget is to perform other tasks, so it is better to add a PercentDone event and let the procedure that

calls Widget's methods handle that event and display status updates. The PercentDone event can also provide a

mechanism for canceling the task.

To build the code example for this topic

Open a new Visual Basic Windows Application project and create a form named Form1.1.

Add two buttons and a label to Form1.2.

Name the objects as shown in the following table.

Object Property Setting

Button1 Text Start Task

Button2 Text Cancel

Label (Name), Text lblPercentDone, 0

3.

On the Project menu, choose Add Class to add a class named Widget.vb to the project.4.

To declare an event for the Widget class

Visual Studio 2015

Walkthrough: Declaring and Raising Events (Visual Basic) https://msdn.microsoft.com/en-us/library/sc31b696(d=printer).aspx

1 of 3 02.09.2016 16:33

Use the Event keyword to declare an event in the Widget class. Note that an event can have ByVal and ByRef

arguments, as Widget's PercentDone event demonstrates:

When the calling object receives a PercentDone event, the Percent argument contains the percentage of the task that is

complete. The Cancel argument can be set to True to cancel the method that raised the event.

Note

You can declare event arguments just as you do arguments of procedures, with the following exceptions: Events

cannot have Optional or ParamArray arguments, and events do not have return values.

The PercentDone event is raised by the LongTask method of the Widget class. LongTask takes two arguments: the

length of time the method pretends to be doing work, and the minimum time interval before LongTask pauses to raise

the PercentDone event.

To raise the PercentDone event

To simplify access to the Timer property used by this class, add an Imports statement to the top of the

declarations section of your class module, above the Class Widget statement.

1.

Add the following code to the Widget class:2.

Public Event PercentDone(ByVal Percent As Single,

ByRef Cancel As Boolean)

Imports Microsoft.VisualBasic.DateAndTime

Public Sub LongTask(ByVal Duration As Single,

ByVal MinimumInterval As Single)

Dim Threshold As Single

Dim Start As Single

Dim blnCancel As Boolean

' The Timer property of the DateAndTime object returns the seconds

' and milliseconds that have passed since midnight.

 Start = CSng(Timer)

 Threshold = MinimumInterval

Do While CSng(Timer) < (Start + Duration)

' In a real application, some unit of work would

' be done here each time through the loop.

If CSng(Timer) > (Start + Threshold) Then

VB

VB

VB

Walkthrough: Declaring and Raising Events (Visual Basic) https://msdn.microsoft.com/en-us/library/sc31b696(d=printer).aspx

2 of 3 02.09.2016 16:33

When your application calls the LongTask method, the Widget class raises the PercentDone event every

MinimumInterval seconds. When the event returns, LongTask checks to see if the Cancel argument was set to True.

A few disclaimers are necessary here. For simplicity, the LongTask procedure assumes you know in advance how long the

task will take. This is almost never the case. Dividing tasks into chunks of even size can be difficult, and often what matters

most to users is simply the amount of time that passes before they get an indication that something is happening.

You may have spotted another flaw in this sample. The Timer property returns the number of seconds that have passed

since midnight; therefore, the application gets stuck if it is started just before midnight. A more careful approach to

measuring time would take boundary conditions such as this into consideration, or avoid them altogether, using

properties such as Now.

Now that the Widget class can raise events, you can move to the next walkthrough. Walkthrough: Handling Events (Visual

Basic) demonstrates how to use WithEvents to associate an event handler with the PercentDone event.

See Also
Timer

Now

Walkthrough: Handling Events (Visual Basic)

Events (Visual Basic)

© 2016 Microsoft

RaiseEvent PercentDone(

 Threshold / Duration, blnCancel)

' Check to see if the operation was canceled.

If blnCancel Then Exit Sub

 Threshold = Threshold + MinimumInterval

End If

Loop

End Sub

Walkthrough: Declaring and Raising Events (Visual Basic) https://msdn.microsoft.com/en-us/library/sc31b696(d=printer).aspx

3 of 3 02.09.2016 16:33

Walkthrough: Handling Events (Visual Basic)

This is the second of two topics that demonstrate how to work with events. The first topic, Walkthrough: Declaring and

Raising Events, shows how to declare and raise events. This section uses the form and class from that walkthrough to show

how to handle events when they take place.

