
Declared Elements in Visual Basic

A declared element is a programming element that is defined in a declaration statement. Declared elements include

variables, constants, enumerations, classes, structures, modules, interfaces, procedures, procedure parameters, function

returns, external procedure references, operators, properties, events, and delegates.

Declaration statements include the following:

Dim Statement (Visual Basic)

Const Statement (Visual Basic)

Enum Statement (Visual Basic)

Class Statement (Visual Basic)

Structure Statement

Module Statement

Interface Statement (Visual Basic)

Function Statement (Visual Basic)

Sub Statement (Visual Basic)

Declare Statement

Operator Statement

Property Statement

Event Statement

Delegate Statement

In This Section

Declared Element Names (Visual Basic)

Describes how to name elements and use alphabetic case.

Declared Element Characteristics (Visual Basic)

Covers characteristics, such as scope, possessed by declared elements.

References to Declared Elements (Visual Basic)

Describes how the compiler matches a reference to a declaration and how to qualify a name.

Visual Studio 2015

Declared Elements in Visual Basic https://msdn.microsoft.com/en-us/library/2204db15(d=printer).aspx

1 of 2 02.09.2016 17:27

Related Sections

Program Structure and Code Conventions (Visual Basic)

Presents guidelines for making your code easier to read, understand, and maintain.

Statements (Visual Basic)

Describes statements that name and define procedures, variables, arrays, and constants.

Declaration Contexts and Default Access Levels (Visual Basic)

Lists the types of declared elements and shows for each one its declaration statement, in what context you can declare

it, and its default access level.

© 2016 Microsoft

Declared Elements in Visual Basic https://msdn.microsoft.com/en-us/library/2204db15(d=printer).aspx

2 of 2 02.09.2016 17:27

Dim Statement (Visual Basic)

Declares and allocates storage space for one or more variables.

Syntax

Parts

attributelist

Optional. See Attribute List.

accessmodifier

Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

Static

Visual Studio 2015

[<attributelist>] [accessmodifier] [[Shared] [Shadows] | [Static]]

[ReadOnly]

Dim [WithEvents] variablelist

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

1 of 11 02.09.2016 17:38

Optional. See Static.

ReadOnly

Optional. See ReadOnly.

WithEvents

Optional. Specifies that these are object variables that refer to instances of a class that can raise events. See

WithEvents.

variablelist

Required. List of variables being declared in this statement.

variable [, variable ...]

Each variable has the following syntax and parts:

variablename [([boundslist])] [As [New] datatype

[With { [.propertyname = propinitializer [, ...]] }]] [= initializer]

Part Description

variablename Required. Name of the variable. See Declared Element Names (Visual Basic).

boundslist Optional. List of bounds of each dimension of an array variable.

New Optional. Creates a new instance of the class when the Dim statement runs.

datatype Optional. Data type of the variable.

With Optional. Introduces the object initializer list.

propertyname Optional. The name of a property in the class you are making an instance of.

propinitializer Required after propertyname =. The expression that is evaluated and assigned to the property

name.

initializer Optional if New is not specified. Expression that is evaluated and assigned to the variable

when it is created.

Remarks
The Visual Basic compiler uses the Dim statement to determine the variable's data type and other information, such as

what code can access the variable. The following example declares a variable to hold an Integer value.

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

2 of 11 02.09.2016 17:38

You can specify any data type or the name of an enumeration, structure, class, or interface.

For a reference type, you use the New keyword to create a new instance of the class or structure that is specified by the

data type. If you use New, you do not use an initializer expression. Instead, you supply arguments, if they are required, to

the constructor of the class from which you are creating the variable.

You can declare a variable in a procedure, block, class, structure, or module. You cannot declare a variable in a source file,

namespace, or interface. For more information, see Declaration Contexts and Default Access Levels (Visual Basic).

A variable that is declared at module level, outside any procedure, is a member variable or field. Member variables are in

scope throughout their class, structure, or module. A variable that is declared at procedure level is a local variable. Local

variables are in scope only within their procedure or block.

The following access modifiers are used to declare variables outside a procedure: Public, Protected, Friend, Protected

Friend, and Private. For more information, see Access Levels in Visual Basic.

The Dim keyword is optional and usually omitted if you specify any of the following modifiers: Public, Protected, Friend,

Protected Friend, Private, Shared, Shadows, Static, ReadOnly, or WithEvents.

If Option Explicit is on (the default), the compiler requires a declaration for every variable you use. For more information,

see Option Explicit Statement (Visual Basic).

Specifying an Initial Value

You can assign a value to a variable when it is created. For a value type, you use an initializer to supply an expression to

be assigned to the variable. The expression must evaluate to a constant that can be calculated at compile time.

Dim numberOfStudents As Integer

Dim finished As Boolean

Dim monitorBox As System.Windows.Forms.Form

Dim bottomLabel As New System.Windows.Forms.Label

Public maximumAllowed As Double

Protected Friend currentUserName As String

Private salary As Decimal

Static runningTotal As Integer

Dim quantity As Integer = 10

Dim message As String = "Just started"

VB

VB

VB

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

3 of 11 02.09.2016 17:38

If an initializer is specified and a data type is not specified in an As clause, type inference is used to infer the data type

from the initializer. In the following example, both num1 and num2 are strongly typed as integers. In the second

declaration, type inference infers the type from the value 3.

Type inference applies at the procedure level. It does not apply outside a procedure in a class, structure, module, or

interface. For more information about type inference, see Option Infer Statement and Local Type Inference (Visual

Basic).

For information about what happens when a data type or initializer is not specified, see Default Data Types and Values

later in this topic.

You can use an object initializer to declare instances of named and anonymous types. The following code creates an

instance of a Student class and uses an object initializer to initialize properties.

For more information about object initializers, see How to: Declare an Object by Using an Object Initializer (Visual

Basic), Object Initializers: Named and Anonymous Types (Visual Basic), and Anonymous Types (Visual Basic).

Declaring Multiple Variables

' Use explicit typing.

Dim num1 As Integer = 3

' Use local type inference.

Dim num2 = 3

Dim student1 As New Student With {.First = "Michael",

 .Last = "Tucker"}

VB

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

4 of 11 02.09.2016 17:38

You can declare several variables in one declaration statement, specifying the variable name for each one, and

following each array name with parentheses. Multiple variables are separated by commas.

If you declare more than one variable with one As clause, you cannot supply an initializer for that group of variables.

You can specify different data types for different variables by using a separate As clause for each variable you declare.

Each variable takes the data type specified in the first As clause encountered after its variablename part.

Arrays

You can declare a variable to hold an array, which can hold multiple values. To specify that a variable holds an array,

follow its variablename immediately with parentheses. For more information about arrays, see Arrays in Visual Basic.

You can specify the lower and upper bound of each dimension of an array. To do this, include a boundslist inside the

parentheses. For each dimension, the boundslist specifies the upper bound and optionally the lower bound. The lower

bound is always zero, whether you specify it or not. Each index can vary from zero through its upper bound value.

The following two statements are equivalent. Each statement declares an array of 21 Integer elements. When you

access the array, the index can vary from 0 through 20.

The following statement declares a two-dimensional array of type Double. The array has 4 rows (3 + 1) of 6 columns (5

+ 1) each. Note that an upper bound represents the highest possible value for the index, not the length of the

dimension. The length of the dimension is the upper bound plus one.

An array can have from 1 to 32 dimensions.

You can leave all the bounds blank in an array declaration. If you do this, the array has the number of dimensions you

specify, but it is uninitialized. It has a value of Nothing until you initialize at least some of its elements. The Dim

statement must specify bounds either for all dimensions or for no dimensions.

Dim lastTime, nextTime, allTimes() As Date

Dim a, b, c As Single, x, y As Double, i As Integer

' a, b, and c are all Single; x and y are both Double

Dim totals(20) As Integer

Dim totals(0 To 20) As Integer

Dim matrix2(3, 5) As Double

VB

VB

VB

VB

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

5 of 11 02.09.2016 17:38

If the array has more than one dimension, you must include commas between the parentheses to indicate the number

of dimensions.

You can declare a zero-length array by declaring one of the array's dimensions to be -1. A variable that holds a

zero-length array does not have the value Nothing. Zero-length arrays are required by certain common language

runtime functions. If you try to access such an array, a runtime exception occurs. For more information, see Arrays in

Visual Basic.

You can initialize the values of an array by using an array literal. To do this, surround the initialization values with braces

({}).

For multidimensional arrays, the initialization for each separate dimension is enclosed in braces in the outer dimension.

The elements are specified in row-major order.

For more information about array literals, see Arrays in Visual Basic.

Default Data Types and Values

The following table describes the results of various combinations of specifying the data type and initializer in a Dim

statement.

Data type

specified?

Initializer

specified?

Example Result

No No Dim qty If Option Strict is off (the default), the variable is set to

Nothing.

If Option Strict is on, a compile-time error occurs.

' Declare an array with blank array bounds.

Dim messages() As String

' Initialize the array.

ReDim messages(4)

Dim oneDimension(), twoDimensions(,), threeDimensions(,,) As Byte

Dim longArray() As Long = {0, 1, 2, 3}

Dim twoDimensions(,) As Integer = {{0, 1, 2}, {10, 11, 12}}

VB

VB

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

6 of 11 02.09.2016 17:38

No Yes Dim qty = 5 If Option Infer is on (the default), the variable takes the data

type of the initializer. See Local Type Inference (Visual Basic).

If Option Infer is off and Option Strict is off, the variable

takes the data type of Object.

If Option Infer is off and Option Strict is on, a

compile-time error occurs.

Yes No Dim qty As

Integer

The variable is initialized to the default value for the data

type. See the table later in this section.

Yes Yes Dim qty As

Integer = 5

If the data type of the initializer is not convertible to the

specified data type, a compile-time error occurs.

If you specify a data type but do not specify an initializer, Visual Basic initializes the variable to the default value for its

data type. The following table shows the default initialization values.

Data type Default value

All numeric types (including Byte and SByte) 0

Char Binary 0

All reference types (including Object, String, and all

arrays)

Nothing

Boolean False

Date 12:00 AM of January 1 of the year 1 (01/01/0001 12:00:00

AM)

Each element of a structure is initialized as if it were a separate variable. If you declare the length of an array but do not

initialize its elements, each element is initialized as if it were a separate variable.

Static Local Variable Lifetime

A Static local variable has a longer lifetime than that of the procedure in which it is declared. The boundaries of the

variable's lifetime depend on where the procedure is declared and whether it is Shared.

Procedure declaration Variable initialized Variable stops existing

In a module The first time the procedure is called When your program stops

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

7 of 11 02.09.2016 17:38

execution

In a class or structure,

procedure is Shared

The first time the procedure is called either on a

specific instance or on the class or structure itself

When your program stops

execution

In a class or structure,

procedure isn't Shared

The first time the procedure is called on a specific

instance

When the instance is released

for garbage collection (GC)

Attributes and Modifiers

You can apply attributes only to member variables, not to local variables. An attribute contributes information to the

assembly's metadata, which is not meaningful for temporary storage such as local variables.

At module level, you cannot use the Static modifier to declare member variables. At procedure level, you cannot use

Shared, Shadows, ReadOnly, WithEvents, or any access modifiers to declare local variables.

You can specify what code can access a variable by supplying an accessmodifier. Class and module member variables

(outside any procedure) default to private access, and structure member variables default to public access. You can

adjust their access levels with the access modifiers. You cannot use access modifiers on local variables (inside a

procedure).

You can specify WithEvents only on member variables, not on local variables inside a procedure. If you specify

WithEvents, the data type of the variable must be a specific class type, not Object. You cannot declare an array with

WithEvents. For more information about events, see Events (Visual Basic).

Note

Code outside a class, structure, or module must qualify a member variable's name with the name of that class,

structure, or module. Code outside a procedure or block cannot refer to any local variables within that procedure or

block.

Releasing Managed Resources

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

8 of 11 02.09.2016 17:38

The .NET Framework garbage collector disposes of managed resources without any extra coding on your part.

However, you can force the disposal of a managed resource instead of waiting for the garbage collector.

If a class holds onto a particularly valuable and scarce resource (such as a database connection or file handle), you

might not want to wait until the next garbage collection to clean up a class instance that's no longer in use. A class may

implement the IDisposable interface to provide a way to release resources before a garbage collection. A class that

implements that interface exposes a Dispose method that can be called to force valuable resources to be released

immediately.

The Using statement automates the process of acquiring a resource, executing a set of statements, and then disposing

of the resource. However, the resource must implement the IDisposable interface. For more information, see Using

Statement (Visual Basic).

Example
The following example declares variables by using the Dim statement with various options.

Example
The following example lists the prime numbers between 1 and 30. The scope of local variables is described in code

comments.

' Declare and initialize a Long variable.

Dim startingAmount As Long = 500

' Declare a variable that refers to a Button object,

' create a Button object, and assign the Button object

' to the variable.

Dim switchButton As New System.Windows.Forms.Button

' Declare a local variable that always retains its value,

' even after its procedure returns to the calling code.

Static totalSales As Double

' Declare a variable that refers to an array.

Dim highTemperature(31) As Integer

' Declare and initialize an array variable that

' holds four Boolean check values.

Dim checkValues() As Boolean = {False, False, True, False}

Public Sub ListPrimes()

' The sb variable can be accessed only

' within the ListPrimes procedure.

Dim sb As New System.Text.StringBuilder()

VB

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

9 of 11 02.09.2016 17:38

Example
In the following example, the speedValue variable is declared at the class level. The Private keyword is used to declare the

variable. The variable can be accessed by any procedure in the Car class.

