
Data Types in Visual Basic

The data type of a programming element refers to what kind of data it can hold and how it stores that data. Data types

apply to all values that can be stored in computer memory or participate in the evaluation of an expression. Every variable,

literal, constant, enumeration, property, procedure parameter, procedure argument, and procedure return value has a data

type.

Declared Data Types
You define a programming element with a declaration statement, and you specify its data type with the As clause. The

following table shows the statements you use to declare various elements.

Programming

element
Data type declaration

Variable In a Dim Statement (Visual Basic)

Dim amount As Double

Static yourName As String

Public billsPaid As Decimal = 0

Literal With a literal type character; see "Literal Type Characters" in Type Characters (Visual Basic)

Dim searchChar As Char = "."C

Constant In a Const Statement (Visual Basic)

Const modulus As Single = 4.17825F

Enumeration In an Enum Statement (Visual Basic)

Public Enum colors

Property In a Property Statement

Property region() As String

Procedure

parameter

In a Sub Statement (Visual Basic), Function Statement (Visual Basic), or Operator Statement

Sub addSale(ByVal amount As Double)

Visual Studio 2015

Data Types in Visual Basic https://msdn.microsoft.com/en-us/library/ffsdktda(d=printer).aspx

1 of 2 02.09.2016 17:08

Procedure argument In the calling code; each argument is a programming element that has already been declared,

or an expression containing declared elements

subString = Left(inputString, 5)

Procedure return

value

In a Function Statement (Visual Basic) or Operator Statement

Function convert(ByVal b As Byte) As String

For a list of Visual Basic data types, see Data Type Summary (Visual Basic).

See Also
Type Characters (Visual Basic)

Elementary Data Types (Visual Basic)

Composite Data Types (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

Value Types and Reference Types

Type Conversions in Visual Basic

Structures (Visual Basic)

Troubleshooting Data Types (Visual Basic)

Data Type Summary (Visual Basic)

Efficient Use of Data Types (Visual Basic)

© 2016 Microsoft

Data Types in Visual Basic https://msdn.microsoft.com/en-us/library/ffsdktda(d=printer).aspx

2 of 2 02.09.2016 17:08

Troubleshooting Data Types (Visual Basic)

This page lists some common problems that can occur when you perform operations on intrinsic data types.

Floating-Point Expressions Do Not Compare as Equal
When you work with floating-point numbers (Single Data Type (Visual Basic) and Double Data Type (Visual Basic)),

remember that they are stored as binary fractions. This means they cannot hold an exact representation of any quantity

that is not a binary fraction (of the form k / (2 ^ n) where k and n are integers). For example, 0.5 (= 1/2) and 0.3125 (=

5/16) can be held as precise values, whereas 0.2 (= 1/5) and 0.3 (= 3/10) can be only approximations.

Because of this imprecision, you cannot rely on exact results when you operate on floating-point values. In particular, two

values that are theoretically equal might have slightly different representations.

To compare floating-point quantities

Calculate the absolute value of their difference by using the Abs method of the Math class in the System

namespace.

1.

Determine an acceptable maximum difference, such that you can consider the two quantities to be equal for

practical purposes if their difference is no larger.

2.

Compare the absolute value of the difference to the acceptable difference.3.

The following example demonstrates both incorrect and correct comparison of two Double values.

Visual Studio 2015

Dim oneThird As Double = 1.0 / 3.0

Dim pointThrees As Double = 0.333333333333333

' The following comparison does not indicate equality.

Dim exactlyEqual As Boolean = (oneThird = pointThrees)

' The following comparison indicates equality.

Dim closeEnough As Double = 0.000000000000001

Dim absoluteDifference As Double = Math.Abs(oneThird ‐ pointThrees)

Dim practicallyEqual As Boolean = (absoluteDifference < closeEnough)

MsgBox("1.0 / 3.0 is represented as " & oneThird.ToString("G17") &

 vbCrLf & "0.333333333333333 is represented as " &

 pointThrees.ToString("G17") &

 vbCrLf & "Exact comparison generates " & CStr(exactlyEqual) &

 vbCrLf & "Acceptable difference comparison generates " &

VB

Troubleshooting Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae382yt8(d=printer).aspx

1 of 5 02.09.2016 17:23

The previous example uses the ToString method of the Double structure so that it can specify better precision than the

CStr keyword uses. The default is 15 digits, but the "G17" format extends it to 17 digits.

