
Early and Late Binding (Visual Basic)

The Visual Basic compiler performs a process called binding when an object is assigned to an object variable. An object is

early bound when it is assigned to a variable declared to be of a specific object type. Early bound objects allow the compiler

to allocate memory and perform other optimizations before an application executes. For example, the following code

fragment declares a variable to be of type FileStream:

Because FileStream is a specific object type, the instance assigned to FS is early bound.

By contrast, an object is late bound when it is assigned to a variable declared to be of type Object. Objects of this type can

hold references to any object, but lack many of the advantages of early-bound objects. For example, the following code

fragment declares an object variable to hold an object returned by the CreateObject function:

Advantages of Early Binding
You should use early-bound objects whenever possible, because they allow the compiler to make important

Visual Studio 2015

' Create a variable to hold a new object.

Dim FS As System.IO.FileStream

' Assign a new object to the variable.

FS = New System.IO.FileStream("C:\tmp.txt",

 System.IO.FileMode.Open)

' To use this example, you must have Microsoft Excel installed on your computer.

' Compile with Option Strict Off to allow late binding.

Sub TestLateBinding()

Dim xlApp As Object

Dim xlBook As Object

Dim xlSheet As Object

 xlApp = CreateObject("Excel.Application")

' Late bind an instance of an Excel workbook.

 xlBook = xlApp.Workbooks.Add

' Late bind an instance of an Excel worksheet.

 xlSheet = xlBook.Worksheets(1)

 xlSheet.Activate()

' Show the application.

 xlSheet.Application.Visible = True

' Place some text in the second row of the sheet.

 xlSheet.Cells(2, 2) = "This is column B row 2"

End Sub

VB

VB

Early and Late Binding (Visual Basic) https://msdn.microsoft.com/en-us/library/0tcf61s1(d=printer).aspx

1 of 2 02.09.2016 18:06

optimizations that yield more efficient applications. Early-bound objects are significantly faster than late-bound objects

and make your code easier to read and maintain by stating exactly what kind of objects are being used. Another

advantage to early binding is that it enables useful features such as automatic code completion and Dynamic Help

because the Visual Studio integrated development environment (IDE) can determine exactly what type of object you are

working with as you edit the code. Early binding reduces the number and severity of run-time errors because it allows the

compiler to report errors when a program is compiled.

Note

Late binding can only be used to access type members that are declared as Public. Accessing members declared as

Friend or Protected Friend results in a run-time error.

See Also
CreateObject

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic)

Object Data Type

© 2016 Microsoft

Early and Late Binding (Visual Basic) https://msdn.microsoft.com/en-us/library/0tcf61s1(d=printer).aspx

2 of 2 02.09.2016 18:06

Determining Object Type (Visual Basic)

Generic object variables (that is, variables you declare as Object) can hold objects from any class. When using variables of

type Object, you may need to take different actions based on the class of the object; for example, some objects might not

support a particular property or method. Visual Basic provides two means of determining which type of object is stored in

an object variable: the TypeName function and the TypeOf...Is operator.

TypeName and TypeOf…Is
The TypeName function returns a string and is the best choice when you need to store or display the class name of an

object, as shown in the following code fragment:

The TypeOf...Is operator is the best choice for testing an object's type, because it is much faster than an equivalent string

comparison using TypeName. The following code fragment uses TypeOf...Is within an If...Then...Else statement:

A word of caution is due here. The TypeOf...Is operator returns True if an object is of a specific type, or is derived from a

specific type. Almost everything you do with Visual Basic involves objects, which include some elements not normally

thought of as objects, such as strings and integers. These objects are derived from and inherit methods from Object.

When passed an Integer and evaluated with Object, the TypeOf...Is operator returns True. The following example

reports that the parameter InParam is both an Object and an Integer:

Visual Studio 2015

Dim Ctrl As Control = New TextBox

MsgBox(TypeName(Ctrl))

If TypeOf Ctrl Is Button Then

 MsgBox("The control is a button.")

End If

Sub CheckType(ByVal InParam As Object)

' Both If statements evaluate to True when an

' Integer is passed to this procedure.

If TypeOf InParam Is Object Then

 MsgBox("InParam is an Object")

End If

If TypeOf InParam Is Integer Then

 MsgBox("InParam is an Integer")

End If

End Sub

VB

VB

VB

Determining Object Type (Visual Basic) https://msdn.microsoft.com/en-us/library/s4zz68xc(d=printer).aspx

1 of 2 02.09.2016 18:13

The following example uses both TypeOf...Is and TypeName to determine the type of object passed to it in the Ctrl

argument. The TestObject procedure calls ShowType with three different kinds of controls.

To run the example

Create a new Windows Application project and add a Button control, a CheckBox control, and a RadioButton

control to the form.

1.

From the button on your form, call the TestObject procedure.2.

Add the following code to your form:3.

See Also
TypeName

Calling a Property or Method Using a String Name (Visual Basic)

Object Data Type

If...Then...Else Statement (Visual Basic)

String Data Type (Visual Basic)

Integer Data Type (Visual Basic)

© 2016 Microsoft

Sub ShowType(ByVal Ctrl As Object)

'Use the TypeName function to display the class name as text.

 MsgBox(TypeName(Ctrl))

'Use the TypeOf function to determine the object's type.

If TypeOf Ctrl Is Button Then

 MsgBox("The control is a button.")

ElseIf TypeOf Ctrl Is CheckBox Then

 MsgBox("The control is a check box.")

Else

 MsgBox("The object is some other type of control.")

End If

End Sub

Protected Sub TestObject()

'Test the ShowType procedure with three kinds of objects.

 ShowType(Me.Button1)

 ShowType(Me.CheckBox1)

 ShowType(Me.RadioButton1)

End Sub

VB

Determining Object Type (Visual Basic) https://msdn.microsoft.com/en-us/library/s4zz68xc(d=printer).aspx

2 of 2 02.09.2016 18:13

Calling a Property or Method Using a String
Name (Visual Basic)

In most cases, you can discover the properties and methods of an object at design time, and write code to handle them.

However, in some cases you may not know about an object's properties and methods in advance, or you may just want the

flexibility of enabling an end user to specify properties or execute methods at run time.

CallByName Function
Consider, for example, a client application that evaluates expressions entered by the user by passing an operator to a

COM component. Suppose you are constantly adding new functions to the component that require new operators. When

you use standard object access techniques, you must recompile and redistribute the client application before it could use

the new operators. To avoid this, you can use the CallByName function to pass the new operators as strings, without

changing the application.

The CallByName function lets you use a string to specify a property or method at run time. The signature for the

CallByName function looks like this:

Result = CallByName(Object, ProcedureName, CallType, Arguments())

The first argument, Object, takes the name of the object you want to act upon. The ProcedureName argument takes a

string that contains the name of the method or property procedure to be invoked. The CallType argument takes a

constant that represents the type of procedure to invoke: a method (Microsoft.VisualBasic.CallType.Method), a

property read (Microsoft.VisualBasic.CallType.Get), or a property set

(Microsoft.VisualBasic.CallType.Set). The Arguments argument, which is optional, takes an array of type Object

that contains any arguments to the procedure.

You can use CallByName with classes in your current solution, but it is most often used to access COM objects or objects

from .NET Framework assemblies.

Suppose you add a reference to an assembly that contains a class named MathClass, which has a new function named

SquareRoot, as shown in the following code:

Visual Studio 2015

Class MathClass

Function SquareRoot(ByVal X As Double) As Double

Return Math.Sqrt(X)

End Function

Function InverseSine(ByVal X As Double) As Double

Return Math.Atan(X / Math.Sqrt(‐X * X + 1))

End Function

Function Acos(ByVal X As Double) As Double

Return Math.Atan(‐X / Math.Sqrt(‐X * X + 1)) + 2 * Math.Atan(1)

End Function

VB

Calling a Property or Method Using a String Name (Visual Basic) https://msdn.microsoft.com/en-us/library/22x2chfx(d=printer).aspx

1 of 2 02.09.2016 18:13

Your application could use text box controls to control which method will be called and its arguments. For example, if

TextBox1 contains the expression to be evaluated, and TextBox2 is used to enter the name of the function, you can use

the following code to invoke the SquareRoot function on the expression in TextBox1:

If you enter "64" in TextBox1, "SquareRoot" in TextBox2, and then call the CallMath procedure, the square root of the

number in TextBox1 is evaluated. The code in the example invokes the SquareRoot function (which takes a string that

contains the expression to be evaluated as a required argument) and returns "8" in TextBox1 (the square root of 64). Of

course, if the user enters an invalid string in TextBox2, if the string contains the name of a property instead of a method,

or if the method had an additional required argument, a run-time error occurs. You have to add robust error-handling

code when you use CallByName to anticipate these or any other errors.

Note

While the CallByName function may be useful in some cases, you must weigh its usefulness against the performance

implications — using CallByName to invoke a procedure is slightly slower than a late-bound call. If you are invoking a

function that is called repeatedly, such as inside a loop, CallByName can have a severe effect on performance.