' The number variable can be accessed only

' within the For...Next block. A different

' variable with the same name could be declared

' outside of the For...Next block.

For number As Integer = 1 To 30

If CheckIfPrime(number) = True Then

 sb.Append(number.ToString & " ")

End If

Next

 Debug.WriteLine(sb.ToString)

' Output: 2 3 5 7 11 13 17 19 23 29

End Sub

Private Function CheckIfPrime(ByVal number As Integer) As Boolean

If number < 2 Then

Return False

Else

' The root and highCheck variables can be accessed

' only within the Else block. Different variables

' with the same names could be declared outside of

' the Else block.

Dim root As Double = Math.Sqrt(number)

Dim highCheck As Integer = Convert.ToInt32(Math.Truncate(root))

' The div variable can be accessed only within

' the For...Next block.

For div As Integer = 2 To highCheck

If number Mod div = 0 Then

Return False

End If

Next

Return True

End If

End Function

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

10 of 11 02.09.2016 17:38

See Also
Const Statement (Visual Basic)

ReDim Statement (Visual Basic)

Option Explicit Statement (Visual Basic)

Option Infer Statement

Option Strict Statement

Compile Page, Project Designer (Visual Basic)

Variable Declaration in Visual Basic

Arrays in Visual Basic

Object Initializers: Named and Anonymous Types (Visual Basic)

Anonymous Types (Visual Basic)

Object Initializers: Named and Anonymous Types (Visual Basic)

How to: Declare an Object by Using an Object Initializer (Visual Basic)

Local Type Inference (Visual Basic)

© 2016 Microsoft

' Create a new instance of a Car.

Dim theCar As New Car()

theCar.Accelerate(30)

theCar.Accelerate(20)

theCar.Accelerate(‐5)

Debug.WriteLine(theCar.Speed.ToString)

' Output: 45

Public Class Car

' The speedValue variable can be accessed by

' any procedure in the Car class.

Private speedValue As Integer = 0

Public ReadOnly Property Speed() As Integer

Get

Return speedValue

End Get

End Property

Public Sub Accelerate(ByVal speedIncrease As Integer)

 speedValue += speedIncrease

End Sub

End Class

VB

Dim Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/7ee5a7s1(d=printer).aspx

11 of 11 02.09.2016 17:38

Const Statement (Visual Basic)

Declares and defines one or more constants.

Syntax

Parts

Visual Studio 2015

[<attributelist>] [accessmodifier] [Shadows]

Const constantlist

Const Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/cyxe49xw(d=printer).aspx

1 of 4 02.09.2016 17:38

attributelist

Optional. List of attributes that apply to all the constants declared in this statement. See Attribute List (Visual Basic)

in angle brackets ("<" and ">").

accessmodifier

Optional. Use this to specify what code can access these constants. Can be Public (Visual Basic), Protected (Visual

Basic), Friend (Visual Basic), Protected Friend, or Private (Visual Basic).

Shadows

Optional. Use this to redeclare and hide a programming element in a base class. See Shadows.

constantlist

Required. List of constants being declared in this statement.

constant [, constant ...]

Each constant has the following syntax and parts:

constantname [As datatype] = initializer

Part Description

constantname Required. Name of the constant. See Declared Element Names (Visual Basic).

datatype Required if Option Strict is On. Data type of the constant.

initializer Required. Expression that is evaluated at compile time and assigned to the constant.

Remarks
If you have a value that never changes in your application, you can define a named constant and use it in place of a literal

value. A name is easier to remember than a value. You can define the constant just once and use it in many places in your

code. If in a later version you need to redefine the value, the Const statement is the only place you need to make a

change.

You can use Const only at module or procedure level. This means the declaration context for a variable must be a class,

structure, module, procedure, or block, and cannot be a source file, namespace, or interface. For more information, see

Declaration Contexts and Default Access Levels (Visual Basic).

Local constants (inside a procedure) default to public access, and you cannot use any access modifiers on them. Class and

module member constants (outside any procedure) default to private access, and structure member constants default to

public access. You can adjust their access levels with the access modifiers.

Rules

Declaration Context. A constant declared at module level, outside any procedure, is a member constant; it is a

member of the class, structure, or module that declares it.

Const Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/cyxe49xw(d=printer).aspx

2 of 4 02.09.2016 17:38

A constant declared at procedure level is a local constant; it is local to the procedure or block that declares it.

Attributes. You can apply attributes only to member constants, not to local constants. An attribute contributes

information to the assembly's metadata, which is not meaningful for temporary storage such as local constants.

Modifiers. By default, all constants are Shared, Static, and ReadOnly. You cannot use any of these keywords

when declaring a constant.

At procedure level, you cannot use Shadows or any access modifiers to declare local constants.

Multiple Constants. You can declare several constants in the same declaration statement, specifying the

constantname part for each one. Multiple constants are separated by commas.

Data Type Rules

Data Types. The Const statement can declare the data type of a variable. You can specify any data type or the

name of an enumeration.

Default Type. If you do not specify datatype, the constant takes the data type of initializer. If you specify both

datatype and initializer, the data type of initializer must be convertible to datatype. If neither datatype nor

initializer is present, the data type defaults to Object.

Different Types. You can specify different data types for different constants by using a separate As clause for

each variable you declare. However, you cannot declare several constants to be of the same type by using a

common As clause.

Initialization. You must initialize the value of every constant in constantlist. You use initializer to supply an

expression to be assigned to the constant. The expression can be any combination of literals, other constants

that are already defined, and enumeration members that are already defined. You can use arithmetic and logical

operators to combine such elements.

You cannot use variables or functions in initializer. However, you can use conversion keywords such as CByte

and CShort. You can also use AscW if you call it with a constant String or Char argument, since that can be

evaluated at compile time.

Behavior

Scope. Local constants are accessible only from within their procedure or block. Member constants are

accessible from anywhere within their class, structure, or module.

Qualification. Code outside a class, structure, or module must qualify a member constant's name with the name

of that class, structure, or module. Code outside a procedure or block cannot refer to any local constants within

that procedure or block.

Const Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/cyxe49xw(d=printer).aspx

3 of 4 02.09.2016 17:38

Example
The following example uses the Const statement to declare constants for use in place of literal values.

Example
If you define a constant with data type Object, the Visual Basic compiler gives it the type of initializer, instead of Object. In

the following example, the constant naturalLogBase has the run-time type Decimal.

The preceding example uses the ToString method on the Type object returned by the GetType Operator (Visual Basic),

because Type cannot be converted to String using CStr.

See Also
Asc

AscW

Enum Statement (Visual Basic)

#Const Directive

Dim Statement (Visual Basic)

ReDim Statement (Visual Basic)

Implicit and Explicit Conversions (Visual Basic)

Constants and Enumerations in Visual Basic

Constants and Enumerations (Visual Basic)

Type Conversion Functions (Visual Basic)

© 2016 Microsoft

' The following statements declare constants.

Const maximum As Long = 459

Public Const helpString As String = "HELP"

Private Const startValue As Integer = 5

Const naturalLogBase As Object = CDec(2.7182818284)

MsgBox("Run‐time type of constant naturalLogBase is " &

 naturalLogBase.GetType.ToString())

VB

VB

Const Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/cyxe49xw(d=printer).aspx

4 of 4 02.09.2016 17:38

Enum Statement (Visual Basic)

Declares an enumeration and defines the values of its members.

Syntax

Parts

attributelist

Optional. List of attributes that apply to this enumeration. You must enclose the attribute list in angle brackets ("<"

and ">").

The FlagsAttribute attribute indicates that the value of an instance of the enumeration can include multiple

enumeration members, and that each member represents a bit field in the enumeration value.

accessmodifier

Optional. Specifies what code can access this enumeration. Can be one of the following:

Public

Protected

Friend

Private

You can specify Protected Friend to allow access from code within the enumeration's class, a derived class, or the

same assembly.

Shadows

Optional. Specifies that this enumeration redeclares and hides an identically named programming element, or set

of overloaded elements, in a base class. You can specify Shadows only on the enumeration itself, not on any of its

members.

Visual Studio 2015

[<attributelist>] [accessmodifier] [Shadows]

Enum enumerationname [As datatype]

 memberlist

End Enum

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

1 of 7 02.09.2016 17:38

enumerationname

Required. Name of the enumeration. For information on valid names, see Declared Element Names (Visual Basic).

datatype

Optional. Data type of the enumeration and all its members.

memberlist

Required. List of member constants being declared in this statement. Multiple members appear on individual

source code lines.

Each member has the following syntax and parts: [<attribute list>] member name [= initializer]

Part Description

membername Required. Name of this member.

initializer Optional. Expression that is evaluated at compile time and assigned to this member.

End Enum

Terminates the Enum block.

Remarks
If you have a set of unchanging values that are logically related to each other, you can define them together in an

enumeration. This provides meaningful names for the enumeration and its members, which are easier to remember than

their values. You can then use the enumeration members in many places in your code.

The benefits of using enumerations include the following:

Reduces errors caused by transposing or mistyping numbers.

Makes it easy to change values in the future.

Makes code easier to read, which means it is less likely that errors will be introduced.

Ensures forward compatibility. If you use enumerations, your code is less likely to fail if in the future someone

changes the values corresponding to the member names.

An enumeration has a name, an underlying data type, and a set of members. Each member represents a constant.

An enumeration declared at class, structure, module, or interface level, outside any procedure, is a member enumeration.

It is a member of the class, structure, module, or interface that declares it.

Member enumerations can be accessed from anywhere within their class, structure, module, or interface. Code outside a

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

2 of 7 02.09.2016 17:38

class, structure, or module must qualify a member enumeration's name with the name of that class, structure, or module.

You can avoid the need to use fully qualified names by adding an Imports statement to the source file.

An enumeration declared at namespace level, outside any class, structure, module, or interface, is a member of the

namespace in which it appears.

The declaration context for an enumeration must be a source file, namespace, class, structure, module, or interface, and

cannot be a procedure. For more information, see Declaration Contexts and Default Access Levels (Visual Basic).

You can apply attributes to an enumeration as a whole, but not to its members individually. An attribute contributes

information to the assembly's metadata.

Data Type

The Enum statement can declare the data type of an enumeration. Each member takes the enumeration's data type.

You can specify Byte, Integer, Long, SByte, Short, UInteger, ULong, or UShort.

If you do not specify datatype for the enumeration, each member takes the data type of its initializer. If you specify

both datatype and initializer, the data type of initializer must be convertible to datatype. If neither datatype nor

initializer is present, the data type defaults to Integer.

Initializing Members

The Enum statement can initialize the contents of selected members in memberlist. You use initializer to supply an

expression to be assigned to the member.

If you do not specify initializer for a member, Visual Basic initializes it either to zero (if it is the first member in

memberlist), or to a value greater by one than that of the immediately preceding member.

The expression supplied in each initializer can be any combination of literals, other constants that are already defined,

and enumeration members that are already defined, including a previous member of this enumeration. You can use

arithmetic and logical operators to combine such elements.

You cannot use variables or functions in initializer. However, you can use conversion keywords such as CByte and

CShort. You can also use AscW if you call it with a constant String or Char argument, since that can be evaluated at

compile time.

Enumerations cannot have floating-point values. If a member is assigned a floating-point value and Option Strict is

set to on, a compiler error occurs. If Option Strict is off, the value is automatically converted to the Enum type.

If the value of a member exceeds the allowable range for the underlying data type, or if you initialize any member to

the maximum value allowed by the underlying data type, the compiler reports an error.

Modifiers

Class, structure, module, and interface member enumerations default to public access. You can adjust their access levels

with the access modifiers. Namespace member enumerations default to friend access. You can adjust their access levels

to public, but not to private or protected. For more information, see Access Levels in Visual Basic.

All enumeration members have public access, and you cannot use any access modifiers on them. However, if the

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

3 of 7 02.09.2016 17:38

enumeration itself has a more restricted access level, the specified enumeration access level takes precedence.

By default, all enumerations are types and their fields are constants. Therefore the Shared, Static, and ReadOnly

keywords cannot be used when declaring an enumeration or its members.

Assigning Multiple Values

Enumerations typically represent mutually exclusive values. By including the FlagsAttribute attribute in the Enum

declaration, you can instead assign multiple values to an instance of the enumeration. The FlagsAttribute attribute

specifies that the enumeration be treated as a bit field, that is, a set of flags. These are called bitwise enumerations.

When you declare an enumeration by using the FlagsAttribute attribute, we recommend that you use powers of 2, that

is, 1, 2, 4, 8, 16, and so on, for the values. We also recommend that "None" be the name of a member whose value is 0.

For additional guidelines, see FlagsAttribute and Enum.

Example
The following example shows how to use the Enum statement. Note that the member is referred to as

EggSizeEnum.Medium, and not as Medium.

Example
The method in the following example is outside the Egg class. Therefore, EggSizeEnum is fully qualified as

Egg.EggSizeEnum.

Public Class Egg

Enum EggSizeEnum

 Jumbo

 ExtraLarge

 Large

 Medium

 Small

End Enum

Public Sub Poach()

Dim size As EggSizeEnum

 size = EggSizeEnum.Medium

' Continue processing...

End Sub

End Class

Public Sub Scramble(ByVal size As Egg.EggSizeEnum)

' Process for the three largest sizes.

VB

VB

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

4 of 7 02.09.2016 17:38

Example
The following example uses the Enum statement to define a related set of named constant values. In this case, the values are

colors you might choose to design data entry forms for a database.

Example
The following example shows values that include both positive and negative numbers.

Example
In the following example, an As clause is used to specify the datatype of an enumeration.