Mod Operator Does Not Return Accurate Result
Because of the imprecision of floating-point storage, the Mod Operator (Visual Basic) can return an unexpected result

when at least one of the operands is floating-point.

The Decimal Data Type (Visual Basic) does not use floating-point representation. Many numbers that are inexact in Single

and Double are exact in Decimal (for example 0.2 and 0.3). Although arithmetic is slower in Decimal than in floating-

point, it might be worth the performance decrease to achieve better precision.

To find the integer remainder of floating-point quantities

Declare variables as Decimal.1.

Use the literal type character D to force literals to Decimal, in case their values are too large for the Long data

type.

2.

The following example demonstrates the potential imprecision of floating-point operands.

The previous example uses the ToString method of the Double structure so that it can specify better precision than the

CStr keyword uses. The default is 15 digits, but the "G17" format extends it to 17 digits.

Because zeroPointTwo is Double, its value for 0.2 is an infinitely repeating binary fraction with a stored value of

0.20000000000000001. Dividing 2.0 by this quantity yields 9.9999999999999995 with a remainder of

0.19999999999999991.

In the expression for decimalRemainder, the literal type character D forces both operands to Decimal, and 0.2 has a

CStr(practicallyEqual))

Dim two As Double = 2.0

Dim zeroPointTwo As Double = 0.2

Dim quotient As Double = two / zeroPointTwo

Dim doubleRemainder As Double = two Mod zeroPointTwo

MsgBox("2.0 is represented as " & two.ToString("G17") &

 vbCrLf & "0.2 is represented as " & zeroPointTwo.ToString("G17") &

 vbCrLf & "2.0 / 0.2 generates " & quotient.ToString("G17") &

 vbCrLf & "2.0 Mod 0.2 generates " &

 doubleRemainder.ToString("G17"))

Dim decimalRemainder As Decimal = 2D Mod 0.2D

MsgBox("2.0D Mod 0.2D generates " & CStr(decimalRemainder))

VB

Troubleshooting Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae382yt8(d=printer).aspx

2 of 5 02.09.2016 17:23

precise representation. Therefore the Mod operator yields the expected remainder of 0.0.

Note that it is not sufficient to declare decimalRemainder as Decimal. You must also force the literals to Decimal, or

they use Double by default and decimalRemainder receives the same inaccurate value as doubleRemainder.

Boolean Type Does Not Convert to Numeric Type Accurately
Boolean Data Type (Visual Basic) values are not stored as numbers, and the stored values are not intended to be

equivalent to numbers. For compatibility with earlier versions, Visual Basic provides conversion keywords (CType Function

(Visual Basic), CBool, CInt, and so on) to convert between Boolean and numeric types. However, other languages

sometimes perform these conversions differently, as do the .NET Framework methods.

You should never write code that relies on equivalent numeric values for True and False. Whenever possible, you should

restrict usage of Boolean variables to the logical values for which they are designed. If you must mix Boolean and

numeric values, make sure that you understand the conversion method that you select.

Conversion in Visual Basic

When you use the CType or CBool conversion keywords to convert numeric data types to Boolean, 0 becomes False

and all other values become True. When you convert Boolean values to numeric types by using the conversion

keywords, False becomes 0 and True becomes -1.

Conversion in the Framework

The ToInt32 method of the Convert class in the System namespace converts True to +1.

If you must convert a Boolean value to a numeric data type, be careful about which conversion method you use.

Character Literal Generates Compiler Error
In the absence of any type characters, Visual Basic assumes default data types for literals. The default type for a character

literal — enclosed in quotation marks (" ") — is String.

The String data type does not widen to the Char Data Type (Visual Basic). This means that if you want to assign a literal to

a Char variable, you must either make a narrowing conversion or force the literal to the Char type.

To create a Char literal to assign to a variable or constant

Declare the variable or constant as Char.1.

Enclose the character value in quotation marks (" ").2.

Follow the closing double quotation mark with the literal type character C to force the literal to Char. This is

necessary if the type checking switch (Option Strict Statement) is On, and it is desirable in any case.

3.

Troubleshooting Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae382yt8(d=printer).aspx

3 of 5 02.09.2016 17:23

The following example demonstrates both unsuccessful and successful assignments of a literal to a Char variable.

There is always a risk in using narrowing conversions, because they can fail at run time. For example, a conversion from

String to Char can fail if the String value contains more than one character. Therefore, it is better programming to use

the C type character.