See Also
CallByName

Determining Object Type (Visual Basic)

© 2016 Microsoft

End Class

Private Sub CallMath()

Dim Math As New MathClass

Me.TextBox1.Text = CStr(CallByName(Math, Me.TextBox2.Text,

 Microsoft.VisualBasic.CallType.Method, TextBox1.Text))

End Sub

VB

Calling a Property or Method Using a String Name (Visual Basic) https://msdn.microsoft.com/en-us/library/22x2chfx(d=printer).aspx

2 of 2 02.09.2016 18:13

Working with Dynamic Objects (Visual Basic)

Dynamic objects provide another way, other than the Object type, to late bind to an object at run time. A dynamic object

exposes members such as properties and methods at run time by using dynamic interfaces that are defined in the

System.Dynamic namespace. You can use the classes in the System.Dynamic namespace to create objects that work with

data structures that do not match a static type or format. You can also use the dynamic objects that are defined in dynamic

languages such as IronPython and IronRuby. For examples that show how to create dynamic objects or use a dynamic object

defined in a dynamic language, see Walkthrough: Creating and Using Dynamic Objects (C# and Visual Basic),

DynamicObject, or ExpandoObject.

Visual Basic binds to objects from the dynamic language runtime and dynamic languages such as IronPython and

IronRuby by using the IDynamicMetaObjectProvider interface. Examples of classes that implement the

IDynamicMetaObjectProvider interface are the DynamicObject and ExpandoObject classes.

If a late-bound call is made to an object that implements the IDynamicMetaObjectProvider interface, Visual Basic binds to

the dynamic object by using that interface. If a late-bound call is made to an object that does not implement the

IDynamicMetaObjectProvider interface, or if the call to the IDynamicMetaObjectProvider interface fails, Visual Basic

binds to the object by using the late-binding capabilities of the Visual Basic runtime.

See Also

DynamicObject

ExpandoObject

Walkthrough: Creating and Using Dynamic Objects (C# and Visual Basic)

Early and Late Binding (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Working with Dynamic Objects (Visual Basic) https://msdn.microsoft.com/en-us/library/dd537660(d=printer).aspx

1 of 1 02.09.2016 18:14

Object Lifetime: How Objects Are Created
and Destroyed (Visual Basic)

An instance of a class, an object, is created by using the New keyword. Initialization tasks often must be performed on new

objects before they are used. Common initialization tasks include opening files, connecting to databases, and reading values

of registry keys. Visual Basic controls the initialization of new objects using procedures called constructors (special methods

that allow control over initialization).

After an object leaves scope, it is released by the common language runtime (CLR). Visual Basic controls the release of

system resources using procedures called destructors. Together, constructors and destructors support the creation of robust

and predictable class libraries.

Using Constructors and Destructors
Constructors and destructors control the creation and destruction of objects. The Sub New and Sub Finalize procedures

in Visual Basic initialize and destroy objects; they replace the Class_Initialize and Class_Terminate methods used in

Visual Basic 6.0 and earlier versions.

Sub New

The Sub New constructor can run only once when a class is created. It cannot be called explicitly anywhere other than

in the first line of code of another constructor from either the same class or from a derived class. Furthermore, the code

in the Sub New method always runs before any other code in a class. Visual Basic 2005 and later versions implicitly

create a Sub New constructor at run time if you do not explicitly define a Sub New procedure for a class.

To create a constructor for a class, create a procedure named Sub New anywhere in the class definition. To create a

parameterized constructor, specify the names and data types of arguments to Sub New just as you would specify

arguments for any other procedure, as in the following code:

Constructors are frequently overloaded, as in the following code:

When you define a class derived from another class, the first line of a constructor must be a call to the constructor of

the base class, unless the base class has an accessible constructor that takes no parameters. A call to the base class that

contains the above constructor, for example, would be MyBase.New(s). Otherwise, MyBase.New is optional, and the

Visual Basic runtime calls it implicitly.

Visual Studio 2015

Sub New(ByVal s As String)

Sub New(ByVal s As String, i As Integer)

VB

VB

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

1 of 6 02.09.2016 18:08

After you write the code to call the parent object's constructor, you can add any additional initialization code to the

Sub New procedure. Sub New can accept arguments when called as a parameterized constructor. These parameters

are passed from the procedure calling the constructor, for example, Dim AnObject As New ThisClass(X).

Sub Finalize

Before releasing objects, the CLR automatically calls the Finalize method for objects that define a Sub Finalize

procedure. The Finalize method can contain code that needs to execute just before an object is destroyed, such as

code for closing files and saving state information. There is a slight performance penalty for executing Sub Finalize, so

you should define a Sub Finalize method only when you need to release objects explicitly.

Note

The garbage collector in the CLR does not (and cannot) dispose of unmanaged objects, objects that the operating

system executes directly, outside the CLR environment. This is because different unmanaged objects must be

disposed of in different ways. That information is not directly associated with the unmanaged object; it must be

found in the documentation for the object. A class that uses unmanaged objects must dispose of them in its

Finalize method.

The Finalize destructor is a protected method that can be called only from the class it belongs to, or from derived

classes. The system calls Finalize automatically when an object is destroyed, so you should not explicitly call Finalize

from outside of a derived class's Finalize implementation.

Unlike Class_Terminate, which executes as soon as an object is set to nothing, there is usually a delay between when

an object loses scope and when Visual Basic calls the Finalize destructor. Visual Basic 2005 and later versions allow for

a second kind of destructor, Dispose, which can be explicitly called at any time to immediately release resources.

Note

A Finalize destructor should not throw exceptions, because they cannot be handled by the application and can

cause the application to terminate.

How New and Finalize Methods Work in a Class Hierarchy

Whenever an instance of a class is created, the common language runtime (CLR) attempts to execute a procedure

named New, if it exists in that object. New is a type of procedure called a constructor that is used to initialize new

objects before any other code in an object executes. A New constructor can be used to open files, connect to

databases, initialize variables, and take care of any other tasks that need to be done before an object can be used.

When an instance of a derived class is created, the Sub New constructor of the base class executes first, followed by

constructors in derived classes. This happens because the first line of code in a Sub New constructor uses the syntax

MyBase.New()to call the constructor of the class immediately above itself in the class hierarchy. The Sub New

constructor is then called for each class in the class hierarchy until the constructor for the base class is reached. At that

point, the code in the constructor for the base class executes, followed by the code in each constructor in all derived

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

2 of 6 02.09.2016 18:08

classes and the code in the most derived classes is executed last.

When an object is no longer needed, the CLR calls the Finalize method for that object before freeing its memory. The

Finalize method is called a destructor because it performs cleanup tasks, such as saving state information, closing files

and connections to databases, and other tasks that must be done before releasing the object.

IDisposable Interface
Class instances often control resources not managed by the CLR, such as Windows handles and database connections.

These resources must be disposed of in the Finalize method of the class, so that they will be released when the object is

destroyed by the garbage collector. However, the garbage collector destroys objects only when the CLR requires more

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

3 of 6 02.09.2016 18:08

free memory. This means that the resources may not be released until long after the object goes out of scope.

To supplement garbage collection, your classes can provide a mechanism to actively manage system resources if they

implement the IDisposable interface. IDisposable has one method, Dispose, which clients should call when they finish

using an object. You can use the Dispose method to immediately release resources and perform tasks such as closing files

and database connections. Unlike the Finalize destructor, the Dispose method is not called automatically. Clients of a

class must explicitly call Dispose when you want to immediately release resources.

Implementing IDisposable

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

4 of 6 02.09.2016 18:08

A class that implements the IDisposable interface should include these sections of code:

A field for keeping track of whether the object has been disposed:

An overload of the Dispose that frees the class's resources. This method should be called by the Dispose and

Finalize methods of the base class:

An implementation of Dispose that contains only the following code:

An override of the Finalize method that contains only the following code:

Deriving from a Class that Implements IDisposable

A class that derives from a base class that implements the IDisposable interface does not need to override any of the

base methods unless it uses additional resources that need to be disposed. In that situation, the derived class should

override the base class's Dispose(disposing) method to dispose of the derived class's resources. This override must

call the base class's Dispose(disposing) method.

Protected disposed As Boolean = False

Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 If Not Me.disposed Then

 If disposing Then

 ' Insert code to free managed resources.

 End If

 ' Insert code to free unmanaged resources.

 End If

 Me.disposed = True

End Sub

Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()

 Dispose(False)

 MyBase.Finalize()

End Sub

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

5 of 6 02.09.2016 18:08

A derived class should not override the base class's Dispose and Finalize methods. When those methods are called

from an instance of the derived class, the base class's implementation of those methods call the derived class's override

of the Dispose(disposing) method.

Garbage Collection and the Finalize Destructor
The .NET Framework uses the reference-tracing garbage collection system to periodically release unused resources. Visual

Basic 6.0 and earlier versions used a different system called reference counting to manage resources. Although both

systems perform the same function automatically, there are a few important differences.