' Throw an exception for any other size.

Select Case size

Case Egg.EggSizeEnum.Jumbo

' Process.

Case Egg.EggSizeEnum.ExtraLarge

' Process.

Case Egg.EggSizeEnum.Large

' Process.

Case Else

Throw New ApplicationException("size is invalid: " & size.ToString)

End Select

End Sub

Public Enum InterfaceColors

 MistyRose = &HE1E4FF&

 SlateGray = &H908070&

 DodgerBlue = &HFF901E&

 DeepSkyBlue = &HFFBF00&

 SpringGreen = &H7FFF00&

 ForestGreen = &H228B22&

 Goldenrod = &H20A5DA&

 Firebrick = &H2222B2&

End Enum

Enum SecurityLevel

 IllegalEntry = ‐1

 MinimumSecurity = 0

 MaximumSecurity = 1

End Enum

Public Enum MyEnum As Byte

 Zero

VB

VB

VB

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

5 of 7 02.09.2016 17:38

Example
The following example shows how to use a bitwise enumeration. Multiple values can be assigned to an instance of a bitwise

enumeration. The Enum declaration includes the FlagsAttribute attribute, which indicates that the enumeration can be

treated as a set of flags.

Example
The following example iterates through an enumeration. It uses the GetNames method to retrieve an array of member

names from the enumeration, and GetValues to retrieve an array of member values.

 One

 Two

End Enum

' Apply the Flags attribute, which allows an instance

' of the enumeration to have multiple values.

<Flags()> Public Enum FilePermissions As Integer

 None = 0

 Create = 1

 Read = 2

 Update = 4

 Delete = 8

End Enum

Public Sub ShowBitwiseEnum()

' Declare the non‐exclusive enumeration object and

' set it to multiple values.

Dim perm As FilePermissions

 perm = FilePermissions.Read Or FilePermissions.Update

' Show the values in the enumeration object.

 Console.WriteLine(perm.ToString)

' Output: Read, Update

' Show the total integer value of all values

' in the enumeration object.

 Console.WriteLine(CInt(perm))

' Output: 6

' Show whether the enumeration object contains

' the specified flag.

 Console.WriteLine(perm.HasFlag(FilePermissions.Update))

' Output: True

End Sub

Enum EggSizeEnum

VB

VB

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

6 of 7 02.09.2016 17:38

See Also
Enum

AscW

Const Statement (Visual Basic)

Dim Statement (Visual Basic)

Implicit and Explicit Conversions (Visual Basic)

Type Conversion Functions (Visual Basic)

Constants and Enumerations (Visual Basic)

© 2016 Microsoft

 Jumbo

 ExtraLarge

 Large

 Medium

 Small

End Enum

Public Sub Iterate()

Dim names = [Enum].GetNames(GetType(EggSizeEnum))

For Each name In names

 Console.Write(name & " ")

Next

 Console.WriteLine()

' Output: Jumbo ExtraLarge Large Medium Small

Dim values = [Enum].GetValues(GetType(EggSizeEnum))

For Each value In values

 Console.Write(value & " ")

Next

 Console.WriteLine()

' Output: 0 1 2 3 4

End Sub

Enum Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/8h84wky1(d=printer).aspx

7 of 7 02.09.2016 17:38

Class Statement (Visual Basic)

Declares the name of a class and introduces the definition of the variables, properties, events, and procedures that the class

comprises.

Syntax

Parts

Term Definition

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

Shadows Optional. See Shadows.

MustInherit Optional. See MustInherit (Visual Basic).

NotInheritable Optional. See NotInheritable (Visual Basic).

Partial Optional. Indicates a partial definition of the class. See Partial (Visual Basic).

Visual Studio 2015

[<attributelist>] [accessmodifier] [Shadows] [MustInherit | NotInheritable]

[Partial] _

Class name [(Of typelist)]

 [Inherits classname]

 [Implements interfacenames]

 [statements]

End Class

Class Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/wa0hwf23(d=printer).aspx

1 of 4 02.09.2016 17:39

name Required. Name of this class. See Declared Element Names (Visual Basic).

Of Optional. Specifies that this is a generic class.

typelist Required if you use the Of keyword. List of type parameters for this class. See Type List.

Inherits Optional. Indicates that this class inherits the members of another class. See Inherits Statement.

classname Required if you use the Inherits statement. The name of the class from which this class derives.

Implements Optional. Indicates that this class implements the members of one or more interfaces. See

Implements Statement.

interfacenames Required if you use the Implements statement. The names of the interfaces this class implements.

statements Optional. Statements which define the members of this class.

End Class Required. Terminates the Class definition.

Remarks
A Class statement defines a new data type. A class is a fundamental building block of object-oriented programming

(OOP). For more information, see Objects and Classes in Visual Basic.

You can use Class only at namespace or module level. This means the declaration context for a class must be a source file,

namespace, class, structure, module, or interface, and cannot be a procedure or block. For more information, see

Declaration Contexts and Default Access Levels (Visual Basic).

Each instance of a class has a lifetime independent of all other instances. This lifetime begins when it is created by a New

Operator (Visual Basic) clause or by a function such as CreateObject. It ends when all variables pointing to the instance

have been set to Nothing (Visual Basic) or to instances of other classes.

Classes default to Friend (Visual Basic) access. You can adjust their access levels with the access modifiers. For more

information, see Access Levels in Visual Basic.

Rules

Nesting. You can define one class within another. The outer class is called the containing class, and the inner

class is called a nested class.

Inheritance. If the class uses the Inherits Statement, you can specify only one base class or interface. A class

cannot inherit from more than one element.

A class cannot inherit from another class with a more restrictive access level. For example, a Public class cannot

inherit from a Friend class.

A class cannot inherit from a class nested within it.

Class Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/wa0hwf23(d=printer).aspx

2 of 4 02.09.2016 17:39

Implementation. If the class uses the Implements Statement, you must implement every member defined by

every interface you specify in interfacenames. An exception to this is reimplementation of a base class member.

For more information, see "Reimplementation" in Implements Clause (Visual Basic).

Default Property. A class can specify at most one property as its default property. For more information, see

Default (Visual Basic).

Behavior

Access Level. Within a class, you can declare each member with its own access level. Class members default to

Public (Visual Basic) access, except variables and constants, which default to Private (Visual Basic) access. When a

class has more restricted access than one of its members, the class access level takes precedence.

Scope. A class is in scope throughout its containing namespace, class, structure, or module.

The scope of every class member is the entire class.

Lifetime. Visual Basic does not support static classes. The functional equivalent of a static class is provided by a

module. For more information, see Module Statement.

Class members have lifetimes depending on how and where they are declared. For more information, see

Lifetime in Visual Basic.

Qualification. Code outside a class must qualify a member's name with the name of that class.

If code inside a nested class makes an unqualified reference to a programming element, Visual Basic searches for

the element first in the nested class, then in its containing class, and so on out to the outermost containing

element.

Classes and Modules

These elements have many similarities, but there are some important differences as well.

Terminology. Previous versions of Visual Basic recognize two types of modules: class modules (.cls files) and

standard modules (.bas files). The current version calls these classes and modules, respectively.

Shared Members. You can control whether a member of a class is a shared or instance member.

Object Orientation. Classes are object-oriented, but modules are not. You can create one or more instances of

a class. For more information, see Objects and Classes in Visual Basic.

Example
The following example uses a Class statement to define a class and several members.

VB

Class Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/wa0hwf23(d=printer).aspx

3 of 4 02.09.2016 17:39

See Also
Objects and Classes in Visual Basic

Structures and Classes (Visual Basic)

Interface Statement (Visual Basic)

Module Statement

Property Statement

Object Lifetime: How Objects Are Created and Destroyed (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

How to: Use a Generic Class (Visual Basic)

© 2016 Microsoft

Class bankAccount

Shared interestRate As Decimal

Private accountNumber As String

Private accountBalance As Decimal

Public holdOnAccount As Boolean = False

Public ReadOnly Property balance() As Decimal

Get

Return accountBalance

End Get

End Property

Public Sub postInterest()

 accountBalance = accountBalance * (1 + interestRate)

End Sub

Public Sub postDeposit(ByVal amountIn As Decimal)

 accountBalance = accountBalance + amountIn

End Sub

Public Sub postWithdrawal(ByVal amountOut As Decimal)

 accountBalance = accountBalance ‐ amountOut

End Sub

End Class

Class Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/wa0hwf23(d=printer).aspx

4 of 4 02.09.2016 17:39

Structure Statement

Declares the name of a structure and introduces the definition of the variables, properties, events, and procedures that the

structure comprises.

Syntax

Parts

Term Definition

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

Shadows Optional. See Shadows.

Partial Optional. Indicates a partial definition of the structure. See Partial (Visual Basic).

name Required. Name of this structure. See Declared Element Names (Visual Basic).

Of Optional. Specifies that this is a generic structure.

Visual Studio 2015

[<attributelist>] [accessmodifier] [Shadows] [Partial] _

Structure name [(Of typelist)]

 [Implements interfacenames]

 [datamemberdeclarations]

 [methodmemberdeclarations]

End Structure

Structure Statement https://msdn.microsoft.com/en-us/library/k69kzbs1(d=printer).aspx

1 of 4 02.09.2016 17:39

typelist Required if you use the Of keyword. List of type parameters for this structure. See Type

List.

Implements Optional. Indicates that this structure implements the members of one or more

interfaces. See Implements Statement.

interfacenames Required if you use the Implements statement. The names of the interfaces this

structure implements.

datamemberdeclarations Required. Zero or more Const, Dim, Enum, or Event statements declaring data

members of the structure.

methodmemberdeclarations Optional. Zero or more declarations of Function, Operator, Property, or Sub

procedures, which serve as method members of the structure.

End Structure Required. Terminates the Structure definition.

Remarks
The Structure statement defines a composite value type that you can customize. A structure is a generalization of the

user-defined type (UDT) of previous versions of Visual Basic. For more information, see Structures (Visual Basic).

Structures support many of the same features as classes. For example, structures can have properties and procedures, they

can implement interfaces, and they can have parameterized constructors. However, there are significant differences

between structures and classes in areas such as inheritance, declarations, and usage. Also, classes are reference types and

structures are value types. For more information, see Structures and Classes (Visual Basic).

You can use Structure only at namespace or module level. This means the declaration context for a structure must be a

source file, namespace, class, structure, module, or interface, and cannot be a procedure or block. For more information,

see Declaration Contexts and Default Access Levels (Visual Basic).

Structures default to Friend (Visual Basic) access. You can adjust their access levels with the access modifiers. For more

information, see Access Levels in Visual Basic.

Rules

Nesting. You can define one structure within another. The outer structure is called the containing structure, and

the inner structure is called a nested structure. However, you cannot access a nested structure's members

through the containing structure. Instead, you must declare a variable of the nested structure's data type.

Member Declaration. You must declare every member of a structure. A structure member cannot be Protected

or Protected Friend because nothing can inherit from a structure. The structure itself, however, can be

Protected or Protected Friend.

You can declare zero or more nonshared variables or nonshared, noncustom events in a structure. You cannot

have only constants, properties, and procedures, even if some of them are nonshared.

Initialization. You cannot initialize the value of any nonshared data member of a structure as part of its

Structure Statement https://msdn.microsoft.com/en-us/library/k69kzbs1(d=printer).aspx

2 of 4 02.09.2016 17:39

declaration. You must either initialize such a data member by means of a parameterized constructor on the

structure, or assign a value to the member after you have created an instance of the structure.

Inheritance. A structure cannot inherit from any type other than ValueType, from which all structures inherit. In

particular, one structure cannot inherit from another.

You cannot use the Inherits Statement in a structure definition, even to specify ValueType.

Implementation. If the structure uses the Implements Statement, you must implement every member defined

by every interface you specify in interfacenames.

Default Property. A structure can specify at most one property as its default property, using the Default (Visual

Basic) modifier. For more information, see Default (Visual Basic).

Behavior

Access Level. Within a structure, you can declare each member with its own access level. All structure members

default to Public (Visual Basic) access. Note that if the structure itself has a more restricted access level, this

automatically restricts access to its members, even if you adjust their access levels with the access modifiers.

Scope. A structure is in scope throughout its containing namespace, class, structure, or module.

The scope of every structure member is the entire structure.

Lifetime. A structure does not itself have a lifetime. Rather, each instance of that structure has a lifetime

independent of all other instances.

The lifetime of an instance begins when it is created by a New Operator (Visual Basic) clause. It ends when the

lifetime of the variable that holds it ends.

You cannot extend the lifetime of a structure instance. An approximation to static structure functionality is

provided by a module. For more information, see Module Statement.

Structure members have lifetimes depending on how and where they are declared. For more information, see

"Lifetime" in Class Statement (Visual Basic).

Qualification. Code outside a structure must qualify a member's name with the name of that structure.

If code inside a nested structure makes an unqualified reference to a programming element, Visual Basic

searches for the element first in the nested structure, then in its containing structure, and so on out to the

outermost containing element. For more information, see References to Declared Elements (Visual Basic).

Memory Consumption. As with all composite data types, you cannot safely calculate the total memory

consumption of a structure by adding together the nominal storage allocations of its members. Furthermore,

you cannot safely assume that the order of storage in memory is the same as your order of declaration. If you

need to control the storage layout of a structure, you can apply the StructLayoutAttribute attribute to the

Structure statement.

Structure Statement https://msdn.microsoft.com/en-us/library/k69kzbs1(d=printer).aspx

3 of 4 02.09.2016 17:39

Example
The following example uses the Structure statement to define a set of related data for an employee. It shows the use of

Public, Friend, and Private members to reflect the sensitivity of the data items. It also shows procedure, property, and event

members.