The Widget class example uses traditional event-handling statements. Visual Basic provides other techniques for working

with events. As an exercise, you can modify this example to use the AddHandler and Handles statements.

To handle the PercentDone event of the Widget class

Place the following code in Form1:

The WithEvents keyword specifies that the variable mWidget is used to handle an object's events. You specify the

kind of object by supplying the name of the class from which the object will be created.

The variable mWidget is declared in Form1 because WithEvents variables must be class-level. This is true regardless

of the type of class you place them in.

The variable mblnCancel is used to cancel the LongTask method.

1.

Writing Code to Handle an Event
As soon as you declare a variable using WithEvents, the variable name appears in the left drop-down list of the class's

Code Editor. When you select mWidget, the Widget class's events appear in the right drop-down list. Selecting an event

displays the corresponding event procedure, with the prefix mWidget and an underscore. All the event procedures

associated with a WithEvents variable are given the variable name as a prefix.

To handle an event

Select mWidget from the left drop-down list in the Code Editor.1.

Select the PercentDone event from the right drop-down list. The Code Editor opens the mWidget_PercentDone

event procedure.

Note

2.

Visual Studio 2015

Private WithEvents mWidget As Widget

Private mblnCancel As Boolean

VB

Walkthrough: Handling Events (Visual Basic) https://msdn.microsoft.com/en-us/library/e9xkz224(d=printer).aspx

1 of 5 02.09.2016 16:34

The Code Editor is useful, but not required, for inserting new event handlers. In this walkthrough, it is more

direct to just copy the event handlers directly into your code.

Add the following code to the mWidget_PercentDone event handler:

Whenever the PercentDone event is raised, the event procedure displays the percent complete in a Label control.

The DoEvents method allows the label to repaint, and also gives the user the opportunity to click the Cancel

button.

3.

Add the following code for the Button2_Click event handler:4.

If the user clicks the Cancel button while LongTask is running, the Button2_Click event is executed as soon as the

DoEvents statement allows event processing to occur. The class-level variable mblnCancel is set to True, and the

mWidget_PercentDone event then tests it and sets the ByRef Cancel argument to True.

Connecting a WithEvents Variable to an Object
Form1 is now set up to handle a Widget object's events. All that remains is to find a Widget somewhere.

When you declare a variable WithEvents at design time, no object is associated with it. A WithEvents variable is just like

any other object variable. You have to create an object and assign a reference to it with the WithEvents variable.

To create an object and assign a reference to it

Select (Form1 Events) from the left drop-down list in the Code Editor.1.

Select the Load event from the right drop-down list. The Code Editor opens the Form1_Load event procedure.2.

Private Sub mWidget_PercentDone(

ByVal Percent As Single,

ByRef Cancel As Boolean

) Handles mWidget.PercentDone

 lblPercentDone.Text = CInt(100 * Percent) & "%"

My.Application.DoEvents()

If mblnCancel Then Cancel = True

End Sub

Private Sub Button2_Click(

ByVal sender As Object,

ByVal e As System.EventArgs

) Handles Button2.Click

 mblnCancel = True

End Sub

VB

VB

Walkthrough: Handling Events (Visual Basic) https://msdn.microsoft.com/en-us/library/e9xkz224(d=printer).aspx

2 of 5 02.09.2016 16:34

Add the following code for the Form1_Load event procedure to create the Widget:3.

When this code executes, Visual Basic creates a Widget object and connects its events to the event procedures associated

with mWidget. From that point on, whenever the Widget raises its PercentDone event, the mWidget_PercentDone event

procedure is executed.

To call the LongTask method

Add the following code to the Button1_Click event handler:

Before the LongTask method is called, the label that displays the percent complete must be initialized, and the class-level

Boolean flag for canceling the method must be set to False.