The CLR periodically destroys objects when the system determines that such objects are no longer needed. Objects are

released more quickly when system resources are in short supply, and less frequently otherwise. The delay between when

an object loses scope and when the CLR releases it means that, unlike with objects in Visual Basic 6.0 and earlier versions,

you cannot determine exactly when the object will be destroyed. In such a situation, objects are said to have

non-deterministic lifetime. In most cases, non-deterministic lifetime does not change how you write applications, as long

as you remember that the Finalize destructor may not immediately execute when an object loses scope.

Another difference between the garbage-collection systems involves the use of Nothing. To take advantage of reference

counting in Visual Basic 6.0 and earlier versions, programmers sometimes assigned Nothing to object variables to release

the references those variables held. If the variable held the last reference to the object, the object's resources were

released immediately. In later versions of Visual Basic, while there may be cases in which this procedure is still valuable,

performing it never causes the referenced object to release its resources immediately. To release resources immediately,

use the object's Dispose method, if available. The only time you should set a variable to Nothing is when its lifetime is

long relative to the time the garbage collector takes to detect orphaned objects.

See Also
Dispose

Initialization and Termination of Components

New Operator (Visual Basic)

Cleaning Up Unmanaged Resources

Nothing (Visual Basic)

© 2016 Microsoft

Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 If Not Me.disposed Then

 If disposing Then

 ' Insert code to free managed resources.

 End If

 ' Insert code to free unmanaged resources.

 End If

 MyBase.Dispose(disposing)

End Sub

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic) https://msdn.microsoft.com/en-us/library/hks5e2k6(d=printer).aspx

6 of 6 02.09.2016 18:08

Interaction.CreateObject Method (String, 
String)

Creates and returns a reference to a COM object. CreateObject cannot be used to create instances of classes in Visual Basic

unless those classes are explicitly exposed as COM components.

Namespace: Microsoft.VisualBasic

Assembly: Microsoft.VisualBasic (in Microsoft.VisualBasic.dll)

Syntax

Parameters

ProgId

Type: System.String

Required. String. The program ID of the object to create.

ServerName

Type: System.String

Optional. String. The name of the network server where the object will be created. If ServerName is an empty string

(""), the local computer is used.

Return Value

Type: System.Object

Creates and returns a reference to a COM object. CreateObject cannot be used to create instances of classes in Visual

Basic unless those classes are explicitly exposed as COM components.

Exceptions

.NET Framework (current version)

<HostProtectionAttribute(SecurityAction.LinkDemand, Resources :=

HostProtectionResource.ExternalProcessMgmt)>

<SecurityPermissionAttribute(SecurityAction.Demand, Flags :=

SecurityPermissionFlag.UnmanagedCode)>

Public Shared Function CreateObject (

ProgId As String,

ServerName As String

) As Object

VB

Interaction.CreateObject Method (String, String) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/microsoft.visualbasic.interaction...

1 of 5 02.09.2016 18:08

Exception Condition

Exception ProgId not found or not supplied

-or-

ServerName fails the DnsValidateName function, most likely because it is longer than 63

characters or contains an invalid character.

Exception Server is unavailable

FileNotFoundException No object of the specified type exists

Remarks
To create an instance of a COM component, assign the object returned by CreateObject to an object variable:

The type of object variable you use to store the returned object can affect your application's performance. Declaring an

object variable with the As Object clause creates a variable that can contain a reference to any type of object. However,

access to the object through that variable is late-bound, that is, the binding occurs when your program runs. There are

many reasons you should avoid late binding, including slower application performance.

You can create an object variable that results in early binding—that is, binding when the program is compiled. To do so,

add a reference to the type library for your object from the COM tab of the Add Reference dialog box on the Project

menu. Then declare the object variable of the specific type of your object. In most cases, it is more efficient to use the Dim

statement and a primary interop assembly to create objects than it is to use the CreateObject function.

Interacting with Unmanaged Code

Another issue is that COM objects use unmanaged code — code without the benefit of the common language runtime.

There is a fair degree of complexity involved in mixing the managed code of Visual Basic with unmanaged code from

COM. When you add a reference to a COM object, Visual Basic searches for a primary interop assembly (PIA) for that

library; if it finds one, then it uses it. If it does not find a PIA, then it creates an interoperability assembly that contains

local interoperability classes for each class in the COM library. For more information, see COM Interoperability in .NET

Framework Applications (Visual Basic).

You should generally use strongly bound objects and primary interop assemblies whenever possible. The examples

below use the CreateObject function with Microsoft Office objects for demonstration purposes only. However, these

objects are easier to use and more reliable when used with the appropriate primary interop assembly.

Sub CreateADODB()

Dim adoApp As Object

 adoApp = CreateObject("ADODB.Connection")

End Sub

VB

Interaction.CreateObject Method (String, String) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/microsoft.visualbasic.interaction...

2 of 5 02.09.2016 18:08

Creating an Object on a Remote Computer

You can create an object on a remote networked computer by passing the name of the computer to the ServerName

argument of the CreateObject function. That name is the same as the Machine Name portion of a share name: for a

share named "\\MyServer\Public," ServerName is "MyServer."

Note

Refer to COM documentation (see Microsoft Developer Network) for additional information on making an

application accessible on a remote networked computer. You may need to add a registry key for your application.

The following code returns the version number of an instance of Excel running on a remote computer named

MyServer:

If the remote server name is incorrect, or if it is unavailable, a run-time error occurs.

Note

Use CreateObject when there is no current instance of the object. If an instance of the object is already running, a

new instance is started, and an object of the specified type is created. To use the current instance, or to start the

application and have it load a file, use the GetObject function. If an object has registered itself as a single-instance

object, only one instance of the object is created, no matter how many times CreateObject is executed.

Creating Framework Objects

Sub CreateRemoteExcelObj()

Dim xlApp As Object

' Replace string "\\MyServer" with name of the remote computer.

 xlApp = CreateObject("Excel.Application", "\\MyServer")

 MsgBox(xlApp.Version)

End Sub

VB

Interaction.CreateObject Method (String, String) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/microsoft.visualbasic.interaction...

3 of 5 02.09.2016 18:08

You can use the CreateObject function only to create a COM object. While there is no exact equivalent mechanism for

creating a .NET Framework object, the Activator in the System namespace contains methods to create local or remote

objects. In particular, the CreateInstance method or the CreateInstanceFrom method might be useful.

 Security Note

The CreateObject function requires unmanaged code permission, which might affect its execution in partial-trust

situations. For more information, see SecurityPermission and Code Access Permissions.

Examples
The following example uses the CreateObject function to create a Microsoft Excel worksheet and saves the worksheet to

a file. To use this example, Excel must be installed on the computer where this program runs. Also, you must add a

reference to the type library from the COM tab of the Add Reference dialog box on the Project menu. The name of the

type library varies depending on the version of Excel installed on your computer. For example, the type library for

Microsoft Excel 2002 is named Microsoft Excel 10.0 Object Library.

Version Information
.NET Framework

Available since 1.1

Sub TestExcel()

Dim xlApp As Microsoft.Office.Interop.Excel.Application

Dim xlBook As Microsoft.Office.Interop.Excel.Workbook

Dim xlSheet As Microsoft.Office.Interop.Excel.Worksheet

 xlApp = CType(CreateObject("Excel.Application"),

 Microsoft.Office.Interop.Excel.Application)

 xlBook = CType(xlApp.Workbooks.Add,

 Microsoft.Office.Interop.Excel.Workbook)

 xlSheet = CType(xlBook.Worksheets(1),

 Microsoft.Office.Interop.Excel.Worksheet)

' The following statement puts text in the second row of the sheet.

 xlSheet.Cells(2, 2) = "This is column B row 2"

' The following statement shows the sheet.

 xlSheet.Application.Visible = True

' The following statement saves the sheet to the C:\Test.xls directory.

 xlSheet.SaveAs("C:\Test.xls")

' Optionally, you can call xlApp.Quit to close the workbook.

End Sub

VB

Interaction.CreateObject Method (String, String) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/microsoft.visualbasic.interaction...

4 of 5 02.09.2016 18:08

See Also
GetObject

Exception

FileNotFoundException

Activator

CreateInstance

CreateInstanceFrom

Interaction Class

Microsoft.VisualBasic Namespace

Dim Statement (Visual Basic)

Declare Statement

COM Interoperability in .NET Framework Applications (Visual Basic)

Interoperating with Unmanaged Code

Return to top

© 2016 Microsoft

Interaction.CreateObject Method (String, String) (Microsoft.VisualBasic) https://msdn.microsoft.com/en-us/library/microsoft.visualbasic.interaction...

5 of 5 02.09.2016 18:08

DynamicObject Class

Provides a base class for specifying dynamic behavior at run time. This class must be inherited from; you cannot instantiate it

directly.

Namespace: System.Dynamic

Assembly: System.Core (in System.Core.dll)

Inheritance Hierarchy
System.Object

  System.Dynamic.DynamicObject

    System.Windows.Interop.DynamicScriptObject

Syntax

Constructors

Name Description

DynamicObject() Enables derived types to initialize a new instance of the DynamicObject type.