See Also
Class Statement (Visual Basic)

Interface Statement (Visual Basic)

Module Statement

Dim Statement (Visual Basic)

Const Statement (Visual Basic)

Enum Statement (Visual Basic)

Event Statement

Operator Statement

Property Statement

Structures and Classes (Visual Basic)

© 2016 Microsoft

Public Structure employee

' Public members, accessible from throughout declaration region.

Public firstName As String

Public middleName As String

Public lastName As String

' Friend members, accessible from anywhere within the same assembly.

Friend employeeNumber As Integer

Friend workPhone As Long

' Private members, accessible only from within the structure itself.

Private homePhone As Long

Private level As Integer

Private salary As Double

Private bonus As Double

' Procedure member, which can access structure's private members.

Friend Sub calculateBonus(ByVal rate As Single)

 bonus = salary * CDbl(rate)

End Sub

' Property member to return employee's eligibility.

Friend ReadOnly Property eligible() As Boolean

Get

Return level >= 25

End Get

End Property

' Event member, raised when business phone number has changed.

Public Event changedWorkPhone(ByVal newPhone As Long)

End Structure

VB

Structure Statement https://msdn.microsoft.com/en-us/library/k69kzbs1(d=printer).aspx

4 of 4 02.09.2016 17:39

Module Statement

Declares the name of a module and introduces the definition of the variables, properties, events, and procedures that the

module comprises.

Syntax

Parts

attributelist

Optional. See Attribute List (Visual Basic).

accessmodifier

Optional. Can be one of the following:

Public

Friend

See Access Levels in Visual Basic.

name

Required. Name of this module. See Declared Element Names (Visual Basic).

statements

Optional. Statements which define the variables, properties, events, procedures, and nested types of this module.

End Module

Terminates the Module definition.

Remarks
A Module statement defines a reference type available throughout its namespace. A module (sometimes called a standard

module) is similar to a class but with some important distinctions. Every module has exactly one instance and does not

Visual Studio 2015

[<attributelist>] [accessmodifier] Module name

 [statements]

End Module

Module Statement https://msdn.microsoft.com/en-us/library/aaxss7da(d=printer).aspx

1 of 3 02.09.2016 17:40

need to be created or assigned to a variable. Modules do not support inheritance or implement interfaces. Notice that a

module is not a type in the sense that a class or structure is — you cannot declare a programming element to have the

data type of a module.

You can use Module only at namespace level. This means the declaration context for a module must be a source file or

namespace, and cannot be a class, structure, module, interface, procedure, or block. You cannot nest a module within

another module, or within any type. For more information, see Declaration Contexts and Default Access Levels (Visual

Basic).

A module has the same lifetime as your program. Because its members are all Shared, they also have lifetimes equal to

that of the program.

Modules default to Friend (Visual Basic) access. You can adjust their access levels with the access modifiers. For more

information, see Access Levels in Visual Basic.

All members of a module are implicitly Shared.

Classes and Modules

These elements have many similarities, but there are some important differences as well.

Terminology. Previous versions of Visual Basic recognize two types of modules: class modules (.cls files) and

standard modules (.bas files). The current version calls these classes and modules, respectively.

Shared Members. You can control whether a member of a class is a shared or instance member.

Object Orientation. Classes are object-oriented, but modules are not. So only classes can be instantiated as

objects. For more information, see Objects and Classes in Visual Basic.

Rules

Modifiers. All module members are implicitly Shared (Visual Basic). You cannot use the Shared keyword when

declaring a member, and you cannot alter the shared status of any member.

Inheritance. A module cannot inherit from any type other than Object, from which all modules inherit. In

particular, one module cannot inherit from another.

You cannot use the Inherits Statement in a module definition, even to specify Object.

Default Property. You cannot define any default properties in a module. For more information, see Default

(Visual Basic).

Behavior

Access Level. Within a module, you can declare each member with its own access level. Module members

default to Public (Visual Basic) access, except variables and constants, which default to Private (Visual Basic)

access. When a module has more restricted access than one of its members, the specified module access level

Module Statement https://msdn.microsoft.com/en-us/library/aaxss7da(d=printer).aspx

2 of 3 02.09.2016 17:40

takes precedence.

Scope. A module is in scope throughout its namespace.

The scope of every module member is the entire module. Notice that all members undergo type promotion,

which causes their scope to be promoted to the namespace containing the module. For more information, see

Type Promotion (Visual Basic).

Qualification. You can have multiple modules in a project, and you can declare members with the same name

in two or more modules. However, you must qualify any reference to such a member with the appropriate

module name if the reference is from outside that module. For more information, see References to Declared

Elements (Visual Basic).

Example

See Also
Class Statement (Visual Basic)

Namespace Statement

Structure Statement

Interface Statement (Visual Basic)

Property Statement

Type Promotion (Visual Basic)

© 2016 Microsoft

Public Module thisModule

Sub Main()

Dim userName As String = InputBox("What is your name?")

 MsgBox("User name is" & userName)

End Sub

' Insert variable, property, procedure, and event declarations.

End Module

VB

Module Statement https://msdn.microsoft.com/en-us/library/aaxss7da(d=printer).aspx

3 of 3 02.09.2016 17:40

Interface Statement (Visual Basic)

Declares the name of an interface and introduces the definitions of the members that the interface comprises.

Syntax

Parts

Term Definition

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

Shadows Optional. See Shadows.

name Required. Name of this interface. See Declared Element Names (Visual Basic).

Visual Studio 2015

[<attributelist>] [accessmodifier] [Shadows] _

Interface name [(Of typelist)]

 [Inherits interfacenames]

 [[modifiers] Property membername]

 [[modifiers] Function membername]

 [[modifiers] Sub membername]

 [[modifiers] Event membername]

 [[modifiers] Interface membername]

 [[modifiers] Class membername]

 [[modifiers] Structure membername]

End Interface

Interface Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/h9xt0sdd(d=printer).aspx

1 of 5 02.09.2016 17:40

Of Optional. Specifies that this is a generic interface.

typelist Required if you use the Of Clause (Visual Basic) keyword. List of type parameters for this interface.

Optionally, each type parameter can be declared variant by using In and Out generic modifiers. See

Type List.

Inherits Optional. Indicates that this interface inherits the attributes and members of another interface or

interfaces. See Inherits Statement.

interfacenames Required if you use the Inherits statement. The names of the interfaces from which this interface

derives.

modifiers Optional. Appropriate modifiers for the interface member being defined.

Property Optional. Defines a property that is a member of the interface.

Function Optional. Defines a Function procedure that is a member of the interface.

Sub Optional. Defines a Sub procedure that is a member of the interface.

Event Optional. Defines an event that is a member of the interface.

Interface Optional. Defines an interface that is a nested within this interface. The nested interface definition

must terminate with an End Interface statement.

Class Optional. Defines a class that is a member of the interface. The member class definition must

terminate with an End Class statement.

Structure Optional. Defines a structure that is a member of the interface. The member structure definition must

terminate with an End Structure statement.

membername Required for each property, procedure, event, interface, class, or structure defined as a member of

the interface. The name of the member.

End Interface Terminates the Interface definition.

Remarks
An interface defines a set of members, such as properties and procedures, that classes and structures can implement. The

interface defines only the signatures of the members and not their internal workings.

A class or structure implements the interface by supplying code for every member defined by the interface. Finally, when

the application creates an instance from that class or structure, an object exists and runs in memory. For more

information, see Objects and Classes in Visual Basic and Interfaces (Visual Basic).

You can use Interface only at namespace or module level. This means the declaration context for an interface must be a

source file, namespace, class, structure, module, or interface, and cannot be a procedure or block. For more information,

Interface Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/h9xt0sdd(d=printer).aspx

2 of 5 02.09.2016 17:40

see Declaration Contexts and Default Access Levels (Visual Basic).

Interfaces default to Friend (Visual Basic) access. You can adjust their access levels with the access modifiers. For more

information, see Access Levels in Visual Basic.

Rules

Nesting Interfaces. You can define one interface within another. The outer interface is called the containing

interface, and the inner interface is called a nested interface.

Member Declaration. When you declare a property or procedure as a member of an interface, you are defining

only the signature of that property or procedure. This includes the element type (property or procedure), its

parameters and parameter types, and its return type. Because of this, the member definition uses only one line of

code, and terminating statements such as End Function or End Property are not valid in an interface.

In contrast, when you define an enumeration or structure, or a nested class or interface, it is necessary to include

their data members.

Member Modifiers. You cannot use any access modifiers when defining module members, nor can you specify

Shared (Visual Basic) or any procedure modifier except Overloads (Visual Basic). You can declare any member

with Shadows (Visual Basic), and you can use Default (Visual Basic) when defining a property, as well as ReadOnly

(Visual Basic) or WriteOnly (Visual Basic).

Inheritance. If the interface uses the Inherits Statement, you can specify one or more base interfaces. You can

inherit from two interfaces even if they each define a member with the same name. If you do so, the

implementing code must use name qualification to specify which member it is implementing.

An interface cannot inherit from another interface with a more restrictive access level. For example, a Public

interface cannot inherit from a Friend interface.

An interface cannot inherit from an interface nested within it.

Implementation. When a class uses the Implements Clause (Visual Basic) statement to implement this interface,

it must implement every member defined within the interface. Furthermore, each signature in the implementing

code must exactly match the corresponding signature defined in this interface. However, the name of the

member in the implementing code does not have to match the member name as defined in the interface.

When a class is implementing a procedure, it cannot designate the procedure as Shared.

Default Property. An interface can specify at most one property as its default property, which can be referenced

without using the property name. You specify such a property by declaring it with the Default (Visual Basic)

modifier.

Notice that this means that an interface can define a default property only if it inherits none.

Behavior

Access Level. All interface members implicitly have Public (Visual Basic) access. You cannot use any access

modifier when defining a member. However, a class implementing the interface can declare an access level for

each implemented member.

Interface Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/h9xt0sdd(d=printer).aspx

3 of 5 02.09.2016 17:40

If you assign a class instance to a variable, the access level of its members can depend on whether the data type

of the variable is the underlying interface or the implementing class. The following example illustrates this.

If you access class members through varAsInterface, they all have public access. However, if you access

members through varAsClass, the Sub procedure doSomething has private access.

Scope. An interface is in scope throughout its namespace, class, structure, or module.

The scope of every interface member is the entire interface.

Lifetime. An interface does not itself have a lifetime, nor do its members. When a class implements an interface

and an object is created as an instance of that class, the object has a lifetime within the application in which it is

running. For more information, see "Lifetime" in Class Statement (Visual Basic).

Example
The following example uses the Interface statement to define an interface named thisInterface, which must be

implemented with a Property statement and a Function statement.

Note that the Property and Function statements do not introduce blocks ending with End Property and End Function

within the interface. The interface defines only the signatures of its members. The full Property and Function blocks appear

in a class that implements thisInterface.

See Also
Interfaces (Visual Basic)

Class Statement (Visual Basic)

Public Interface IDemo

Sub doSomething()

End Interface

Public Class implementIDemo

Implements IDemo

Private Sub doSomething() Implements IDemo.doSomething

End Sub

End Class

Dim varAsInterface As IDemo = New implementIDemo()

Dim varAsClass As implementIDemo = New implementIDemo()

Public Interface thisInterface

Property thisProp(ByVal thisStr As String) As Char

Function thisFunc(ByVal thisInt As Integer) As Integer

End Interface

VB

VB

Interface Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/h9xt0sdd(d=printer).aspx

4 of 5 02.09.2016 17:40

Module Statement

Structure Statement

Property Statement

Function Statement (Visual Basic)

Sub Statement (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

Variance in Generic Interfaces (C# and Visual Basic)

In (Generic Modifier) (Visual Basic)

Out (Generic Modifier) (Visual Basic)

© 2016 Microsoft

Interface Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/h9xt0sdd(d=printer).aspx

5 of 5 02.09.2016 17:40

Function Statement (Visual Basic)

Declares the name, parameters, and code that define a Function procedure.

Syntax

Parts

attributelist

Optional. See Attribute List.

accessmodifier

Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

proceduremodifiers

Optional. Can be one of the following:

Overloads

Visual Studio 2015

[<attributelist>] [accessmodifier] [proceduremodifiers] [Shared] [Shadows] [

Async | Iterator]

Function name [(Of typeparamlist)] [(parameterlist)] [As returntype]

[Implements implementslist | Handles eventlist]

 [statements]

 [Exit Function]

 [statements]

End Function

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

1 of 8 02.09.2016 17:41

Overrides

Overridable

NotOverridable

MustOverride

MustOverride Overrides

NotOverridable Overrides

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

Async

Optional. See Async.

Iterator

Optional. See Iterator.

name

Required. Name of the procedure. See Declared Element Names (Visual Basic).

typeparamlist

Optional. List of type parameters for a generic procedure. See Type List.

parameterlist

Optional. List of local variable names representing the parameters of this procedure. See Parameter List (Visual

Basic).

returntype

Required if Option Strict is On. Data type of the value returned by this procedure.

Implements

Optional. Indicates that this procedure implements one or more Function procedures, each one defined in an

interface implemented by this procedure's containing class or structure. See Implements Statement.

implementslist

Required if Implements is supplied. List of Function procedures being implemented.

implementedprocedure [, implementedprocedure ...]

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

2 of 8 02.09.2016 17:41

Each implementedprocedure has the following syntax and parts:

interface.definedname

Part Description

interface Required. Name of an interface implemented by this procedure's containing class or structure.

definedname Required. Name by which the procedure is defined in interface.