LongTask is called with a task duration of 12.2 seconds. The PercentDone event is raised once every one-third of a

second. Each time the event is raised, the mWidget_PercentDone event procedure is executed.

When LongTask is done, mblnCancel is tested to see if LongTask ended normally, or if it stopped because mblnCancel

was set to True. The percent complete is updated only in the former case.

To run the program

Press F5 to put the project in run mode.1.

Click the Start Task button. Each time the PercentDone event is raised, the label is updated with the percentage

of the task that is complete.

2.

Click the Cancel button to stop the task. Notice that the appearance of the Cancel button does not change

immediately when you click it. The Click event cannot happen until the My.Application.DoEvents statement

3.

Private Sub Form1_Load(

ByVal sender As System.Object,

ByVal e As System.EventArgs

) Handles MyBase.Load

 mWidget = New Widget

End Sub

Private Sub Button1_Click(

ByVal sender As Object,

ByVal e As System.EventArgs

) Handles Button1.Click

 mblnCancel = False

 lblPercentDone.Text = "0%"

 lblPercentDone.Refresh()

 mWidget.LongTask(12.2, 0.33)

If Not mblnCancel Then lblPercentDone.Text = CStr(100) & "%"

End Sub

VB

VB

Walkthrough: Handling Events (Visual Basic) https://msdn.microsoft.com/en-us/library/e9xkz224(d=printer).aspx

3 of 5 02.09.2016 16:34

allows event processing.

Note

The My.Application.DoEvents method does not process events in exactly the same way as the form does. For

example, in this walkthrough, you must click the Cancel button twice. To allow the form to handle the events

directly, you can use multithreading. For more information, see Threading (C# and Visual Basic).

You may find it instructive to run the program with F11 and step through the code a line at a time. You can clearly see

how execution enters LongTask, and then briefly re-enters Form1 each time the PercentDone event is raised.

What would happen if, while execution was back in the code of Form1, the LongTask method were called again? At worst,

a stack overflow might occur if LongTask were called every time the event was raised.

You can cause the variable mWidget to handle events for a different Widget object by assigning a reference to the new

Widget to mWidget. In fact, you can make the code in Button1_Click do this every time you click the button.

To handle events for a different widget

Add the following line of code to the Button1_Click procedure, immediately preceding the line that reads

mWidget.LongTask(12.2, 0.33):

The code above creates a new Widget each time the button is clicked. As soon as the LongTask method completes, the

reference to the Widget is released, and the Widget is destroyed.

A WithEvents variable can contain only one object reference at a time, so if you assign a different Widget object to

mWidget, the previous Widget object's events will no longer be handled. If mWidget is the only object variable containing

a reference to the old Widget, the object is destroyed. If you want to handle events from several Widget objects, use the

AddHandler statement to process events from each object separately.

Note

You can declare as many WithEvents variables as you need, but arrays of WithEvents variables are not supported.

See Also

mWidget = New Widget

' Create a new Widget object.

VB

Walkthrough: Handling Events (Visual Basic) https://msdn.microsoft.com/en-us/library/e9xkz224(d=printer).aspx

4 of 5 02.09.2016 16:34

Walkthrough: Declaring and Raising Events (Visual Basic)

Events (Visual Basic)

© 2016 Microsoft

Walkthrough: Handling Events (Visual Basic) https://msdn.microsoft.com/en-us/library/e9xkz224(d=printer).aspx

5 of 5 02.09.2016 16:34

How to: Declare Custom Events To Avoid
Blocking (Visual Basic)

There are several circumstances when it is important that one event handler not block subsequent event handlers. Custom

events allow the event to call its event handlers asynchronously.

By default, the backing-store field for an event declaration is a multicast delegate that serially combines all the event

handlers. This means that if one handler takes a long time to complete, it blocks the other handlers until it completes. (Well-

behaved event handlers should never perform lengthy or potentially blocking operations.)

Instead of using the default implementation of events that Visual Basic provides, you can use a custom event to execute the

event handlers asynchronously.