Methods

Name Description

Equals(Object) Determines whether the specified object is equal to

the current object.(Inherited from Object.)

.NET Framework (current version)

<SerializableAttribute>

Public Class DynamicObject

Implements IDynamicMetaObjectProvider

VB

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

1 of 7 02.09.2016 23:52

Finalize() Allows an object to try to free resources and

perform other cleanup operations before it is

reclaimed by garbage collection.(Inherited from

Object.)

GetDynamicMemberNames() Returns the enumeration of all dynamic member

names.

GetHashCode() Serves as the default hash function. (Inherited from

Object.)

GetMetaObject(Expression) Provides a DynamicMetaObject that dispatches to

the dynamic virtual methods. The object can be

encapsulated inside another DynamicMetaObject to

provide custom behavior for individual actions. This

method supports the Dynamic Language Runtime

infrastructure for language implementers and it is

not intended to be used directly from your code.

GetType() Gets the Type of the current instance.(Inherited from

Object.)

MemberwiseClone() Creates a shallow copy of the current Object.

(Inherited from Object.)

ToString() Returns a string that represents the current object.

(Inherited from Object.)

TryBinaryOperation(BinaryOperationBinder, 

Object, Object)

Provides implementation for binary operations.

Classes derived from the DynamicObject class can

override this method to specify dynamic behavior

for operations such as addition and multiplication.

TryConvert(ConvertBinder, Object) Provides implementation for type conversion

operations. Classes derived from the DynamicObject

class can override this method to specify dynamic

behavior for operations that convert an object from

one type to another.

TryCreateInstance(CreateInstanceBinder, 

Object(), Object)

Provides the implementation for operations that

initialize a new instance of a dynamic object. This

method is not intended for use in C# or Visual Basic.

TryDeleteIndex(DeleteIndexBinder, Object()) Provides the implementation for operations that

delete an object by index. This method is not

intended for use in C# or Visual Basic.

TryDeleteMember(DeleteMemberBinder) Provides the implementation for operations that

delete an object member. This method is not

intended for use in C# or Visual Basic.

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

2 of 7 02.09.2016 23:52

TryGetIndex(GetIndexBinder, Object(), 

Object)

Provides the implementation for operations that get

a value by index. Classes derived from the

DynamicObject class can override this method to

specify dynamic behavior for indexing operations.

TryGetMember(GetMemberBinder, Object) Provides the implementation for operations that get

member values. Classes derived from the

DynamicObject class can override this method to

specify dynamic behavior for operations such as

getting a value for a property.

TryInvoke(InvokeBinder, Object(), Object) Provides the implementation for operations that

invoke an object. Classes derived from the

DynamicObject class can override this method to

specify dynamic behavior for operations such as

invoking an object or a delegate.

TryInvokeMember(InvokeMemberBinder, 

Object(), Object)

Provides the implementation for operations that

invoke a member. Classes derived from the

DynamicObject class can override this method to

specify dynamic behavior for operations such as

calling a method.

TrySetIndex(SetIndexBinder, Object(), Object) Provides the implementation for operations that set

a value by index. Classes derived from the

DynamicObject class can override this method to

specify dynamic behavior for operations that access

objects by a specified index.

TrySetMember(SetMemberBinder, Object) Provides the implementation for operations that set

member values. Classes derived from the

DynamicObject class can override this method to

specify dynamic behavior for operations such as

setting a value for a property.

TryUnaryOperation(UnaryOperationBinder, 

Object)

Provides implementation for unary operations.

Classes derived from the DynamicObject class can

override this method to specify dynamic behavior

for operations such as negation, increment, or

decrement.

Remarks
The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to

perform those operations. For example, you can define what happens when you try to get or set an object property, call a

method, or perform standard mathematical operations such as addition and multiplication.

This class can be useful if you want to create a more convenient protocol for a library. For example, if users of your library

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

3 of 7 02.09.2016 23:52

have to use syntax like Scriptobj.SetProperty("Count", 1), you can provide the ability to use much simpler syntax,

like scriptobj.Count = 1.

You cannot directly create an instance of the DynamicObject class. To implement the dynamic behavior, you may want

to inherit from the DynamicObject class and override necessary methods. For example, if you need only operations for

setting and getting properties, you can override just the TrySetMember and TryGetMember methods.

In C#, to enable dynamic behavior for instances of classes derived from the DynamicObject class, you must use the

dynamic keyword. For more information, see Using Type dynamic (C# Programming Guide).

In Visual Basic, dynamic operations are supported by late binding. For more information, see Early and Late Binding

(Visual Basic).

The following code example demonstrates how to create an instance of a class that is derived from the DynamicObject

class.

You can also add your own members to classes derived from the DynamicObject class. If your class defines properties

and also overrides the TrySetMember method, the dynamic language runtime (DLR) first uses the language binder to look

for a static definition of a property in the class. If there is no such property, the DLR calls the TrySetMember method.

The DynamicObject class implements the DLR interface IDynamicMetaObjectProvider, which enables you to share

instances of the DynamicObject class between languages that support the DLR interoperability model. For example, you

can create an instance of the DynamicObject class in C# and then pass it to an IronPython function. For more

information, see Dynamic Language Runtime Overview and documentation on the CodePlex Web site.

Note

If you have a simple scenario in which you need an object that can only add and remove members at run time but that

does not need to define specific operations and does not have static members, use the ExpandoObject class.

If you have a more advanced scenario in which you need to define how dynamic objects participate in the

interoperability protocol, or you need to manage DLR fast dynamic dispatch caching, create your own implementation

of the IDynamicMetaObjectProvider interface.

Examples
Assume that you want to provide alternative syntax for accessing values in a dictionary, so that instead of writing

sampleDictionary["Text"] = "Sample text" (sampleDictionary("Text") = "Sample text" in Visual Basic),

you can write sampleDictionary.Text = "Sample text". Also, you want this syntax to be case-insensitive, so that

sampleDictionary.Text is equivalent to sampleDictionary.text.

Public Class SampleDynamicObject

Inherits DynamicObject

'...

Dim sampleObject As Object = New SampleDynamicObject()

VB

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

4 of 7 02.09.2016 23:52

The following code example demonstrates the DynamicDictionary class, which is derived from the DynamicObject

class. The DynamicDictionary class contains an object of the Dictionary<string, object> type (Dictionary(Of

String, Object) in Visual Basic) to store the key-value pairs, and overrides the TrySetMember and TryGetMember

methods to support the new syntax. It also provides a Count property, which shows how many dynamic properties the

dictionary contains.

' The class derived from DynamicObject.

Public Class DynamicDictionary

Inherits DynamicObject

' The inner dictionary.

Dim dictionary As New Dictionary(Of String, Object)

' This property returns the number of elements

' in the inner dictionary.

ReadOnly Property Count As Integer

Get

Return dictionary.Count

End Get

End Property

' If you try to get a value of a property that is

' not defined in the class, this method is called.

Public Overrides Function TryGetMember(

ByVal binder As System.Dynamic.GetMemberBinder,

ByRef result As Object) As Boolean

' Converting the property name to lowercase

' so that property names become case‐insensitive.

Dim name As String = binder.Name.ToLower()

' If the property name is found in a dictionary,

' set the result parameter to the property value and return true.

' Otherwise, return false.

Return dictionary.TryGetValue(name, result)

End Function

Public Overrides Function TrySetMember(

ByVal binder As System.Dynamic.SetMemberBinder,

ByVal value As Object) As Boolean

' Converting the property name to lowercase

' so that property names become case‐insensitive.

 dictionary(binder.Name.ToLower()) = value

' You can always add a value to a dictionary,

' so this method always returns true.

Return True

End Function

VB

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

5 of 7 02.09.2016 23:52

For more examples, see Creating Wrappers with DynamicObject on the C# Frequently Asked Questions blog.

Version Information
Universal Windows Platform

Available since 8

.NET Framework

Available since 4.0

Portable Class Library

Supported in: portable .NET platforms

Silverlight

Available since 4.0

Windows Phone Silverlight

Available since 8.0

Windows Phone

Available since 8.1

End Class

Sub Main()

' Creating a dynamic dictionary.

Dim person As Object = New DynamicDictionary()

' Adding new dynamic properties.

' The TrySetMember method is called.

 person.FirstName = "Ellen"

 person.LastName = "Adams"

' Getting values of the dynamic properties.

' The TryGetMember method is called.

' Note that property names are now case‐insensitive,

' although they are case‐sensitive in C#.

 Console.WriteLine(person.firstname & " " & person.lastname)

' Getting the value of the Count property.

' The TryGetMember is not called,

' because the property is defined in the class.

 Console.WriteLine("Number of dynamic properties:" & person.Count)

' The following statement throws an exception at run time.

' There is no "address" property,

' so the TryGetMember method returns false and this causes

' a MissingMemberException.

' Console.WriteLine(person.address)

End Sub

' This examples has the following output:

' Ellen Adams

' Number of dynamic properties: 2

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

6 of 7 02.09.2016 23:52

Thread Safety
Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed

to be thread safe.