Handles

Optional. Indicates that this procedure can handle one or more specific events. See Handles Clause (Visual Basic).

eventlist

Required if Handles is supplied. List of events this procedure handles.

eventspecifier [, eventspecifier ...]

Each eventspecifier has the following syntax and parts:

eventvariable.event

Part Description

eventvariable Required. Object variable declared with the data type of the class or structure that raises the

event.

event Required. Name of the event this procedure handles.

statements

Optional. Block of statements to be executed within this procedure.

End Function

Terminates the definition of this procedure.

Remarks
All executable code must be inside a procedure. Each procedure, in turn, is declared within a class, a structure, or a module

that is referred to as the containing class, structure, or module.

To return a value to the calling code, use a Function procedure; otherwise, use a Sub procedure.

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

3 of 8 02.09.2016 17:41

Defining a Function

You can define a Function procedure only at the module level. Therefore, the declaration context for a function must

be a class, a structure, a module, or an interface and can't be a source file, a namespace, a procedure, or a block. For

more information, see Declaration Contexts and Default Access Levels (Visual Basic).

Function procedures default to public access. You can adjust their access levels with the access modifiers.

A Function procedure can declare the data type of the value that the procedure returns. You can specify any data type

or the name of an enumeration, a structure, a class, or an interface. If you don't specify the returntype parameter, the

procedure returns Object.

If this procedure uses the Implements keyword, the containing class or structure must also have an Implements

statement that immediately follows its Class or Structure statement. The Implements statement must include each

interface that's specified in implementslist. However, the name by which an interface defines the Function (in

definedname) doesn't need to match the name of this procedure (in name).

Note

You can use lambda expressions to define function expressions inline. For more information, see Function Expression

(Visual Basic) and Lambda Expressions (Visual Basic).

Returning from a Function

When the Function procedure returns to the calling code, execution continues with the statement that follows the

statement that called the procedure.

To return a value from a function, you can either assign the value to the function name or include it in a Return

statement.

The Return statement simultaneously assigns the return value and exits the function, as the following example shows.

The following example assigns the return value to the function name myFunction and then uses the Exit Function

statement to return.

Function myFunction(ByVal j As Integer) As Double

Return 3.87 * j

End Function

Function myFunction(ByVal j As Integer) As Double

 myFunction = 3.87 * j

Exit Function

End Function

VB

VB

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

4 of 8 02.09.2016 17:41

The Exit Function and Return statements cause an immediate exit from a Function procedure. Any number of Exit

Function and Return statements can appear anywhere in the procedure, and you can mix Exit Function and Return

statements.

If you use Exit Function without assigning a value to name, the procedure returns the default value for the data type

that's specified in returntype. If returntype isn't specified, the procedure returns Nothing, which is the default value for

Object.

Calling a Function

You call a Function procedure by using the procedure name, followed by the argument list in parentheses, in an

expression. You can omit the parentheses only if you aren't supplying any arguments. However, your code is more

readable if you always include the parentheses.

You call a Function procedure the same way that you call any library function such as Sqrt, Cos, or ChrW.

You can also call a function by using the Call keyword. In that case, the return value is ignored. Use of the Call keyword

isn't recommended in most cases. For more information, see Call Statement (Visual Basic).

Visual Basic sometimes rearranges arithmetic expressions to increase internal efficiency. For that reason, you shouldn't

use a Function procedure in an arithmetic expression when the function changes the value of variables in the same

expression.

Async Functions

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

5 of 8 02.09.2016 17:41

The Async feature allows you to invoke asynchronous functions without using explicit callbacks or manually splitting

your code across multiple functions or lambda expressions.

If you mark a function with the Async modifier, you can use the Await operator in the function. When control reaches an

Await expression in the Async function, control returns to the caller, and progress in the function is suspended until

the awaited task completes. When the task is complete, execution can resume in the function.

Note

An Async procedure returns to the caller when either it encounters the first awaited object that’s not yet complete,

or it gets to the end of the Async procedure, whichever occurs first.

An Async function can have a return type of Task(Of TResult) or Task. An example of an Async function that has a

return type of Task(Of TResult) is provided below.

An Async function cannot declare any ByRef parameters.

A Sub Statement (Visual Basic) can also be marked with the Async modifier. This is primarily used for event handlers,

where a value cannot be returned. An Async Sub procedure can't be awaited, and the caller of an Async Sub

procedure can't catch exceptions that are thrown by the Sub procedure.

For more information about Async functions, see Asynchronous Programming with Async and Await (C# and Visual

Basic), Control Flow in Async Programs (C# and Visual Basic), and Async Return Types (C# and Visual Basic).

Iterator Functions

An iterator function performs a custom iteration over a collection, such as a list or array. An iterator function uses the

Yield statement to return each element one at a time. When a Yield statement is reached, the current location in code is

remembered. Execution is restarted from that location the next time the iterator function is called.

You call an iterator from client code by using a For Each…Next statement.

The return type of an iterator function can be IEnumerable, IEnumerable(Of T), IEnumerator, or IEnumerator(Of T).

For more information, see Iterators (C# and Visual Basic).

Example
The following example uses the Function statement to declare the name, parameters, and code that form the body of a

Function procedure. The ParamArray modifier enables the function to accept a variable number of arguments.

Public Function calcSum(ByVal ParamArray args() As Double) As Double

 calcSum = 0

If args.Length <= 0 Then Exit Function

For i As Integer = 0 To UBound(args, 1)

 calcSum += args(i)

VB

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

6 of 8 02.09.2016 17:41

Example
The following example invokes the function declared in the preceding example.

Example
In the following example, DelayAsync is an Async Function that has a return type of Task(Of TResult). DelayAsync has a

Return statement that returns an integer. Therefore the function declaration of DelayAsync needs to have a return type of

Task(Of Integer). Because the return type is Task(Of Integer), the evaluation of the Await expression in

DoSomethingAsync produces an integer. This is demonstrated in this statement: Dim result As Integer = Await

delayTask.

The startButton_Click procedure is an example of an Async Sub procedure. Because DoSomethingAsync is an Async

function, the task for the call to DoSomethingAsync must be awaited, as the following statement demonstrates: Await

DoSomethingAsync(). The startButton_Click Sub procedure must be defined with the Async modifier because it has an

Await expression.

Next i

End Function

Module Module1

Sub Main()

' In the following function call, calcSum's local variables

' are assigned the following values: args(0) = 4, args(1) = 3,

' and so on. The displayed sum is 10.

Dim returnedValue As Double = calcSum(4, 3, 2, 1)

 Console.WriteLine("Sum: " & returnedValue)

' Parameter args accepts zero or more arguments. The sum

' displayed by the following statements is 0.

 returnedValue = calcSum()

 Console.WriteLine("Sum: " & returnedValue)

End Sub

Public Function calcSum(ByVal ParamArray args() As Double) As Double

 calcSum = 0

If args.Length <= 0 Then Exit Function

For i As Integer = 0 To UBound(args, 1)

 calcSum += args(i)

Next i

End Function

End Module

' Imports System.Diagnostics

' Imports System.Threading.Tasks

VB

VB

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

7 of 8 02.09.2016 17:41

See Also
Sub Statement (Visual Basic)

Function Procedures (Visual Basic)

Parameter List (Visual Basic)

Dim Statement (Visual Basic)

Call Statement (Visual Basic)

Of Clause (Visual Basic)

Parameter Arrays (Visual Basic)

How to: Use a Generic Class (Visual Basic)

Troubleshooting Procedures (Visual Basic)

Lambda Expressions (Visual Basic)

Function Expression (Visual Basic)

© 2016 Microsoft

' This Click event is marked with the Async modifier.

Private Async Sub startButton_Click(sender As Object, e As RoutedEventArgs) Handles

startButton.Click

Await DoSomethingAsync()

End Sub

Private Async Function DoSomethingAsync() As Task

Dim delayTask As Task(Of Integer) = DelayAsync()

Dim result As Integer = Await delayTask

' The previous two statements may be combined into

' the following statement.

' Dim result As Integer = Await DelayAsync()

 Debug.WriteLine("Result: " & result)

End Function

Private Async Function DelayAsync() As Task(Of Integer)

Await Task.Delay(100)

Return 5

End Function

' Output:

' Result: 5

Function Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/sect4ck6(d=printer).aspx

8 of 8 02.09.2016 17:41

Sub Statement (Visual Basic)

Declares the name, parameters, and code that define a Sub procedure.

Syntax

Parts

attributelist

Optional. See Attribute List.

Partial

Optional. Indicates definition of a partial method. See Partial Methods (Visual Basic).

accessmodifier

Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

proceduremodifiers

Visual Studio 2015

[<attributelist>] [Partial] [accessmodifier] [proceduremodifiers]

[Shared] [Shadows] [Async]

Sub name [(Of typeparamlist)] [(parameterlist)]

[Implements implementslist | Handles eventlist]

 [statements]

 [Exit Sub]

 [statements]

End Sub

Sub Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/dz1z94ha(d=printer).aspx

1 of 6 02.09.2016 17:42

Optional. Can be one of the following:

Overloads

Overrides

Overridable

NotOverridable

MustOverride

MustOverride Overrides

NotOverridable Overrides

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

Async

Optional. See Async.

name

Required. Name of the procedure. See Declared Element Names (Visual Basic). To create a constructor procedure

for a class, set the name of a Sub procedure to the New keyword. For more information, see Object Lifetime: How

Objects Are Created and Destroyed (Visual Basic).

typeparamlist

Optional. List of type parameters for a generic procedure. See Type List.

parameterlist

Optional. List of local variable names representing the parameters of this procedure. See Parameter List (Visual

Basic).

Implements

Optional. Indicates that this procedure implements one or more Sub procedures, each one defined in an interface

implemented by this procedure's containing class or structure. See Implements Statement.

implementslist

Required if Implements is supplied. List of Sub procedures being implemented.

implementedprocedure [, implementedprocedure ...]

Each implementedprocedure has the following syntax and parts:

Sub Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/dz1z94ha(d=printer).aspx

2 of 6 02.09.2016 17:42

interface.definedname

Part Description

interface Required. Name of an interface implemented by this procedure's containing class or structure.

definedname Required. Name by which the procedure is defined in interface.

Handles

Optional. Indicates that this procedure can handle one or more specific events. See Handles Clause (Visual Basic).

eventlist

Required if Handles is supplied. List of events this procedure handles.

eventspecifier [, eventspecifier ...]

Each eventspecifier has the following syntax and parts:

eventvariable.event

Part Description

eventvariable Required. Object variable declared with the data type of the class or structure that raises the

event.

event Required. Name of the event this procedure handles.

statements

Optional. Block of statements to run within this procedure.

End Sub

Terminates the definition of this procedure.

Remarks
All executable code must be inside a procedure. Use a Sub procedure when you don't want to return a value to the calling

code. Use a Function procedure when you want to return a value.

Defining a Sub Procedure

You can define a Sub procedure only at the module level. The declaration context for a sub procedure must, therefore,

Sub Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/dz1z94ha(d=printer).aspx

3 of 6 02.09.2016 17:42

be a class, a structure, a module, or an interface and can't be a source file, a namespace, a procedure, or a block. For

more information, see Declaration Contexts and Default Access Levels (Visual Basic).

Sub procedures default to public access. You can adjust their access levels by using the access modifiers.

If the procedure uses the Implements keyword, the containing class or structure must have an Implements statement

that immediately follows its Class or Structure statement. The Implements statement must include each interface

that's specified in implementslist. However, the name by which an interface defines the Sub (in definedname) doesn't

have to match the name of this procedure (in name).

Returning from a Sub Procedure

When a Sub procedure returns to the calling code, execution continues with the statement after the statement that

called it.

The following example shows a return from a Sub procedure.

The Exit Sub and Return statements cause an immediate exit from a Sub procedure. Any number of Exit Sub and

Return statements can appear anywhere in the procedure, and you can mix Exit Sub and Return statements.

Calling a Sub Procedure

You call a Sub procedure by using the procedure name in a statement and then following that name with its argument

list in parentheses. You can omit the parentheses only if you don't supply any arguments. However, your code is more

readable if you always include the parentheses.

A Sub procedure and a Function procedure can have parameters and perform a series of statements. However, a

Function procedure returns a value, and a Sub procedure doesn't. Therefore, you can't use a Sub procedure in an

expression.

You can use the Call keyword when you call a Sub procedure, but that keyword isn't recommended for most uses. For

more information, see Call Statement (Visual Basic).

Visual Basic sometimes rearranges arithmetic expressions to increase internal efficiency. For that reason, if your

argument list includes expressions that call other procedures, you shouldn't assume that those expressions will be

called in a particular order.

Async Sub Procedures

By using the Async feature, you can invoke asynchronous functions without using explicit callbacks or manually

splitting your code across multiple functions or lambda expressions.

If you mark a procedure with the Async modifier, you can use the Await operator in the procedure. When control

Sub mySub(ByVal q As String)

Return

End Sub

VB

Sub Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/dz1z94ha(d=printer).aspx

4 of 6 02.09.2016 17:42

reaches an Await expression in the Async procedure, control returns to the caller, and progress in the procedure is

suspended until the awaited task completes. When the task is complete, execution can resume in the procedure.

Note

An Async procedure returns to the caller when either the first awaited object that’s not yet complete is encountered

or the end of the Async procedure is reached, whichever occurs first.

You can also mark a Function Statement (Visual Basic) with the Async modifier. An Async function can have a return

type of Task(Of TResult) or Task. An example later in this topic shows an Async function that has a return type of

Task(Of TResult).