Example
In this example, the AddHandler accessor adds the delegate for each handler of the Click event to an ArrayList stored in

the EventHandlerList field.

When code raises the Click event, the RaiseEvent accessor invokes all the event handler delegates asynchronously using

the BeginInvoke method. That method invokes each handler on a worker thread and returns immediately, so handlers

cannot block one another.

Visual Studio 2015

VB

How to: Declare Custom Events To Avoid Blocking (Visual Basic) https://msdn.microsoft.com/en-us/library/wf33s4w7(d=printer).aspx

1 of 2 02.09.2016 16:35

See Also
ArrayList

BeginInvoke

Events (Visual Basic)

How to: Declare Custom Events To Conserve Memory (Visual Basic)

© 2016 Microsoft

Public NotInheritable Class ReliabilityOptimizedControl

'Defines a list for storing the delegates

Private EventHandlerList As New ArrayList

'Defines the Click event using the custom event syntax.

'The RaiseEvent always invokes the delegates asynchronously

Public Custom Event Click As EventHandler

AddHandler(ByVal value As EventHandler)

 EventHandlerList.Add(value)

End AddHandler

RemoveHandler(ByVal value As EventHandler)

 EventHandlerList.Remove(value)

End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As EventArgs)

For Each handler As EventHandler In EventHandlerList

If handler IsNot Nothing Then

 handler.BeginInvoke(sender, e, Nothing, Nothing)

End If

Next

End RaiseEvent

End Event

End Class

How to: Declare Custom Events To Avoid Blocking (Visual Basic) https://msdn.microsoft.com/en-us/library/wf33s4w7(d=printer).aspx

2 of 2 02.09.2016 16:35

How to: Declare Custom Events To Conserve
Memory (Visual Basic)

There are several circumstances when it is important that an application keep its memory usage low. Custom events allow

the application to use memory only for the events that it handles.

By default, when a class declares an event, the compiler allocates memory for a field to store the event information. If a class

has many unused events, they needlessly take up memory.

Instead of using the default implementation of events that Visual Basic provides, you can use custom events to manage the

memory usage more carefully.

Example
In this example, the class uses one instance of the EventHandlerList class, stored in the Events field, to store information

about the events in use. The EventHandlerList class is an optimized list class designed to hold delegates.

All events in the class use the Events field to keep track of what methods are handling each event.

Visual Studio 2015

Public Class MemoryOptimizedBaseControl

' Define a delegate store for all event handlers.

Private Events As New System.ComponentModel.EventHandlerList

' Define the Click event to use the delegate store.

Public Custom Event Click As EventHandler

AddHandler(ByVal value As EventHandler)

 Events.AddHandler("ClickEvent", value)

End AddHandler

RemoveHandler(ByVal value As EventHandler)

 Events.RemoveHandler("ClickEvent", value)

End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As EventArgs)

CType(Events("ClickEvent"), EventHandler).Invoke(sender, e)

End RaiseEvent

End Event

' Define the DoubleClick event to use the same delegate store.

Public Custom Event DoubleClick As EventHandler

AddHandler(ByVal value As EventHandler)

 Events.AddHandler("DoubleClickEvent", value)

End AddHandler

RemoveHandler(ByVal value As EventHandler)

 Events.RemoveHandler("DoubleClickEvent", value)

End RemoveHandler

VB

How to: Declare Custom Events To Conserve Memory (Visual Basic) https://msdn.microsoft.com/en-us/library/yt1k2w4e(d=printer).aspx

1 of 2 02.09.2016 16:35

See Also
EventHandlerList

Events (Visual Basic)

How to: Declare Custom Events To Avoid Blocking (Visual Basic)

© 2016 Microsoft

RaiseEvent(ByVal sender As Object, ByVal e As EventArgs)

CType(Events("DoubleClickEvent"), EventHandler).Invoke(sender, e)

End RaiseEvent

End Event

' Define additional events to use the same delegate store.

' ...