See Also
System.Dynamic Namespace

Return to top

© 2016 Microsoft

DynamicObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.dynamicobject(...

7 of 7 02.09.2016 23:52

ExpandoObject Class

Represents an object whose members can be dynamically added and removed at run time.

Namespace: System.Dynamic

Assembly: System.Core (in System.Core.dll)

Inheritance Hierarchy
System.Object

  System.Dynamic.ExpandoObject

Syntax

Constructors

Name Description

ExpandoObject() Initializes a new ExpandoObject that does not have members.

Methods

Name Description

Equals(Object) Determines whether the specified object is equal to the current object.(Inherited

from Object.)

.NET Framework (current version)

Public NotInheritable Class ExpandoObject

Implements IDynamicMetaObjectProvider, IDictionary(Of String, Object),

ICollection(Of KeyValuePair(Of String, Object)), IEnumerable(Of KeyValuePair(Of 

String, Object)),

IEnumerable, INotifyPropertyChanged

VB

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

1 of 20 02.09.2016 23:54

GetHashCode() Serves as the default hash function. (Inherited from Object.)

GetType() Gets the Type of the current instance.(Inherited from Object.)

ToString() Returns a string that represents the current object.(Inherited from Object.)

Explicit Interface Implementations

Name Description

INotifyPropertyChanged.PropertyChanged Occurs when a property value

changes.

ICollection(Of KeyValuePair(Of String, 

Object)).Add(KeyValuePair(Of String, Object))

Adds the specified value to the

ICollection(Of T) that has the

specified key.

ICollection(Of KeyValuePair(Of String, Object)).Clear() Removes all items from the

collection.

ICollection(Of KeyValuePair(Of String, 

Object)).Contains(KeyValuePair(Of String, Object))

Determines whether the

ICollection(Of T) contains a specific

key and value.

ICollection(Of KeyValuePair(Of String, 

Object)).CopyTo(KeyValuePair(Of String, Object)(), Int32)

Copies the elements of the

ICollection(Of T) to an array of type

KeyValuePair(Of TKey, TValue),

starting at the specified array index.

ICollection(Of KeyValuePair(Of String, 

Object)).Remove(KeyValuePair(Of String, Object))

Removes a key and value from the

collection.

IDictionary(Of String, Object).Add(String, Object) Adds the specified key and value to

the dictionary.

IDictionary(Of String, Object).ContainsKey(String) Determines whether the dictionary

contains the specified key.

IDictionary(Of String, Object).Remove(String) Removes the element that has the

specified key from the IDictionary.

IDictionary(Of String, Object).TryGetValue(String, Object) Gets the value associated with the

specified key.

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

2 of 20 02.09.2016 23:54

IEnumerable(Of KeyValuePair(Of String, 

Object)).GetEnumerator()

Returns an enumerator that iterates

through the collection.

IEnumerable.GetEnumerator() Returns an enumerator that iterates

through the collection.

IDynamicMetaObjectProvider.GetMetaObject(Expression) The provided MetaObject will

dispatch to the dynamic virtual

methods. The object can be

encapsulated inside another

MetaObject to provide custom

behavior for individual actions.

ICollection(Of KeyValuePair(Of String, Object)).Count Gets the number of elements in the

ICollection(Of T).

ICollection(Of KeyValuePair(Of String, Object)).IsReadOnly Gets a value indicating whether the

ICollection(Of T) is read-only.

IDictionary(Of String, Object).Item(String) Gets or sets the element that has the

specified key.

IDictionary(Of String, Object).Keys Gets an ICollection(Of T) that

contains the keys of the

IDictionary(Of TKey, TValue).

IDictionary(Of String, Object).Values Gets an ICollection(Of T) that

contains the values in the

IDictionary(Of TKey, TValue).

Extension Methods

Name Description

Aggregate(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

KeyValuePair(Of String, Object), 

KeyValuePair(Of String, Object)))

Overloaded. Applies an accumulator function

over a sequence.(Defined by Enumerable.)

Aggregate(Of KeyValuePair(Of String, 

Object), TAccumulate)(TAccumulate, Func(Of 

TAccumulate, KeyValuePair(Of String, Object), 

TAccumulate))

Overloaded. Applies an accumulator function

over a sequence. The specified seed value is used

as the initial accumulator value.(Defined by

Enumerable.)

Aggregate(Of KeyValuePair(Of String, 

Object), TAccumulate, TResult)(TAccumulate, 

Overloaded. Applies an accumulator function

over a sequence. The specified seed value is used

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

3 of 20 02.09.2016 23:54

Func(Of TAccumulate, KeyValuePair(Of String, 

Object), TAccumulate), Func(Of TAccumulate, 

TResult))

as the initial accumulator value, and the specified

function is used to select the result value.(Defined

by Enumerable.)

All(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Determines whether all elements of a sequence

satisfy a condition.(Defined by Enumerable.)

Any(Of KeyValuePair(Of String, Object))() Overloaded. Determines whether a sequence

contains any elements.(Defined by Enumerable.)

Any(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Determines whether any element of a

sequence satisfies a condition.(Defined by

Enumerable.)

AsEnumerable(Of KeyValuePair(Of String, 

Object))()

Returns the input typed as IEnumerable(Of 

T).(Defined by Enumerable.)

AsParallel() Overloaded. Enables parallelization of a query.

(Defined by ParallelEnumerable.)

AsParallel(Of KeyValuePair(Of String, Object))() Overloaded. Enables parallelization of a query.

(Defined by ParallelEnumerable.)

AsQueryable() Overloaded. Converts an IEnumerable to an

IQueryable.(Defined by Queryable.)

AsQueryable(Of KeyValuePair(Of String, 

Object))()

Overloaded. Converts a generic IEnumerable(Of 

T) to a generic IQueryable(Of T).(Defined by

Queryable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Decimal))

Overloaded. Computes the average of a sequence

of Decimal values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Double))

Overloaded. Computes the average of a sequence

of Double values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32))

Overloaded. Computes the average of a sequence

of Int32 values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int64))

Overloaded. Computes the average of a sequence

of Int64 values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

4 of 20 02.09.2016 23:54

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Decimal)))

Overloaded. Computes the average of a sequence

of nullable Decimal values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Double)))

Overloaded. Computes the average of a sequence

of nullable Double values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int32)))

Overloaded. Computes the average of a sequence

of nullable Int32 values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int64)))

Overloaded. Computes the average of a sequence

of nullable Int64 values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Single)))

Overloaded. Computes the average of a sequence

of nullable Single values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Average(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Single))

Overloaded. Computes the average of a sequence

of Single values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Cast(Of TResult)() Casts the elements of an IEnumerable to the

specified type.(Defined by Enumerable.)

Concat(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)))

Concatenates two sequences.(Defined by

Enumerable.)

Contains(Of KeyValuePair(Of String, Object))

(KeyValuePair(Of String, Object))

Overloaded. Determines whether a sequence

contains a specified element by using the default

equality comparer.(Defined by Enumerable.)

Contains(Of KeyValuePair(Of String, Object))

(KeyValuePair(Of String, Object), 

IEqualityComparer(Of KeyValuePair(Of String, 

Object)))

Overloaded. Determines whether a sequence

contains a specified element by using a specified

IEqualityComparer(Of T).(Defined by

Enumerable.)

Count(Of KeyValuePair(Of String, Object))() Overloaded. Returns the number of elements in a

sequence.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

5 of 20 02.09.2016 23:54

Count(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Returns a number that represents

how many elements in the specified sequence

satisfy a condition.(Defined by Enumerable.)

DefaultIfEmpty(Of KeyValuePair(Of String, 

Object))()

Overloaded. Returns the elements of the specified

sequence or the type parameter's default value in

a singleton collection if the sequence is empty.

(Defined by Enumerable.)

DefaultIfEmpty(Of KeyValuePair(Of String, 

Object))(KeyValuePair(Of String, Object))

Overloaded. Returns the elements of the specified

sequence or the specified value in a singleton

collection if the sequence is empty.(Defined by

Enumerable.)

Distinct(Of KeyValuePair(Of String, Object))() Overloaded. Returns distinct elements from a

sequence by using the default equality comparer

to compare values.(Defined by Enumerable.)

Distinct(Of KeyValuePair(Of String, Object))

(IEqualityComparer(Of KeyValuePair(Of String, 

Object)))

Overloaded. Returns distinct elements from a

sequence by using a specified

IEqualityComparer(Of T) to compare values.

(Defined by Enumerable.)

ElementAt(Of KeyValuePair(Of String, Object))

(Int32)

Returns the element at a specified index in a

sequence.(Defined by Enumerable.)

ElementAtOrDefault(Of KeyValuePair(Of 

String, Object))(Int32)

Returns the element at a specified index in a

sequence or a default value if the index is out of

range.(Defined by Enumerable.)

Except(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)))

Overloaded. Produces the set difference of two

sequences by using the default equality comparer

to compare values.(Defined by Enumerable.)