Async Sub procedures are primarily used for event handlers, where a value can't be returned. An Async Sub procedure

can't be awaited, and the caller of an Async Sub procedure can't catch exceptions that the Sub procedure throws.

An Async procedure can't declare any ByRef parameters.

For more information about Async procedures, see Asynchronous Programming with Async and Await (C# and Visual

Basic), Control Flow in Async Programs (C# and Visual Basic), and Async Return Types (C# and Visual Basic).

Example
The following example uses the Sub statement to define the name, parameters, and code that form the body of a Sub

procedure.

Example
In the following example, DelayAsync is an an Async Function that has a return type of Task(Of TResult). DelayAsync has

a Return statement that returns an integer. Therefore, the function declaration of DelayAsync must have a return type of

Task(Of Integer). Because the return type is Task(Of Integer), the evaluation of the Await expression in

DoSomethingAsync produces an integer, as the following statement shows: Dim result As Integer = Await

delayTask.

Sub computeArea(ByVal length As Double, ByVal width As Double)

' Declare local variable.

Dim area As Double

If length = 0 Or width = 0 Then

' If either argument = 0 then exit Sub immediately.

Exit Sub

End If

' Calculate area of rectangle.

 area = length * width

' Print area to Immediate window.

 Debug.WriteLine(area)

End Sub

VB

Sub Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/dz1z94ha(d=printer).aspx

5 of 6 02.09.2016 17:42

The startButton_Click procedure is an example of an Async Sub procedure. Because DoSomethingAsync is an Async

function, the task for the call to DoSomethingAsync must be awaited, as the following statement shows: Await

DoSomethingAsync(). The startButton_Click Sub procedure must be defined with the Async modifier because it has an

Await expression.

See Also
Implements Statement

Function Statement (Visual Basic)

Parameter List (Visual Basic)

Dim Statement (Visual Basic)

Call Statement (Visual Basic)

Of Clause (Visual Basic)

Parameter Arrays (Visual Basic)

How to: Use a Generic Class (Visual Basic)

Troubleshooting Procedures (Visual Basic)

Partial Methods (Visual Basic)

© 2016 Microsoft

' Imports System.Diagnostics

' Imports System.Threading.Tasks

' This Click event is marked with the Async modifier.

Private Async Sub startButton_Click(sender As Object, e As RoutedEventArgs) Handles

startButton.Click

Await DoSomethingAsync()

End Sub

Private Async Function DoSomethingAsync() As Task

Dim delayTask As Task(Of Integer) = DelayAsync()

Dim result As Integer = Await delayTask

' The previous two statements may be combined into

' the following statement.

' Dim result As Integer = Await DelayAsync()

 Debug.WriteLine("Result: " & result)

End Function

Private Async Function DelayAsync() As Task(Of Integer)

Await Task.Delay(100)

Return 5

End Function

' Output:

' Result: 5

VB

Sub Statement (Visual Basic) https://msdn.microsoft.com/en-us/library/dz1z94ha(d=printer).aspx

6 of 6 02.09.2016 17:42

Declare Statement

Declares a reference to a procedure implemented in an external file.

Syntax

Parts

Term Definition

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

Shadows Optional. See Shadows.

charsetmodifier Optional. Specifies character set and file search information. Can be one of the following:

Ansi (Visual Basic) (default)

Unicode (Visual Basic)

Auto (Visual Basic)

Visual Studio 2015

[<attributelist>] [accessmodifier] [Shadows] [Overloads] _

Declare [charsetmodifier] [Sub] name Lib "libname" _

[Alias "aliasname"] [([parameterlist])]

' ‐or‐

[<attributelist>] [accessmodifier] [Shadows] [Overloads] _

Declare [charsetmodifier] [Function] name Lib "libname" _

[Alias "aliasname"] [([parameterlist])] [As returntype]

Declare Statement https://msdn.microsoft.com/en-us/library/4zey12w5(d=printer).aspx

1 of 6 02.09.2016 17:43

Sub Optional, but either Sub or Function must appear. Indicates that the external procedure does not

return a value.

Function Optional, but either Sub or Function must appear. Indicates that the external procedure returns a

value.

name Required. Name of this external reference. For more information, see Declared Element Names

(Visual Basic).

Lib Required. Introduces a Lib clause, which identifies the external file (DLL or code resource) that

contains an external procedure.

libname Required. Name of the file that contains the declared procedure.

Alias Optional. Indicates that the procedure being declared cannot be identified within its file by the

name specified in name. You specify its identification in aliasname.

aliasname Required if you use the Alias keyword. String that identifies the procedure in one of two ways:

The entry point name of the procedure within its file, within quotes ("")

-or-

A number sign (#) followed by an integer specifying the ordinal number of the procedure's entry

point within its file

parameterlist Required if the procedure takes parameters. See Parameter List (Visual Basic).

returntype Required if Function is specified and Option Strict is On. Data type of the value returned by the

procedure.

Remarks
Sometimes you need to call a procedure defined in a file (such as a DLL or code resource) outside your project. When you

do this, the Visual Basic compiler does not have access to the information it needs to call the procedure correctly, such as

where the procedure is located, how it is identified, its calling sequence and return type, and the string character set it

uses. The Declare statement creates a reference to an external procedure and supplies this necessary information.

You can use Declare only at module level. This means the declaration context for an external reference must be a class,

structure, or module, and cannot be a source file, namespace, interface, procedure, or block. For more information, see

Declaration Contexts and Default Access Levels (Visual Basic).

External references default to Public (Visual Basic) access. You can adjust their access levels with the access modifiers.

Rules

Attributes. You can apply attributes to an external reference. Any attribute you apply has effect only in your

Declare Statement https://msdn.microsoft.com/en-us/library/4zey12w5(d=printer).aspx

2 of 6 02.09.2016 17:43

project, not in the external file.

Modifiers. External procedures are implicitly Shared (Visual Basic). You cannot use the Shared keyword when

declaring an external reference, and you cannot alter its shared status.

An external procedure cannot participate in overriding, implement interface members, or handle events.

Accordingly, you cannot use the Overrides, Overridable, NotOverridable, MustOverride, Implements, or

Handles keyword in a Declare statement.

External Procedure Name. You do not have to give this external reference the same name (in name) as the

procedure's entry-point name within its external file (aliasname). You can use an Alias clause to specify the

entry-point name. This can be useful if the external procedure has the same name as a Visual Basic reserved

modifier or a variable, procedure, or any other programming element in the same scope.

Note

Entry-point names in most DLLs are case-sensitive.

External Procedure Number. Alternatively, you can use an Alias clause to specify the ordinal number of the

entry point within the export table of the external file. To do this, you begin aliasname with a number sign (#).

This can be useful if any character in the external procedure name is not allowed in Visual Basic, or if the external

file exports the procedure without a name.

Data Type Rules

Parameter Data Types. If Option Strict is On, you must specify the data type of each parameter in

parameterlist. This can be any data type or the name of an enumeration, structure, class, or interface. Within

parameterlist, you use an As clause to specify the data type of the argument to be passed to each parameter.

Note

If the external procedure was not written for the .NET Framework, you must take care that the data types

correspond. For example, if you declare an external reference to a Visual Basic 6.0 procedure with an Integer

parameter (16 bits in Visual Basic 6.0), you must identify the corresponding argument as Short in the Declare

statement, because that is the 16-bit integer type in Visual Basic. Similarly, Long has a different data width in

Visual Basic 6.0, and Date is implemented differently.

Return Data Type. If the external procedure is a Function and Option Strict is On, you must specify the data

type of the value returned to the calling code. This can be any data type or the name of an enumeration,

structure, class, or interface.

Note

Declare Statement https://msdn.microsoft.com/en-us/library/4zey12w5(d=printer).aspx

3 of 6 02.09.2016 17:43

The Visual Basic compiler does not verify that your data types are compatible with those of the external

procedure. If there is a mismatch, the common language runtime generates a MarshalDirectiveException

exception at run time.

Default Data Types. If Option Strict is Off and you do not specify the data type of a parameter in

parameterlist, the Visual Basic compiler converts the corresponding argument to the Object Data Type. Similarly,

if you do not specify returntype, the compiler takes the return data type to be Object.

Note

Because you are dealing with an external procedure that might have been written on a different platform, it is

dangerous to make any assumptions about data types or to allow them to default. It is much safer to specify

the data type of every parameter and of the return value, if any. This also improves the readability of your

code.

Behavior

Scope. An external reference is in scope throughout its class, structure, or module.

Lifetime. An external reference has the same lifetime as the class, structure, or module in which it is declared.

Calling an External Procedure. You call an external procedure the same way you call a Function or Sub

procedure—by using it in an expression if it returns a value, or by specifying it in a Call Statement (Visual Basic) if

it does not return a value.

You pass arguments to the external procedure exactly as specified by parameterlist in the Declare statement. Do

not take into account how the parameters were originally declared in the external file. Similarly, if there is a

return value, use it exactly as specified by returntype in the Declare statement.

Character Sets. You can specify in charsetmodifier how Visual Basic should marshal strings when it calls the

external procedure. The Ansi modifier directs Visual Basic to marshal all strings to ANSI values, and the Unicode

modifier directs it to marshal all strings to Unicode values. The Auto modifier directs Visual Basic to marshal

strings according to .NET Framework rules based on the external reference name, or aliasname if specified. The

default value is Ansi.

charsetmodifier also specifies how Visual Basic should look up the external procedure within its external file. Ansi

and Unicode both direct Visual Basic to look it up without modifying its name during the search. Auto directs

Visual Basic to determine the base character set of the run-time platform and possibly modify the external

procedure name, as follows:

On an ANSI platform, such as Windows 95, Windows 98, or Windows Millennium Edition, first look up the

external procedure with no name modification. If that fails, append "A" to the end of the external

procedure name and look it up again.

On a Unicode platform, such as Windows NT, Windows 2000, or Windows XP, first look up the external

procedure with no name modification. If that fails, append "W" to the end of the external procedure

name and look it up again.

Declare Statement https://msdn.microsoft.com/en-us/library/4zey12w5(d=printer).aspx

4 of 6 02.09.2016 17:43

Mechanism. Visual Basic uses the .NET Framework platform invoke (PInvoke) mechanism to resolve and access

external procedures. The Declare statement and the DllImportAttribute class both use this mechanism

automatically, and you do not need any knowledge of PInvoke. For more information, see Walkthrough: Calling

Windows APIs (Visual Basic).

 Security Note

If the external procedure runs outside the common language runtime (CLR), it is unmanaged code. When you call

such a procedure, for example a Win32 API function or a COM method, you might expose your application to

security risks. For more information, see Secure Coding Guidelines for Unmanaged Code.

Example
The following example declares an external reference to a Function procedure that returns the current user name. It then

calls the external procedure GetUserNameA as part of the getUser procedure.

Example
The DllImportAttribute provides an alternative way of using functions in unmanaged code. The following example declares

an imported function without using a Declare statement.

Declare Function getUserName Lib "advapi32.dll" Alias "GetUserNameA" (

ByVal lpBuffer As String, ByRef nSize As Integer) As Integer

Sub getUser()

Dim buffer As String = New String(CChar(" "), 25)

Dim retVal As Integer = getUserName(buffer, 25)

Dim userName As String = Strings.Left(buffer, InStr(buffer, Chr(0)) ‐ 1)

 MsgBox(userName)

End Sub

' Add an Imports statement at the top of the class, structure, or

' module that uses the DllImport attribute.

Imports System.Runtime.InteropServices

<DllImportAttribute("kernel32.dll", EntryPoint:="MoveFileW",

 SetLastError:=True, CharSet:=CharSet.Unicode,

 ExactSpelling:=True,

 CallingConvention:=CallingConvention.StdCall)>

Public Shared Function moveFile(ByVal src As String,

ByVal dst As String) As Boolean

VB

VB

VB

Declare Statement https://msdn.microsoft.com/en-us/library/4zey12w5(d=printer).aspx

5 of 6 02.09.2016 17:43

See Also
LastDllError

Imports Statement (.NET Namespace and Type)

AddressOf Operator (Visual Basic)

Function Statement (Visual Basic)

Sub Statement (Visual Basic)

Parameter List (Visual Basic)

Call Statement (Visual Basic)

Walkthrough: Calling Windows APIs (Visual Basic)

© 2016 Microsoft

' This function copies a file from the path src to the path dst.

' Leave this function empty. The DLLImport attribute forces calls

' to moveFile to be forwarded to MoveFileW in KERNEL32.DLL.

End Function

Declare Statement https://msdn.microsoft.com/en-us/library/4zey12w5(d=printer).aspx

6 of 6 02.09.2016 17:43

Operator Statement

Declares the operator symbol, operands, and code that define an operator procedure on a class or structure.

Syntax

Parts

attrlist

Optional. See Attribute List.

Public

Required. Indicates that this operator procedure has Public (Visual Basic) access.

Overloads

Optional. See Overloads (Visual Basic).

Shared

Required. Indicates that this operator procedure is a Shared (Visual Basic) procedure.

Shadows

Optional. See Shadows (Visual Basic).

Widening

Required for a conversion operator unless you specify Narrowing. Indicates that this operator procedure defines a

Widening (Visual Basic) conversion. See "Widening and Narrowing Conversions" on this Help page.

Narrowing

Required for a conversion operator unless you specify Widening. Indicates that this operator procedure defines a

Narrowing (Visual Basic) conversion. See "Widening and Narrowing Conversions" on this Help page.

operatorsymbol

Required. The symbol or identifier of the operator that this operator procedure defines.