End Class

How to: Declare Custom Events To Conserve Memory (Visual Basic) https://msdn.microsoft.com/en-us/library/yt1k2w4e(d=printer).aspx

2 of 2 02.09.2016 16:35

Troubleshooting Inherited Event Handlers in
Visual Basic

This topic lists common issues that arise with event handlers in inherited components.

Procedures

Code in Event Handler Executes Twice for Every Call

An inherited event handler must not include a Handles Clause (Visual Basic) clause. The method in the base class is

already associated with the event and will fire accordingly. Remove the Handles clause from the inherited method.

If the inherited method does not have a Handles keyword, verify that your code does not contain an extra

AddHandler Statement or any additional methods that handle the same event.

See Also
Events (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

' INCORRECT

Protected Overrides Sub Button1_Click(

ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

' The Handles clause will cause all code

' in this block to be executed twice.

End Sub

VB

Troubleshooting Inherited Event Handlers in Visual Basic https://msdn.microsoft.com/en-us/library/e33683a5(d=printer).aspx

1 of 1 02.09.2016 16:35

Handling and Raising Events

Events in the .NET Framework are based on the delegate model. The delegate model follows the observer design pattern,

which enables a subscriber to register with, and receive notifications from, a provider. An event sender pushes a notification

that an event has happened, and an event receiver receives that notification and defines a response to it. This article

describes the major components of the delegate model, how to consume events in applications, and how to implement

events in your code.

For information about handling events in Windows 8.x Store apps, see Events and routed events overview (Windows store

apps).

Events
An event is a message sent by an object to signal the occurrence of an action. The action could be caused by user

interaction, such as a button click, or it could be raised by some other program logic, such as changing a property’s value.

The object that raises the event is called the event sender. The event sender doesn't know which object or method will

receive (handle) the events it raises. The event is typically a member of the event sender; for example, the Click event is a

member of the Button class, and the PropertyChanged event is a member of the class that implements the

INotifyPropertyChanged interface.

To define an event, you use the event (in C#) or Event (in Visual Basic) keyword in the signature of your event class, and

specify the type of delegate for the event. Delegates are described in the next section.

Typically, to raise an event, you add a method that is marked as protected and virtual (in C#) or Protected and

Overridable (in Visual Basic). Name this method OnEventName; for example, OnDataReceived. The method should take

one parameter that specifies an event data object. You provide this method to enable derived classes to override the

logic for raising the event. A derived class should always call the OnEventName method of the base class to ensure that

registered delegates receive the event.

The following example shows how to declare an event named ThresholdReached. The event is associated with the

EventHandler delegate and raised in a method named OnThresholdReached.

.NET Framework (current version)

Public Class Counter

Public Event ThresholdReached As EventHandler

Protected Overridable Sub OnThresholdReached(e As EventArgs)

RaiseEvent ThresholdReached(Me, e)

End Sub

' provide remaining implementation for the class

End Class

VB

Handling and Raising Events https://msdn.microsoft.com/en-us/library/edzehd2t(d=printer).aspx

1 of 4 02.09.2016 16:36

Delegates
A delegate is a type that holds a reference to a method. A delegate is declared with a signature that shows the return type

and parameters for the methods it references, and can hold references only to methods that match its signature. A

delegate is thus equivalent to a type-safe function pointer or a callback. A delegate declaration is sufficient to define a

delegate class.

Delegates have many uses in the .NET Framework. In the context of events, a delegate is an intermediary (or pointer-like

mechanism) between the event source and the code that handles the event. You associate a delegate with an event by

including the delegate type in the event declaration, as shown in the example in the previous section. For more

information about delegates, see the Delegate class.

The .NET Framework provides the EventHandler and EventHandler(Of TEventArgs) delegates to support most event

scenarios. Use the EventHandler delegate for all events that do not include event data. Use the EventHandler(Of 

TEventArgs) delegate for events that include data about the event. These delegates have no return type value and take

two parameters (an object for the source of the event and an object for event data).

Delegates are multicast, which means that they can hold references to more than one event-handling method. For details,

see the Delegate reference page. Delegates provide flexibility and fine-grained control in event handling. A delegate acts

as an event dispatcher for the class that raises the event by maintaining a list of registered event handlers for the event.