Except(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)), IEqualityComparer(Of 

KeyValuePair(Of String, Object)))

Overloaded. Produces the set difference of two

sequences by using the specified

IEqualityComparer(Of T) to compare values.

(Defined by Enumerable.)

First(Of KeyValuePair(Of String, Object))() Overloaded. Returns the first element of a

sequence.(Defined by Enumerable.)

First(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Returns the first element in a

sequence that satisfies a specified condition.

(Defined by Enumerable.)

FirstOrDefault(Of KeyValuePair(Of String, 

Object))()

Overloaded. Returns the first element of a

sequence, or a default value if the sequence

contains no elements.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

6 of 20 02.09.2016 23:54

FirstOrDefault(Of KeyValuePair(Of String, 

Object))(Func(Of KeyValuePair(Of String, 

Object), Boolean))

Overloaded. Returns the first element of the

sequence that satisfies a condition or a default

value if no such element is found.(Defined by

Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey)(Func(Of KeyValuePair(Of String, 

Object), TKey))

Overloaded. Groups the elements of a sequence

according to a specified key selector function.

(Defined by Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey)(Func(Of KeyValuePair(Of String, 

Object), TKey), IEqualityComparer(Of TKey))

Overloaded. Groups the elements of a sequence

according to a specified key selector function and

compares the keys by using a specified comparer.

(Defined by Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey, TElement)(Func(Of KeyValuePair(Of 

String, Object), TKey), Func(Of 

KeyValuePair(Of String, Object), TElement))

Overloaded. Groups the elements of a sequence

according to a specified key selector function and

projects the elements for each group by using a

specified function.(Defined by Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey, TElement)(Func(Of KeyValuePair(Of 

String, Object), TKey), Func(Of 

KeyValuePair(Of String, Object), TElement), 

IEqualityComparer(Of TKey))

Overloaded. Groups the elements of a sequence

according to a key selector function. The keys are

compared by using a comparer and each group's

elements are projected by using a specified

function.(Defined by Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey, TResult)(Func(Of KeyValuePair(Of 

String, Object), TKey), Func(Of TKey, 

IEnumerable(Of KeyValuePair(Of String, 

Object)), TResult))

Overloaded. Groups the elements of a sequence

according to a specified key selector function and

creates a result value from each group and its

key.(Defined by Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey, TResult)(Func(Of KeyValuePair(Of 

String, Object), TKey), Func(Of TKey, 

IEnumerable(Of KeyValuePair(Of String, 

Object)), TResult), IEqualityComparer(Of TKey))

Overloaded. Groups the elements of a sequence

according to a specified key selector function and

creates a result value from each group and its key.

The keys are compared by using a specified

comparer.(Defined by Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey, TElement, TResult)(Func(Of 

KeyValuePair(Of String, Object), TKey), 

Func(Of KeyValuePair(Of String, Object), 

TElement), Func(Of TKey, IEnumerable(Of 

TElement), TResult))

Overloaded. Groups the elements of a sequence

according to a specified key selector function and

creates a result value from each group and its key.

The elements of each group are projected by

using a specified function.(Defined by

Enumerable.)

GroupBy(Of KeyValuePair(Of String, Object), 

TKey, TElement, TResult)(Func(Of 

KeyValuePair(Of String, Object), TKey), 

Func(Of KeyValuePair(Of String, Object), 

TElement), Func(Of TKey, IEnumerable(Of 

TElement), TResult), IEqualityComparer(Of 

TKey))

Overloaded. Groups the elements of a sequence

according to a specified key selector function and

creates a result value from each group and its key.

Key values are compared by using a specified

comparer, and the elements of each group are

projected by using a specified function.(Defined

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

7 of 20 02.09.2016 23:54

by Enumerable.)

GroupJoin(Of KeyValuePair(Of String, Object), 

TInner, TKey, TResult)(IEnumerable(Of TInner), 

Func(Of KeyValuePair(Of String, Object), 

TKey), Func(Of TInner, TKey), Func(Of 

KeyValuePair(Of String, Object), 

IEnumerable(Of TInner), TResult))

Overloaded. Correlates the elements of two

sequences based on equality of keys and groups

the results. The default equality comparer is used

to compare keys.(Defined by Enumerable.)

GroupJoin(Of KeyValuePair(Of String, Object), 

TInner, TKey, TResult)(IEnumerable(Of TInner), 

Func(Of KeyValuePair(Of String, Object), 

TKey), Func(Of TInner, TKey), Func(Of 

KeyValuePair(Of String, Object), 

IEnumerable(Of TInner), TResult), 

IEqualityComparer(Of TKey))

Overloaded. Correlates the elements of two

sequences based on key equality and groups the

results. A specified IEqualityComparer(Of T) is

used to compare keys.(Defined by Enumerable.)

Intersect(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)))

Overloaded. Produces the set intersection of two

sequences by using the default equality comparer

to compare values.(Defined by Enumerable.)

Intersect(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)), IEqualityComparer(Of 

KeyValuePair(Of String, Object)))

Overloaded. Produces the set intersection of two

sequences by using the specified

IEqualityComparer(Of T) to compare values.

(Defined by Enumerable.)

Join(Of KeyValuePair(Of String, Object), 

TInner, TKey, TResult)(IEnumerable(Of TInner), 

Func(Of KeyValuePair(Of String, Object), 

TKey), Func(Of TInner, TKey), Func(Of 

KeyValuePair(Of String, Object), TInner, 

TResult))

Overloaded. Correlates the elements of two

sequences based on matching keys. The default

equality comparer is used to compare

keys.(Defined by Enumerable.)

Join(Of KeyValuePair(Of String, Object), 

TInner, TKey, TResult)(IEnumerable(Of TInner), 

Func(Of KeyValuePair(Of String, Object), 

TKey), Func(Of TInner, TKey), Func(Of 

KeyValuePair(Of String, Object), TInner, 

TResult), IEqualityComparer(Of TKey))

Overloaded. Correlates the elements of two

sequences based on matching keys. A specified

IEqualityComparer(Of T) is used to compare

keys.(Defined by Enumerable.)

Last(Of KeyValuePair(Of String, Object))() Overloaded. Returns the last element of a

sequence.(Defined by Enumerable.)

Last(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Returns the last element of a

sequence that satisfies a specified condition.

(Defined by Enumerable.)

LastOrDefault(Of KeyValuePair(Of String, 

Object))()

Overloaded. Returns the last element of a

sequence, or a default value if the sequence

contains no elements.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

8 of 20 02.09.2016 23:54

LastOrDefault(Of KeyValuePair(Of String, 

Object))(Func(Of KeyValuePair(Of String, 

Object), Boolean))

Overloaded. Returns the last element of a

sequence that satisfies a condition or a default

value if no such element is found.(Defined by

Enumerable.)

LongCount(Of KeyValuePair(Of String, 

Object))()

Overloaded. Returns an Int64 that represents the

total number of elements in a sequence.(Defined

by Enumerable.)

LongCount(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Returns an Int64 that represents how

many elements in a sequence satisfy a condition.

(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))() Overloaded. Returns the maximum value in a

generic sequence.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Decimal))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

Decimal value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Double))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

Double value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

Int32 value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int64))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

Int64 value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Decimal)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

nullable Decimal value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Double)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

nullable Double value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int32)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

nullable Int32 value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int64)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

nullable Int64 value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

9 of 20 02.09.2016 23:54

Nullable(Of Single))) nullable Single value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Single))

Overloaded. Invokes a transform function on each

element of a sequence and returns the maximum

Single value.(Defined by Enumerable.)

Max(Of KeyValuePair(Of String, Object), 

TResult)(Func(Of KeyValuePair(Of String, 

Object), TResult))

Overloaded. Invokes a transform function on each

element of a generic sequence and returns the

maximum resulting value.(Defined by

Enumerable.)

Min(Of KeyValuePair(Of String, Object))() Overloaded. Returns the minimum value in a

generic sequence.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Decimal))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

Decimal value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Double))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

Double value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

Int32 value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int64))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

Int64 value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Decimal)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

nullable Decimal value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Double)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

nullable Double value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int32)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

nullable Int32 value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int64)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

nullable Int64 value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Single)))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

nullable Single value.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

10 of 20 02.09.2016 23:54

Min(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Single))

Overloaded. Invokes a transform function on each

element of a sequence and returns the minimum

Single value.(Defined by Enumerable.)

Min(Of KeyValuePair(Of String, Object), 

TResult)(Func(Of KeyValuePair(Of String, 

Object), TResult))

Overloaded. Invokes a transform function on each

element of a generic sequence and returns the

minimum resulting value.(Defined by

Enumerable.)

OfType(Of TResult)() Filters the elements of an IEnumerable based on a

specified type.(Defined by Enumerable.)

OrderBy(Of KeyValuePair(Of String, Object), 

TKey)(Func(Of KeyValuePair(Of String, 

Object), TKey))

Overloaded. Sorts the elements of a sequence in

ascending order according to a key.(Defined by

Enumerable.)