Visual Studio 2015

[<attrlist>] Public [Overloads] Shared [Shadows] [Widening | Narrowing]

Operator operatorsymbol (operand1 [, operand2]) [As [<attrlist>] type]

 [statements]

 [statements]

 Return returnvalue

 [statements]

End Operator

Operator Statement https://msdn.microsoft.com/en-us/library/hddt295a(d=printer).aspx

1 of 5 02.09.2016 17:43

operand1

Required. The name and type of the single operand of a unary operator (including a conversion operator) or the

left operand of a binary operator.

operand2

Required for binary operators. The name and type of the right operand of a binary operator.

operand1 and operand2 have the following syntax and parts:

[ByVal] operandname [As operandtype]

Part Description

ByVal Optional, but the passing mechanism must be ByVal (Visual Basic).

operandname Required. Name of the variable representing this operand. See Declared Element Names (Visual

Basic).

operandtype Optional unless Option Strict is On. Data type of this operand.

type

Optional unless Option Strict is On. Data type of the value the operator procedure returns.

statements

Optional. Block of statements that the operator procedure runs.

returnvalue

Required. The value that the operator procedure returns to the calling code.

End Operator

Required. Terminates the definition of this operator procedure.

Remarks
You can use Operator only in a class or structure. This means the declaration context for an operator cannot be a source

file, namespace, module, interface, procedure, or block. For more information, see Declaration Contexts and Default

Access Levels (Visual Basic).

All operators must be Public Shared. You cannot specify ByRef, Optional, or ParamArray for either operand.

You cannot use the operator symbol or identifier to hold a return value. You must use the Return statement, and it must

specify a value. Any number of Return statements can appear anywhere in the procedure.

Defining an operator in this way is called operator overloading, whether or not you use the Overloads keyword. The

following table lists the operators you can define.

Type Operators

Operator Statement https://msdn.microsoft.com/en-us/library/hddt295a(d=printer).aspx

2 of 5 02.09.2016 17:43

Unary +, -, IsFalse, IsTrue, Not

Binary +, -, *, /, \, &, ^, >>, <<, =, <>, >, >=, <, <=, And, Like, Mod, Or, Xor

Conversion (unary) CType

Note that the = operator in the binary list is the comparison operator, not the assignment operator.

When you define CType, you must specify either Widening or Narrowing.

Matched Pairs

You must define certain operators as matched pairs. If you define either operator of such a pair, you must define the

other as well. The matched pairs are the following:

= and <>

> and <

>= and <=

IsTrue and IsFalse

Data Type Restrictions

Every operator you define must involve the class or structure on which you define it. This means that the class or

structure must appear as the data type of the following:

The operand of a unary operator.

At least one of the operands of a binary operator.

Either the operand or the return type of a conversion operator.

Certain operators have additional data type restrictions, as follows:

If you define the IsTrue and IsFalse operators, they must both return the Boolean type.

If you define the << and >> operators, they must both specify the Integer type for the operandtype of

operand2.

The return type does not have to correspond to the type of either operand. For example, a comparison operator such

as = or <> can return Boolean even if neither operand is Boolean.

Logical and Bitwise Operators

Operator Statement https://msdn.microsoft.com/en-us/library/hddt295a(d=printer).aspx

3 of 5 02.09.2016 17:43

The And, Or, Not, and Xor operators can perform either logical or bitwise operations in Visual Basic. However, if you

define one of these operators on a class or structure, you can define only its bitwise operation.

You cannot define the AndAlso operator directly with an Operator statement. However, you can use AndAlso if you

have fulfilled the following conditions:

You have defined And on the same operand types you want to use for AndAlso.

Your definition of And returns the same type as the class or structure on which you have defined it.

You have defined the IsFalse operator on the class or structure on which you have defined And.

Similarly, you can use OrElse if you have defined Or on the same operands, with the return type of the class or

structure, and you have defined IsTrue on the class or structure.

Widening and Narrowing Conversions

A widening conversion always succeeds at run time, while a narrowing conversion can fail at run time. For more

information, see Widening and Narrowing Conversions (Visual Basic).

If you declare a conversion procedure to be Widening, your procedure code must not generate any failures. This

means the following:

It must always return a valid value of type type.

It must handle all possible exceptions and other error conditions.

It must handle any error returns from any procedures it calls.

If there is any possibility that a conversion procedure might not succeed, or that it might cause an unhandled

exception, you must declare it to be Narrowing.

Example
The following code example uses the Operator statement to define the outline of a structure that includes operator

procedures for the And, Or, IsFalse, and IsTrue operators. And and Or each take two operands of type abc and return type

abc. IsFalse and IsTrue each take a single operand of type abc and return Boolean. These definitions allow the calling code

to use And, AndAlso, Or, and OrElse with operands of type abc.

Public Structure abc

Dim d As Date

Public Shared Operator And(ByVal x As abc, ByVal y As abc) As abc

Dim r As New abc

' Insert code to calculate And of x and y.

Return r

VB

Operator Statement https://msdn.microsoft.com/en-us/library/hddt295a(d=printer).aspx

4 of 5 02.09.2016 17:43

See Also
IsFalse Operator (Visual Basic)

IsTrue Operator (Visual Basic)

Widening (Visual Basic)

Narrowing (Visual Basic)

Widening and Narrowing Conversions (Visual Basic)

Operator Procedures (Visual Basic)

How to: Define an Operator (Visual Basic)

How to: Define a Conversion Operator (Visual Basic)

How to: Call an Operator Procedure (Visual Basic)

How to: Use a Class that Defines Operators (Visual Basic)

© 2016 Microsoft

End Operator

Public Shared Operator Or(ByVal x As abc, ByVal y As abc) As abc

Dim r As New abc

' Insert code to calculate Or of x and y.

Return r

End Operator

Public Shared Operator IsFalse(ByVal z As abc) As Boolean

Dim b As Boolean

' Insert code to calculate IsFalse of z.

Return b

End Operator

Public Shared Operator IsTrue(ByVal z As abc) As Boolean

Dim b As Boolean

' Insert code to calculate IsTrue of z.

Return b

End Operator

End Structure

Operator Statement https://msdn.microsoft.com/en-us/library/hddt295a(d=printer).aspx

5 of 5 02.09.2016 17:43

Property Statement

Declares the name of a property, and the property procedures used to store and retrieve the value of the property.

Syntax

Parts

attributelist

Optional. List of attributes that apply to this property or Get or Set procedure. See Attribute List.

Default

Optional. Specifies that this property is the default property for the class or structure on which it is defined. Default

properties must accept parameters and can be set and retrieved without specifying the property name. If you

declare the property as Default, you cannot use Private on the property or on either of its property procedures.

accessmodifier

Optional on the Property statement and on at most one of the Get and Set statements. Can be one of the

following:

Public

Visual Studio 2015

[<attributelist>] [Default] [accessmodifier]

[propertymodifiers] [Shared] [Shadows] [ReadOnly | WriteOnly] [Iterator]

Property name ([parameterlist]) [As returntype] [Implements implementslist]

 [<attributelist>] [accessmodifier] Get

 [statements]

 End Get

 [<attributelist>] [accessmodifier] Set

(ByVal value As returntype [, parameterlist])

 [statements]

 End Set

End Property

‐ or ‐

[<attributelist>] [Default] [accessmodifier]

[propertymodifiers] [Shared] [Shadows] [ReadOnly | WriteOnly]

Property name ([parameterlist]) [As returntype] [Implements implementslist]

Property Statement https://msdn.microsoft.com/en-us/library/zzh9ha57(d=printer).aspx

1 of 6 02.09.2016 17:51

Protected

Friend

Private

Protected Friend

See Access Levels in Visual Basic.

propertymodifiers

Optional. Can be one of the following:

Overloads

Overrides

Overridable

NotOverridable

MustOverride

MustOverride Overrides

NotOverridable Overrides

Shared

Optional. See Shared (Visual Basic).

Shadows

Optional. See Shadows (Visual Basic).

ReadOnly

Optional. See ReadOnly (Visual Basic).

WriteOnly

Optional. See WriteOnly (Visual Basic).

Iterator

Optional. See Iterator.

name

Required. Name of the property. See Declared Element Names (Visual Basic).

parameterlist

Optional. List of local variable names representing the parameters of this property, and possible additional

parameters of the Set procedure. See Parameter List (Visual Basic).

Property Statement https://msdn.microsoft.com/en-us/library/zzh9ha57(d=printer).aspx

2 of 6 02.09.2016 17:51

returntype

Required if Option Strict is On. Data type of the value returned by this property.

Implements

Optional. Indicates that this property implements one or more properties, each one defined in an interface

implemented by this property's containing class or structure. See Implements Statement.

implementslist

Required if Implements is supplied. List of properties being implemented.

implementedproperty [, implementedproperty ...]

Each implementedproperty has the following syntax and parts:

interface.definedname

Part Description

interface Required. Name of an interface implemented by this property's containing class or structure.

definedname Required. Name by which the property is defined in interface.

Get

Optional. Required if the property is marked WriteOnly. Starts a Get property procedure that is used to return the

value of the property.

statements

Optional. Block of statements to run within the Get or Set procedure.

End Get

Terminates the Get property procedure.

Set

Optional. Required if the property is marked ReadOnly. Starts a Set property procedure that is used to store the

value of the property.

End Set

Terminates the Set property procedure.

End Property

Terminates the definition of this property.

Property Statement https://msdn.microsoft.com/en-us/library/zzh9ha57(d=printer).aspx

3 of 6 02.09.2016 17:51

Remarks
The Property statement introduces the declaration of a property. A property can have a Get procedure (read only), a Set

procedure (write only), or both (read-write). You can omit the Get and Set procedure when using an auto-implemented

property. For more information, see Auto-Implemented Properties (Visual Basic).

You can use Property only at class level. This means the declaration context for a property must be a class, structure,

module, or interface, and cannot be a source file, namespace, procedure, or block. For more information, see Declaration

Contexts and Default Access Levels (Visual Basic).

By default, properties use public access. You can adjust a property's access level with an access modifier on the Property

statement, and you can optionally adjust one of its property procedures to a more restrictive access level.

Visual Basic passes a parameter to the Set procedure during property assignments. If you do not supply a parameter for

Set, the integrated development environment (IDE) uses an implicit parameter named value. This parameter holds the

value to be assigned to the property. You typically store this value in a private local variable and return it whenever the

Get procedure is called.

Rules

Mixed Access Levels. If you are defining a read-write property, you can optionally specify a different access

level for either the Get or the Set procedure, but not both. If you do this, the procedure access level must be

more restrictive than the property's access level. For example, if the property is declared Friend, you can declare

the Set procedure Private, but not Public.

If you are defining a ReadOnly or WriteOnly property, the single property procedure (Get or Set, respectively)

represents all of the property. You cannot declare a different access level for such a procedure, because that

would set two access levels for the property.

Return Type. The Property statement can declare the data type of the value it returns. You can specify any data

type or the name of an enumeration, structure, class, or interface.

If you do not specify returntype, the property returns Object.

Implementation. If this property uses the Implements keyword, the containing class or structure must have an

Implements statement immediately following its Class or Structure statement. The Implements statement

must include each interface specified in implementslist. However, the name by which an interface defines the

Property (in definedname) does not have to be the same as the name of this property (in name).

Behavior

Returning from a Property Procedure. When the Get or Set procedure returns to the calling code, execution

continues with the statement following the statement that invoked it.

The Exit Property and Return statements cause an immediate exit from a property procedure. Any number of

Exit Property and Return statements can appear anywhere in the procedure, and you can mix Exit Property

and Return statements.

Return Value. To return a value from a Get procedure, you can either assign the value to the property name or

Property Statement https://msdn.microsoft.com/en-us/library/zzh9ha57(d=printer).aspx

4 of 6 02.09.2016 17:51

include it in a Return statement. The following example assigns the return value to the property name

quoteForTheDay and then uses the Exit Property statement to return.

If you use Exit Property without assigning a value to name, the Get procedure returns the default value for the

property's data type.

The Return statement at the same time assigns the Get procedure return value and exits the procedure. The

following example shows this.

Example
The following example declares a property in a class.

Private quoteValue As String = "No quote assigned yet."

ReadOnly Property quoteForTheDay() As String

Get

 quoteForTheDay = quoteValue

Exit Property

End Get

End Property

Private quoteValue As String = "No quote assigned yet."

ReadOnly Property quoteForTheDay() As String

Get

Return quoteValue

End Get

End Property

Class Class1

' Define a local variable to store the property value.

Private propertyValue As String

' Define the property.

Public Property prop1() As String

Get

' The Get property procedure is called when the value

' of a property is retrieved.

VB

VB

VB

VB

VB

Property Statement https://msdn.microsoft.com/en-us/library/zzh9ha57(d=printer).aspx

5 of 6 02.09.2016 17:51

See Also
Auto-Implemented Properties (Visual Basic)

Objects and Classes in Visual Basic

Get Statement

Set Statement (Visual Basic)

Parameter List (Visual Basic)

Default (Visual Basic)

© 2016 Microsoft

Return propertyValue

End Get

Set(ByVal value As String)

' The Set property procedure is called when the value

' of a property is modified. The value to be assigned

' is passed in the argument to Set.

 propertyValue = value

End Set

End Property

End Class

Property Statement https://msdn.microsoft.com/en-us/library/zzh9ha57(d=printer).aspx

6 of 6 02.09.2016 17:51

Event Statement

Declares a user-defined event.

Syntax

Parts

Part Description

attrlist Optional. List of attributes that apply to this event. Multiple attributes are separated by commas.

You must enclose the Attribute List (Visual Basic) in angle brackets ("<" and ">").

accessmodifier Optional. Specifies what code can access the event. Can be one of the following:

Public—any code that can access the element that declares it can access it.