For scenarios where the EventHandler and EventHandler(Of TEventArgs) delegates do not work, you can define a

delegate. Scenarios that require you to define a delegate are very rare, such as when you must work with code that does

not recognize generics. You mark a delegate with the delegate in (C#) and Delegate (in Visual Basic) keyword in the

declaration. The following example shows how to declare a delegate named ThresholdReachedEventHandler.

Event Data
Data that is associated with an event can be provided through an event data class. The .NET Framework provides many

event data classes that you can use in your applications. For example, the SerialDataReceivedEventArgs class is the event

data class for the SerialPort.DataReceived event. The .NET Framework follows a naming pattern of ending all event data

classes with EventArgs. You determine which event data class is associated with an event by looking at the delegate for

the event. For example, the SerialDataReceivedEventHandler delegate includes the SerialDataReceivedEventArgs class as

one of its parameters.

The EventArgs class is the base type for all event data classes. EventArgs is also the class you use when an event does not

have any data associated with it. When you create an event that is only meant to notify other classes that something

happened and does not need to pass any data, include the EventArgs class as the second parameter in the delegate. You

can pass the EventArgs.Empty value when no data is provided. The EventHandler delegate includes the EventArgs class as

a parameter.

When you want to create a customized event data class, create a class that derives from EventArgs, and then provide any

members needed to pass data that is related to the event. Typically, you should use the same naming pattern as the .NET

Framework and end your event data class name with EventArgs.

The following example shows an event data class named ThresholdReachedEventArgs. It contains properties that are

Public Delegate Sub ThresholdReachedEventHandler(e As ThresholdReachedEventArgs)

VB

Handling and Raising Events https://msdn.microsoft.com/en-us/library/edzehd2t(d=printer).aspx

2 of 4 02.09.2016 16:36

specific to the event being raised.

Event Handlers
To respond to an event, you define an event handler method in the event receiver. This method must match the signature

of the delegate for the event you are handling. In the event handler, you perform the actions that are required when the

event is raised, such as collecting user input after the user clicks a button. To receive notifications when the event occurs,

your event handler method must subscribe to the event.

The following example shows an event handler method named c_ThresholdReached that matches the signature for the

EventHandler delegate. The method subscribes to the ThresholdReached event.

Static and Dynamic Event Handlers
The .NET Framework allows subscribers to register for event notifications either statically or dynamically. Static event

handlers are in effect for the entire life of the class whose events they handle. Dynamic event handlers are explicitly

activated and deactivated during program execution, usually in response to some conditional program logic. For

example, they can be used if event notifications are needed only under certain conditions or if an application provides

multiple event handlers and run-time conditions define the appropriate one to use. The example in the previous section

shows how to dynamically add an event handler. For more information, see Events (Visual Basic) and Events (C#

Programming Guide).

Public Class ThresholdReachedEventArgs

Inherits EventArgs

Public Property Threshold As Integer

Public Property TimeReached As DateTime

End Class

Module Module1

Sub Main()

Dim c As Counter = New Counter()

AddHandler c.ThresholdReached, AddressOf c_ThresholdReached

' provide remaining implementation for the class

End Sub

Sub c_ThresholdReached(sender As Object, e As EventArgs)

 Console.WriteLine("The threshold was reached.")

End Sub

End Module

VB

VB

Handling and Raising Events https://msdn.microsoft.com/en-us/library/edzehd2t(d=printer).aspx

3 of 4 02.09.2016 16:36

Raising Multiple Events
If your class raises multiple events, the compiler generates one field per event delegate instance. If the number of events is

large, the storage cost of one field per delegate may not be acceptable. For those situations, the .NET Framework

provides event properties that you can use with another data structure of your choice to store event delegates.

Event properties consist of event declarations accompanied by event accessors. Event accessors are methods that you

define to add or remove event delegate instances from the storage data structure. Note that event properties are slower

than event fields, because each event delegate must be retrieved before it can be invoked. The trade-off is between

memory and speed. If your class defines many events that are infrequently raised, you will want to implement event

properties. For more information, see How to: Handle Multiple Events Using Event Properties.