OrderBy(Of KeyValuePair(Of String, Object), 

TKey)(Func(Of KeyValuePair(Of String, 

Object), TKey), IComparer(Of TKey))

Overloaded. Sorts the elements of a sequence in

ascending order by using a specified comparer.

(Defined by Enumerable.)

OrderByDescending(Of KeyValuePair(Of 

String, Object), TKey)(Func(Of 

KeyValuePair(Of String, Object), TKey))

Overloaded. Sorts the elements of a sequence in

descending order according to a key.(Defined by

Enumerable.)

OrderByDescending(Of KeyValuePair(Of 

String, Object), TKey)(Func(Of 

KeyValuePair(Of String, Object), TKey), 

IComparer(Of TKey))

Overloaded. Sorts the elements of a sequence in

descending order by using a specified comparer.

(Defined by Enumerable.)

Reverse(Of KeyValuePair(Of String, Object))() Inverts the order of the elements in a sequence.

(Defined by Enumerable.)

Select(Of KeyValuePair(Of String, Object), 

TResult)(Func(Of KeyValuePair(Of String, 

Object), TResult))

Overloaded. Projects each element of a sequence

into a new form.(Defined by Enumerable.)

Select(Of KeyValuePair(Of String, Object), 

TResult)(Func(Of KeyValuePair(Of String, 

Object), Int32, TResult))

Overloaded. Projects each element of a sequence

into a new form by incorporating the element's

index.(Defined by Enumerable.)

SelectMany(Of KeyValuePair(Of String, 

Object), TResult)(Func(Of KeyValuePair(Of 

String, Object), IEnumerable(Of TResult)))

Overloaded. Projects each element of a sequence

to an IEnumerable(Of T) and flattens the resulting

sequences into one sequence.(Defined by

Enumerable.)

SelectMany(Of KeyValuePair(Of String, 

Object), TResult)(Func(Of KeyValuePair(Of 

String, Object), Int32, IEnumerable(Of 

TResult)))

Overloaded. Projects each element of a sequence

to an IEnumerable(Of T), and flattens the

resulting sequences into one sequence. The index

of each source element is used in the projected

form of that element.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

11 of 20 02.09.2016 23:54

SelectMany(Of KeyValuePair(Of String, 

Object), TCollection, TResult)(Func(Of 

KeyValuePair(Of String, Object), 

IEnumerable(Of TCollection)), Func(Of 

KeyValuePair(Of String, Object), TCollection, 

TResult))

Overloaded. Projects each element of a sequence

to an IEnumerable(Of T), flattens the resulting

sequences into one sequence, and invokes a result

selector function on each element therein.

(Defined by Enumerable.)

SelectMany(Of KeyValuePair(Of String, 

Object), TCollection, TResult)(Func(Of 

KeyValuePair(Of String, Object), Int32, 

IEnumerable(Of TCollection)), Func(Of 

KeyValuePair(Of String, Object), TCollection, 

TResult))

Overloaded. Projects each element of a sequence

to an IEnumerable(Of T), flattens the resulting

sequences into one sequence, and invokes a result

selector function on each element therein. The

index of each source element is used in the

intermediate projected form of that element.

(Defined by Enumerable.)

SequenceEqual(Of KeyValuePair(Of String, 

Object))(IEnumerable(Of KeyValuePair(Of 

String, Object)))

Overloaded. Determines whether two sequences

are equal by comparing the elements by using the

default equality comparer for their type.(Defined

by Enumerable.)

SequenceEqual(Of KeyValuePair(Of String, 

Object))(IEnumerable(Of KeyValuePair(Of 

String, Object)), IEqualityComparer(Of 

KeyValuePair(Of String, Object)))

Overloaded. Determines whether two sequences

are equal by comparing their elements by using a

specified IEqualityComparer(Of T).(Defined by

Enumerable.)

Single(Of KeyValuePair(Of String, Object))() Overloaded. Returns the only element of a

sequence, and throws an exception if there is not

exactly one element in the sequence.(Defined by

Enumerable.)

Single(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Returns the only element of a

sequence that satisfies a specified condition, and

throws an exception if more than one such

element exists.(Defined by Enumerable.)

SingleOrDefault(Of KeyValuePair(Of String, 

Object))()

Overloaded. Returns the only element of a

sequence, or a default value if the sequence is

empty; this method throws an exception if there is

more than one element in the sequence.(Defined

by Enumerable.)

SingleOrDefault(Of KeyValuePair(Of String, 

Object))(Func(Of KeyValuePair(Of String, 

Object), Boolean))

Overloaded. Returns the only element of a

sequence that satisfies a specified condition or a

default value if no such element exists; this

method throws an exception if more than one

element satisfies the condition.(Defined by

Enumerable.)

Skip(Of KeyValuePair(Of String, Object))(Int32) Bypasses a specified number of elements in a

sequence and then returns the remaining

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

12 of 20 02.09.2016 23:54

elements.(Defined by Enumerable.)

SkipWhile(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Bypasses elements in a sequence as

long as a specified condition is true and then

returns the remaining elements.(Defined by

Enumerable.)

SkipWhile(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32, Boolean))

Overloaded. Bypasses elements in a sequence as

long as a specified condition is true and then

returns the remaining elements. The element's

index is used in the logic of the predicate

function.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Decimal))

Overloaded. Computes the sum of the sequence

of Decimal values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Double))

Overloaded. Computes the sum of the sequence

of Double values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32))

Overloaded. Computes the sum of the sequence

of Int32 values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int64))

Overloaded. Computes the sum of the sequence

of Int64 values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Decimal)))

Overloaded. Computes the sum of the sequence

of nullable Decimal values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Double)))

Overloaded. Computes the sum of the sequence

of nullable Double values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Int32)))

Overloaded. Computes the sum of the sequence

of nullable Int32 values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Overloaded. Computes the sum of the sequence

of nullable Int64 values that are obtained by

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

13 of 20 02.09.2016 23:54

Nullable(Of Int64))) invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Nullable(Of Single)))

Overloaded. Computes the sum of the sequence

of nullable Single values that are obtained by

invoking a transform function on each element of

the input sequence.(Defined by Enumerable.)

Sum(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Single))

Overloaded. Computes the sum of the sequence

of Single values that are obtained by invoking a

transform function on each element of the input

sequence.(Defined by Enumerable.)

Take(Of KeyValuePair(Of String, Object))(Int32) Returns a specified number of contiguous

elements from the start of a sequence.(Defined by

Enumerable.)

TakeWhile(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Returns elements from a sequence as

long as a specified condition is true.(Defined by

Enumerable.)

TakeWhile(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32, Boolean))

Overloaded. Returns elements from a sequence as

long as a specified condition is true. The element's

index is used in the logic of the predicate

function.(Defined by Enumerable.)

ToArray(Of KeyValuePair(Of String, Object))() Creates an array from a IEnumerable(Of 

T).(Defined by Enumerable.)

ToDictionary(Of KeyValuePair(Of String, 

Object), TKey)(Func(Of KeyValuePair(Of 

String, Object), TKey))

Overloaded. Creates a Dictionary(Of TKey, 

TValue) from an IEnumerable(Of T) according to a

specified key selector function.(Defined by

Enumerable.)

ToDictionary(Of KeyValuePair(Of String, 

Object), TKey)(Func(Of KeyValuePair(Of 

String, Object), TKey), IEqualityComparer(Of 

TKey))

Overloaded. Creates a Dictionary(Of TKey, 

TValue) from an IEnumerable(Of T) according to a

specified key selector function and key comparer.

(Defined by Enumerable.)

ToDictionary(Of KeyValuePair(Of String, 

Object), TKey, TElement)(Func(Of 

KeyValuePair(Of String, Object), TKey), 

Func(Of KeyValuePair(Of String, Object), 

TElement))

Overloaded. Creates a Dictionary(Of TKey, 

TValue) from an IEnumerable(Of T) according to

specified key selector and element selector

functions.(Defined by Enumerable.)

ToDictionary(Of KeyValuePair(Of String, 

Object), TKey, TElement)(Func(Of 

KeyValuePair(Of String, Object), TKey), 

Func(Of KeyValuePair(Of String, Object), 

TElement), IEqualityComparer(Of TKey))

Overloaded. Creates a Dictionary(Of TKey, 

TValue) from an IEnumerable(Of T) according to a

specified key selector function, a comparer, and

an element selector function.(Defined by

Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

14 of 20 02.09.2016 23:54

ToList(Of KeyValuePair(Of String, Object))() Creates a List(Of T) from an IEnumerable(Of 

T).(Defined by Enumerable.)

ToLookup(Of KeyValuePair(Of String, Object), 

TKey)(Func(Of KeyValuePair(Of String, 

Object), TKey))

Overloaded. Creates a Lookup(Of TKey, 

TElement) from an IEnumerable(Of T) according

to a specified key selector function.(Defined by

Enumerable.)