Visual Studio 2015

[<attrlist>] [accessmodifier] _

[Shared] [Shadows] Event eventname[(parameterlist)] _

[Implements implementslist]

' ‐or‐

[<attrlist>] [accessmodifier] _

[Shared] [Shadows] Event eventname As delegatename _

[Implements implementslist]

' ‐or‐

 [<attrlist>] [accessmodifier] _

[Shared] [Shadows] Custom Event eventname As delegatename _

[Implements implementslist]

 [<attrlist>] AddHandler(ByVal value As delegatename)

 [statements]

 End AddHandler

 [<attrlist>] RemoveHandler(ByVal value As delegatename)

 [statements]

 End RemoveHandler

 [<attrlist>] RaiseEvent(delegatesignature)

 [statements]

 End RaiseEvent

End Event

Event Statement https://msdn.microsoft.com/en-us/library/6hwhs172(d=printer).aspx

1 of 6 02.09.2016 17:51

Protected—only code within its class or a derived class can access it.

Friend—only code in the same assembly can access it.

Private—only code in the element that declares it can access it.

You can specify Protected Friend to enable access from code in the event's class, a derived class,

or the same assembly.

Shared Optional. Specifies that this event is not associated with a specific instance of a class or structure.

Shadows Optional. Indicates that this event redeclares and hides an identically named programming

element, or set of overloaded elements, in a base class. You can shadow any kind of declared

element with any other kind.

A shadowed element is unavailable from within the derived class that shadows it, except from

where the shadowing element is inaccessible. For example, if a Private element shadows a

base-class element, code that does not have permission to access the Private element accesses

the base-class element instead.

eventname Required. Name of the event; follows standard variable naming conventions.

parameterlist Optional. List of local variables that represent the parameters of this event. You must enclose the

Parameter List (Visual Basic) in parentheses.

Implements Optional. Indicates that this event implements an event of an interface.

implementslist Required if Implements is supplied. List of Sub procedures being implemented. Multiple

procedures are separated by commas:

implementedprocedure [, implementedprocedure ...]

Each implementedprocedure has the following syntax and parts:

interface.definedname

interface - Required. Name of an interface that this procedure's containing class or

structure is implementing.

Definedname - Required. Name by which the procedure is defined in interface. This does

not have to be the same as name, the name that this procedure is using to implement the

defined procedure.

Custom Required. Events declared as Custom must define custom AddHandler, RemoveHandler, and

RaiseEvent accessors.

delegatename Optional. The name of a delegate that specifies the event-handler signature.

AddHandler Required. Declares an AddHandler accessor, which specifies the statements to execute when an

event handler is added, either explicitly by using the AddHandler statement or implicitly by

using the Handles clause.

End AddHandler Required. Terminates the AddHandler block.

Event Statement https://msdn.microsoft.com/en-us/library/6hwhs172(d=printer).aspx

2 of 6 02.09.2016 17:51

value Required. Parameter name.

RemoveHandler Required. Declares a RemoveHandler accessor, which specifies the statements to execute when

an event handler is removed using the RemoveHandler statement.

End

RemoveHandler

Required. Terminates the RemoveHandler block.

RaiseEvent Required. Declares a RaiseEvent accessor, which specifies the statements to execute when the

event is raised using the RaiseEvent statement. Typically, this invokes a list of delegates

maintained by the AddHandler and RemoveHandler accessors.

End RaiseEvent Required. Terminates the RaiseEvent block.

delegatesignature Required. List of parameters that matches the parameters required by the delegatename

delegate. You must enclose the Parameter List (Visual Basic) in parentheses.

statements Optional. Statements that contain the bodies of the AddHandler, RemoveHandler, and

RaiseEvent methods.

End Event Required. Terminates the Event block.

Remarks
Once the event has been declared, use the RaiseEvent statement to raise the event. A typical event might be declared

and raised as shown in the following fragments:

Note

You can declare event arguments just as you do arguments of procedures, with the following exceptions: events

cannot have named arguments, ParamArray arguments, or Optional arguments. Events do not have return values.

To handle an event, you must associate it with an event handler subroutine using either the Handles or AddHandler

statement. The signatures of the subroutine and the event must match. To handle a shared event, you must use the

Public Class EventSource

' Declare an event.

Public Event LogonCompleted(ByVal UserName As String)

Sub CauseEvent()

' Raise an event on successful logon.

RaiseEvent LogonCompleted("AustinSteele")

End Sub

End Class

VB

Event Statement https://msdn.microsoft.com/en-us/library/6hwhs172(d=printer).aspx

3 of 6 02.09.2016 17:51

AddHandler statement.

You can use Event only at module level. This means the declaration context for an event must be a class, structure,

module, or interface, and cannot be a source file, namespace, procedure, or block. For more information, see Declaration

Contexts and Default Access Levels (Visual Basic).

In most circumstances, you can use the first syntax in the Syntax section of this topic for declaring events. However, some

scenarios require that you have more control over the detailed behavior of the event. The last syntax in the Syntax section

of this topic, which uses the Custom keyword, provides that control by enabling you to define custom events. In a custom

event, you specify exactly what occurs when code adds or removes an event handler to or from the event, or when code

raises the event. For examples, see How to: Declare Custom Events To Conserve Memory (Visual Basic) and How to:

Declare Custom Events To Avoid Blocking (Visual Basic).

Example
The following example uses events to count down seconds from 10 to 0. The code illustrates several of the event-related

methods, properties, and statements. This includes the RaiseEvent statement.

The class that raises an event is the event source, and the methods that process the event are the event handlers. An event

source can have multiple handlers for the events it generates. When the class raises the event, that event is raised on every

class that has elected to handle events for that instance of the object.

The example also uses a form (Form1) with a button (Button1) and a text box (TextBox1). When you click the button, the

first text box displays a countdown from 10 to 0 seconds. When the full time (10 seconds) has elapsed, the first text box

displays "Done".

The code for Form1 specifies the initial and terminal states of the form. It also contains the code executed when events are

raised.

To use this example, open a new Windows Forms project. Then add a button named Button1 and a text box named

TextBox1 to the main form, named Form1. Then right-click the form and click View Code to open the code editor.

Add a WithEvents variable to the declarations section of the Form1 class:

Add the following code to the code for Form1. Replace any duplicate procedures that may exist, such as Form_Load or

Button_Click.

Private WithEvents mText As TimerState

Private Sub Form1_Load() Handles MyBase.Load

 Button1.Text = "Start"

 mText = New TimerState

End Sub

Private Sub Button1_Click() Handles Button1.Click

 mText.StartCountdown(10.0, 0.1)

End Sub

Private Sub mText_ChangeText() Handles mText.Finished

VB

VB

Event Statement https://msdn.microsoft.com/en-us/library/6hwhs172(d=printer).aspx

4 of 6 02.09.2016 17:51

Press F5 to run the previous example, and click the button labeled Start. The first text box starts to count down the seconds.

When the full time (10 seconds) has elapsed, the first text box displays "Done".

Note

The My.Application.DoEvents method does not process events in the same way the form does. To enable the form to

handle the events directly, you can use multithreading. For more information, see Threading (C# and Visual Basic).

See Also
RaiseEvent Statement

Implements Statement

Events (Visual Basic)

AddHandler Statement

RemoveHandler Statement

Handles Clause (Visual Basic)

Delegate Statement

How to: Declare Custom Events To Conserve Memory (Visual Basic)

 TextBox1.Text = "Done"

End Sub

Private Sub mText_UpdateTime(ByVal Countdown As Double

) Handles mText.UpdateTime

 TextBox1.Text = Format(Countdown, "##0.0")

' Use DoEvents to allow the display to refresh.

My.Application.DoEvents()

End Sub

Class TimerState

Public Event UpdateTime(ByVal Countdown As Double)

Public Event Finished()

Public Sub StartCountdown(ByVal Duration As Double,

ByVal Increment As Double)

Dim Start As Double = DateAndTime.Timer

Dim ElapsedTime As Double = 0

Dim SoFar As Double = 0

Do While ElapsedTime < Duration

If ElapsedTime > SoFar + Increment Then

 SoFar += Increment

RaiseEvent UpdateTime(Duration ‐ SoFar)

End If

 ElapsedTime = DateAndTime.Timer ‐ Start

Loop

RaiseEvent Finished()

End Sub

End Class

Event Statement https://msdn.microsoft.com/en-us/library/6hwhs172(d=printer).aspx

5 of 6 02.09.2016 17:51

How to: Declare Custom Events To Avoid Blocking (Visual Basic)

Shared (Visual Basic)

Shadows (Visual Basic)

© 2016 Microsoft

Event Statement https://msdn.microsoft.com/en-us/library/6hwhs172(d=printer).aspx

6 of 6 02.09.2016 17:51

Delegate Statement

Used to declare a delegate. A delegate is a reference type that refers to a Shared method of a type or to an instance method

of an object. Any procedure with matching parameter and return types can be used to create an instance of this delegate

class. The procedure can then later be invoked by means of the delegate instance.

Syntax

Parts

Term Definition

attrlist Optional. List of attributes that apply to this delegate. Multiple attributes are separated by commas.

You must enclose the Attribute List (Visual Basic) in angle brackets ("<" and ">").

accessmodifier Optional. Specifies what code can access the delegate. Can be one of the following:

Public. Any code that can access the element that declares the delegate can access it.

Protected. Only code within the delegate's class or a derived class can access it.

Friend. Only code within the same assembly can access the delegate.

Private. Only code within the element that declares the delegate can access it.

You can specify Protected Friend to enable access from code within the delegate's class, a derived

class, or the same assembly.

Shadows Optional. Indicates that this delegate redeclares and hides an identically named programming

element, or set of overloaded elements, in a base class. You can shadow any kind of declared element

with any other kind.

A shadowed element is unavailable from within the derived class that shadows it, except from where

the shadowing element is inaccessible. For example, if a Private element shadows a base class

element, code that does not have permission to access the Private element accesses the base class

element instead.

Visual Studio 2015

[<attrlist>] [accessmodifier] _

[Shadows] Delegate [Sub | Function] name [(Of typeparamlist)] [([parameterlist

])] [As type]

Delegate Statement https://msdn.microsoft.com/en-us/library/twsk0311(d=printer).aspx

1 of 3 02.09.2016 17:52

Sub Optional, but either Sub or Function must appear. Declares this procedure as a delegate Sub

procedure that does not return a value.

Function Optional, but either Sub or Function must appear. Declares this procedure as a delegate Function

procedure that returns a value.

name Required. Name of the delegate type; follows standard variable naming conventions.

typeparamlist Optional. List of type parameters for this delegate. Multiple type parameters are separated by

commas. Optionally, each type parameter can be declared variant by using In and Out generic

modifiers. You must enclose the Type List (Visual Basic) in parentheses and introduce it with the Of

keyword.

parameterlist Optional. List of parameters that are passed to the procedure when it is called. You must enclose the

Parameter List (Visual Basic) in parentheses.

type Required if you specify a Function procedure. Data type of the return value.

Remarks
The Delegate statement defines the parameter and return types of a delegate class. Any procedure with matching

parameters and return types can be used to create an instance of this delegate class. The procedure can then later be

invoked by means of the delegate instance, by calling the delegate's Invoke method.

Delegates can be declared at the namespace, module, class, or structure level, but not within a procedure.

Each delegate class defines a constructor that is passed the specification of an object method. An argument to a delegate

constructor must be a reference to a method, or a lambda expression.

To specify a reference to a method, use the following syntax:

AddressOf [expression.]methodname

The compile-time type of the expression must be the name of a class or an interface that contains a method of the

specified name whose signature matches the signature of the delegate class. The methodname can be either a shared

method or an instance method. The methodname is not optional, even if you create a delegate for the default method of

the class.

To specify a lambda expression, use the following syntax:

Function ([parm As type, parm2 As type2, ...]) expression

The signature of the function must match that of the delegate type. For more information about lambda expressions, see

Lambda Expressions (Visual Basic).

For more information about delegates, see Delegates (Visual Basic).

Example

Delegate Statement https://msdn.microsoft.com/en-us/library/twsk0311(d=printer).aspx

2 of 3 02.09.2016 17:52

The following example uses the Delegate statement to declare a delegate for operating on two numbers and returning a

number. The DelegateTest method takes an instance of a delegate of this type and uses it to operate on pairs of numbers.

See Also
AddressOf Operator (Visual Basic)

Of Clause (Visual Basic)

Delegates (Visual Basic)

How to: Use a Generic Class (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

Covariance and Contravariance (C# and Visual Basic)

In (Generic Modifier) (Visual Basic)

Out (Generic Modifier) (Visual Basic)

© 2016 Microsoft

Delegate Function MathOperator(

ByVal x As Double,

ByVal y As Double

) As Double

Function AddNumbers(

ByVal x As Double,

ByVal y As Double

) As Double

Return x + y

End Function

Function SubtractNumbers(

ByVal x As Double,

ByVal y As Double

) As Double

Return x ‐ y

End Function

Sub DelegateTest(

ByVal x As Double,

ByVal op As MathOperator,

ByVal y As Double

)

Dim ret As Double

 ret = op.Invoke(x, y) ' Call the method.

 MsgBox(ret)

End Sub

Protected Sub Test()

 DelegateTest(5, AddressOf AddNumbers, 3)

 DelegateTest(9, AddressOf SubtractNumbers, 3)

End Sub

VB

Delegate Statement https://msdn.microsoft.com/en-us/library/twsk0311(d=printer).aspx

3 of 3 02.09.2016 17:52