Related Topics

Title Description

How to: Raise and Consume Events Contains examples of raising and consuming events.

How to: Handle Multiple Events Using

Event Properties

Shows how to use event properties to handle multiple events.

Observer Design Pattern Describes the design pattern that enables a subscriber to register with, and

receive notifications from, a provider.

How to: Consume Events in a Web

Forms Application

Shows how to handle an event that is raised by a Web Forms control.

See Also
EventHandler

EventHandler(Of TEventArgs)

EventArgs

Delegate

Events and routed events overview (Windows store apps)

Events (Visual Basic)

Events (C# Programming Guide)

© 2016 Microsoft

Handling and Raising Events https://msdn.microsoft.com/en-us/library/edzehd2t(d=printer).aspx

4 of 4 02.09.2016 16:36

Creating Event Handlers in Windows Forms

An event handler is a procedure in your code that determines what actions are performed when an event occurs, such as

when the user clicks a button or a message queue receives a message. When an event is raised, the event handler or handlers

that receive the event are executed. Events can be assigned to multiple handlers, and the methods that handle particular

events can be changed dynamically. You can also use the Windows Forms Designer to create event handlers.

In This Section

Events Overview (Windows Forms)

Explains the event model and the role of delegates.

Event Handlers Overview (Windows Forms)

Describes how to handle events.

How to: Create Event Handlers at Run Time for Windows Forms

Gives directions for responding to system or user events dynamically.

How to: Connect Multiple Events to a Single Event Handler in Windows Forms

Gives directions for assigning the same functionality to multiple controls through events.

Order of Events in Windows Forms

Describes the order in which events are raised in Windows Forms controls.

8461e9b8-14e8-406f-936e-3726732b23d2

Describes how to use the Windows Forms Designer to create event handlers.

Related Sections

Handling and Raising Events

Provides links to topics on handling and raising events using the .NET Framework.

Troubleshooting Inherited Event Handlers in Visual Basic

Lists common issues that occur with event handlers in inherited components.

© 2016 Microsoft

.NET Framework (current version)

Creating Event Handlers in Windows Forms https://msdn.microsoft.com/en-us/library/dacysss4(d=printer).aspx

1 of 1 02.09.2016 16:36

How to: Create Event Handlers at Run Time
for Windows Forms

In addition to creating events using the Windows Forms Designer, you can also create an event handler at run time. This

action allows you to connect event handlers based on conditions in code at run time as opposed to having them connected

when the program initially starts.

To create an event handler at run time

Open the form in the Code Editor that you want to add an event handler to.1.

Add a method to your form with the method signature for the event that you want to handle.

For example, if you were handling the Click event of a Button control, you would create a method such as the

following:

2.

Add code to the event handler as appropriate to your application.3.

Determine which form or control you want to create an event handler for.4.

In a method within your form's class, add code that specifies the event handler to handle the event. For example, the

following code specifies the event handler button1_Click handles the Click event of a Button control:

The AddHandler method demonstrated in the Visual Basic code above establishes a click event handler for the

button.

5.

See Also

Creating Event Handlers in Windows Forms

Event Handlers Overview (Windows Forms)

.NET Framework (current version)

Private Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)

' Add event handler code here.

End Sub

AddHandler Button1.Click, AddressOf Button1_Click

VB

VB

How to: Create Event Handlers at Run Time for Windows Forms https://msdn.microsoft.com/en-us/library/dfty2w4e(d=printer).aspx

1 of 2 02.09.2016 16:37

Troubleshooting Inherited Event Handlers in Visual Basic

© 2016 Microsoft

How to: Create Event Handlers at Run Time for Windows Forms https://msdn.microsoft.com/en-us/library/dfty2w4e(d=printer).aspx

2 of 2 02.09.2016 16:37

How to: Connect Multiple Events to a Single
Event Handler in Windows Forms

In your application design, you may find it necessary to use a single event handler for multiple events or have multiple

events perform the same procedure. For example, it is often a powerful time-saver to have a menu command raise the same

event as a button on your form does if they expose the same functionality. You can do this by using the Events view of the

Properties window in C# or using the Handles keyword and the Class Name and Method Name drop-down boxes in the

Visual Basic Code Editor.