ToLookup(Of KeyValuePair(Of String, Object), 

TKey)(Func(Of KeyValuePair(Of String, 

Object), TKey), IEqualityComparer(Of TKey))

Overloaded. Creates a Lookup(Of TKey, 

TElement) from an IEnumerable(Of T) according

to a specified key selector function and key

comparer.(Defined by Enumerable.)

ToLookup(Of KeyValuePair(Of String, Object), 

TKey, TElement)(Func(Of KeyValuePair(Of 

String, Object), TKey), Func(Of 

KeyValuePair(Of String, Object), TElement))

Overloaded. Creates a Lookup(Of TKey, 

TElement) from an IEnumerable(Of T) according

to specified key selector and element selector

functions.(Defined by Enumerable.)

ToLookup(Of KeyValuePair(Of String, Object), 

TKey, TElement)(Func(Of KeyValuePair(Of 

String, Object), TKey), Func(Of 

KeyValuePair(Of String, Object), TElement), 

IEqualityComparer(Of TKey))

Overloaded. Creates a Lookup(Of TKey, 

TElement) from an IEnumerable(Of T) according

to a specified key selector function, a comparer

and an element selector function.(Defined by

Enumerable.)

Union(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)))

Overloaded. Produces the set union of two

sequences by using the default equality comparer.

(Defined by Enumerable.)

Union(Of KeyValuePair(Of String, Object))

(IEnumerable(Of KeyValuePair(Of String, 

Object)), IEqualityComparer(Of 

KeyValuePair(Of String, Object)))

Overloaded. Produces the set union of two

sequences by using a specified

IEqualityComparer(Of T).(Defined by

Enumerable.)

Where(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Boolean))

Overloaded. Filters a sequence of values based on

a predicate.(Defined by Enumerable.)

Where(Of KeyValuePair(Of String, Object))

(Func(Of KeyValuePair(Of String, Object), 

Int32, Boolean))

Overloaded. Filters a sequence of values based on

a predicate. Each element's index is used in the

logic of the predicate function.(Defined by

Enumerable.)

Zip(Of KeyValuePair(Of String, Object), 

TSecond, TResult)(IEnumerable(Of TSecond), 

Func(Of KeyValuePair(Of String, Object), 

TSecond, TResult))

Applies a specified function to the corresponding

elements of two sequences, producing a sequence

of the results.(Defined by Enumerable.)

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

15 of 20 02.09.2016 23:54

Remarks
The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get

values of these members. This class supports dynamic binding, which enables you to use standard syntax like

sampleObject.sampleMember instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

The ExpandoObject class implements the standard Dynamic Language Runtime (DLR) interface

IDynamicMetaObjectProvider, which enables you to share instances of the ExpandoObject class between languages that

support the DLR interoperability model. For example, you can create an instance of the ExpandoObject class in C# and

then pass it to an IronPython function. For more information, see Dynamic Language Runtime Overview documentation

on the CodePlex Web site, and Introducing the ExpandoObject on the C# Frequently Asked Questions Web site.

The ExpandoObject class is an implementation of the dynamic object concept that enables getting, setting, and invoking

members. If you want to define types that have their own dynamic dispatch semantics, use the DynamicObject class. If you

want to define how dynamic objects participate in the interoperability protocol and manage DLR fast dynamic dispatch

caching, create your own implementation of the IDynamicMetaObjectProvider interface.

Creating an Instance

In C#, to enable late binding for an instance of the ExpandoObject class, you must use the dynamic keyword. For

more information, see Using Type dynamic (C# Programming Guide).

In Visual Basic, dynamic operations are supported by late binding. For more information, see Early and Late Binding

(Visual Basic).

The following code example demonstrates how to create an instance of the ExpandoObject class.

Adding New Members

You can add properties, methods, and events to instances of the ExpandoObject class.

The following code example demonstrates how to add a new property to an instance of the ExpandoObject class.

The methods represent lambda expressions that are stored as delegates, which can be invoked when they are needed.

The following code example demonstrates how to add a method that increments a value of the dynamic property.

Dim sampleObject As Object = New ExpandoObject()

sampleObject.Test = "Dynamic Property"

Console.WriteLine(sampleObject.test)

Console.WriteLine(sampleObject.test.GetType())

' This code example produces the following output:

' Dynamic Property

' System.String

VB

VB

VB

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

16 of 20 02.09.2016 23:54

The following code example demonstrates how to add an event to an instance of the ExpandoObject class.

Passing As a Parameter

You can pass instances of the ExpandoObject class as parameters. Note that these instances are treated as dynamic

objects in C# and late-bound objects in Visual Basic. This means that you do not have IntelliSense for object members

sampleObject.Number = 10

sampleObject.Increment = Function() sampleObject.Number + 1

' Before calling the Increment method.

Console.WriteLine(sampleObject.number)

sampleObject.Increment.Invoke()

' After calling the Increment method.

Console.WriteLine(sampleObject.number)

' This code example produces the following output:

' 10

' 11

Module Module1

Sub Main()

Dim sampleObject As Object = New ExpandoObject()

' Create a new event and initialize it with null.

 sampleObject.sampleEvent = Nothing

' Add an event handler.

Dim handler As EventHandler = AddressOf SampleHandler

 sampleObject.sampleEvent =

 [Delegate].Combine(sampleObject.sampleEvent, handler)

' Raise an event for testing purposes.

 sampleObject.sampleEvent.Invoke(sampleObject, New EventArgs())

End Sub

' Event handler.

Sub SampleHandler(ByVal sender As Object, ByVal e As EventArgs)

 Console.WriteLine("SampleHandler for {0} event", sender)

End Sub

' This code example produces the following output:

' SampleHandler for System.Dynamic.ExpandoObject event.

End Module

VB

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

17 of 20 02.09.2016 23:54

and you do not receive compiler errors when you call non-existent members. If you call a member that does not exist,

an exception occurs.

The following code example demonstrates how you can create and use a method to print the names and values of

properties.

Enumerating and Deleting Members

The ExpandoObject class implements the IDictionary<String, Object> interface. This enables enumeration of

members added to the instance of the ExpandoObject class at run time. This can be useful if you do not know at

compile time what members an instance might have.

The following code example shows how you can cast an instance of the ExpandoObject class to the IDictionary(Of 

TKey, TValue) interface and enumerate the instance's members.

Sub Main()

Dim employee, manager As Object

 employee = New ExpandoObject()

 employee.Name = "John Smith"

 employee.Age = 33

 manager = New ExpandoObject()

 manager.Name = "Allison Brown"

 manager.Age = 42

 manager.TeamSize = 10

 WritePerson(manager)

 WritePerson(employee)

End Sub

Private Sub WritePerson(ByVal person As Object)

 Console.WriteLine("{0} is {1} years old.",

 person.Name, person.Age)

' The following statement causes an exception

' if you pass the employee object.

' Console.WriteLine("Manages {0} people", person.TeamSize)

End Sub

Dim employee As Object = New ExpandoObject()

employee.Name = "John Smith"

employee.Age = 33

For Each member In CType(employee, IDictionary(Of String, Object))

 Console.WriteLine(member.Key & ": " & member.Value)

Next

VB

VB

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

18 of 20 02.09.2016 23:54

In languages that do not have syntax for deleting members (such as C# and Visual Basic), you can delete a member by

implicitly casting an instance of the ExpandoObject to the IDictionary<String, Object> interface and then deleting

the member as a key/value pair. This is shown in the following example.

Receiving Notifications of Property Changes

The ExpandoObject class implements the INotifyPropertyChanged interface and can raise a PropertyChanged event

when a member is added, deleted, or modified. This enables ExpandoObject class integration with Windows

Presentation Foundation (WPF) data binding and other environments that require notification about changes in the

object content.

The following code example demonstrates how to create an event handler for the PropertyChanged event.

Version Information
Universal Windows Platform

Available since 8

.NET Framework

Available since 4.0

' This code example produces the following output:

' Name: John Smith

' Age: 33

Dim employee As Object = New ExpandoObject()

employee.Name = "John Smith"

CType(employee, IDictionary(Of String, Object)).Remove("Name")

' Add "Imports System.ComponentModel" line

' to the beginning of the file.

Sub Main()

Dim employee As Object = New ExpandoObject

AddHandler CType(

 employee, INotifyPropertyChanged).PropertyChanged,

AddressOf HandlePropertyChanges

 employee.Name = "John Smith"

End Sub

Private Sub HandlePropertyChanges(

ByVal sender As Object, ByVal e As PropertyChangedEventArgs)

 Console.WriteLine("{0} has changed.", e.PropertyName)

End Sub

VB

VB

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

19 of 20 02.09.2016 23:54

Portable Class Library

Supported in: portable .NET platforms

Silverlight

Available since 4.0

Windows Phone Silverlight

Available since 8.0

Windows Phone

Available since 8.1

Thread Safety
Any public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed

to be thread safe.

See Also
System.Dynamic Namespace

Return to top

© 2016 Microsoft

ExpandoObject Class (System.Dynamic) https://msdn.microsoft.com/en-us/library/system.dynamic.expandoobject(...

20 of 20 02.09.2016 23:54