To connect multiple events to a single event handler in Visual Basic

Right-click the form and choose View Code.1.

From the Class Name drop-down box, select one of the controls that you want to have the event handler handle.2.

From the Method Name drop-down box, select one of the events that you want the event handler to handle.3.

The Code Editor inserts the appropriate event handler and positions the insertion point within the method. In the

example below, it is the Click event for the Button control.

4.

Append the other events you would like handled to the Handles clause.5.

Add the appropriate code to the event handler.6.

To connect multiple events to a single event handler in C#

Select the control to which you want to connect an event handler.1.

.NET Framework (current version)

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

' Add event‐handler code here.

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click, Button2.Click

' Add event‐handler code here.

End Sub

VB

VB

How to: Connect Multiple Events to a Single Event Handler in Windows ... https://msdn.microsoft.com/en-us/library/3exstx90(d=printer).aspx

1 of 2 02.09.2016 16:38

In the Properties window, click the Events button ().2.

Click the name of the event that you want to handle.3.

In the value section next to the event name, click the drop-down button to display a list of existing event handlers

that match the method signature of the event you want to handle.

4.

Select the appropriate event handler from the list.

Code will be added to the form to bind the event to the existing event handler.

5.

See Also
Creating Event Handlers in Windows Forms

Event Handlers Overview (Windows Forms)

© 2016 Microsoft

How to: Connect Multiple Events to a Single Event Handler in Windows ... https://msdn.microsoft.com/en-us/library/3exstx90(d=printer).aspx

2 of 2 02.09.2016 16:38

Order of Events in Windows Forms

The order in which events are raised in Windows Forms applications is of particular interest to developers concerned with

handling each of these events in turn. When a situation calls for meticulous handling of events, such as when you are

redrawing parts of the form, an awareness of the precise order in which events are raised at run time is necessary. This topic

provides some details on the order of events during several important stages in the lifetime of applications and controls. For

specific details about the order of mouse input events, see Mouse Events in Windows Forms. For an overview of events in

Windows Forms, see Events Overview (Windows Forms). For details about the makeup of event handlers, see Event Handlers

Overview (Windows Forms).

Application Startup and Shutdown Events
The Form and Control classes expose a set of events related to application startup and shutdown. When a Windows

Forms application starts, the startup events of the main form are raised in the following order:

Control.HandleCreated

Control.BindingContextChanged

Form.Load

Control.VisibleChanged

Form.Activated

Form.Shown

When an application closes, the shutdown events of the main form are raised in the following order:

Form.Closing

Form.FormClosing

Form.Closed

Form.FormClosed

Form.Deactivate

The ApplicationExit event of the Application class is raised after the shutdown events of the main form.

Note

.NET Framework (current version)

Order of Events in Windows Forms https://msdn.microsoft.com/en-us/library/86faxx0d(d=printer).aspx

1 of 2 02.09.2016 16:38

Visual Basic 2005 includes additional application events, such as WindowsFormsApplicationBase.Startup and

WindowsFormsApplicationBase.Shutdown.

Focus and Validation Events
When you change the focus by using the keyboard (TAB, SHIFT+TAB, and so on), by calling the Select or

SelectNextControl methods, or by setting the ActiveControl property to the current form, focus events of the Control

class occur in the following order:

Enter

GotFocus

Leave

Validating

Validated

LostFocus

When you change the focus by using the mouse or by calling the Focus method, focus events of the Control class occur in

the following order:

Enter

GotFocus

LostFocus

Leave

Validating

Validated

See Also
Creating Event Handlers in Windows Forms

© 2016 Microsoft

Order of Events in Windows Forms https://msdn.microsoft.com/en-us/library/86faxx0d(d=printer).aspx

2 of 2 02.09.2016 16:38