String Conversion Fails at Run Time
The String Data Type (Visual Basic) participates in very few widening conversions. String widens only to itself and Object,

and only Char and Char() (a Char array) widen to String. This is because String variables and constants can contain

values that other data types cannot contain.

When the type checking switch (Option Strict Statement) is On, the compiler disallows all implicit narrowing conversions.

This includes those involving String. Your code can still use conversion keywords such as CStr and CType Function (Visual

Basic), which direct the .NET Framework to attempt the conversion.

Note

The narrowing-conversion error is suppressed for conversions from the elements in a For Each…Next collection to the

loop control variable. For more information and examples, see the "Narrowing Conversions" section in For Each...Next

Statement (Visual Basic).

Narrowing Conversion Protection

The disadvantage of narrowing conversions is that they can fail at run time. For example, if a String variable contains

anything other than "True" or "False," it cannot be converted to Boolean. If it contains punctuation characters,

conversion to any numeric type fails. Unless you know that your String variable always holds values that the

destination type can accept, you should not try a conversion.

If you must convert from String to another data type, the safest procedure is to enclose the attempted conversion in

Dim charVar As Char

' The following statement attempts to convert a String literal to Char.

' Because Option Strict is On, it generates a compiler error.

charVar = "Z"

' The following statement succeeds because it specifies a Char literal.

charVar = "Z"c

' The following statement succeeds because it converts String to Char.

charVar = CChar("Z")

VB

Troubleshooting Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae382yt8(d=printer).aspx

4 of 5 02.09.2016 17:23

the Try...Catch...Finally Statement (Visual Basic). This lets you deal with a run-time failure.

Character Arrays

A single Char and an array of Char elements both widen to String. However, String does not widen to Char(). To

convert a String value to a Char array, you can use the ToCharArray method of the System.String class.

Meaningless Values

In general, String values are not meaningful in other data types, and conversion is highly artificial and dangerous.

Whenever possible, you should restrict usage of String variables to the character sequences for which they are

designed. You should never write code that relies on equivalent values in other types.

See Also
Data Types in Visual Basic

Type Characters (Visual Basic)

Value Types and Reference Types

Type Conversions in Visual Basic

Data Type Summary (Visual Basic)

Type Conversion Functions (Visual Basic)

Efficient Use of Data Types (Visual Basic)

© 2016 Microsoft

Troubleshooting Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae382yt8(d=printer).aspx

5 of 5 02.09.2016 17:23

Data Type Summary (Visual Basic)

The following table shows the Visual Basic data types, their supporting common language runtime types, their nominal

storage allocation, and their value ranges.

Visual Basic

type

Common

language

runtime type

structure

Nominal

storage

allocation

Value range

Boolean Boolean Depends on

implementing

platform

True or False

Byte Byte 1 byte 0 through 255 (unsigned)

Char (single

character)

Char 2 bytes 0 through 65535 (unsigned)

Date DateTime 8 bytes 0:00:00 (midnight) on January 1, 0001 through 11:59:59 PM

on December 31, 9999

Decimal Decimal 16 bytes 0 through +/-79,228,162,514,264,337,593,543,950,335

(+/-7.9...E+28) † with no decimal point; 0 through

+/-7.9228162514264337593543950335 with 28 places to

the right of the decimal;

smallest nonzero number is

+/-0.0000000000000000000000000001 (+/-1E-28) †

Double (double-

precision

floating-point)

Double 8 bytes -1.79769313486231570E+308 through

-4.94065645841246544E-324 † for negative values;

4.94065645841246544E-324 through

1.79769313486231570E+308 † for positive values

Integer Int32 4 bytes -2,147,483,648 through 2,147,483,647 (signed)

Long (long

integer)

Int64 8 bytes -9,223,372,036,854,775,808 through

9,223,372,036,854,775,807 (9.2...E+18 †) (signed)

Object Object (class) 4 bytes on Any type can be stored in a variable of type Object

Visual Studio 2015

Data Type Summary (Visual Basic) https://msdn.microsoft.com/en-us/library/47zceaw7(d=printer).aspx

1 of 3 02.09.2016 17:08

32-bit platform

8 bytes on

64-bit platform

SByte SByte 1 byte -128 through 127 (signed)

Short (short

integer)

Int16 2 bytes -32,768 through 32,767 (signed)

Single (single-

precision

floating-point)

Single 4 bytes -3.4028235E+38 through -1.401298E-45 † for negative

values;

1.401298E-45 through 3.4028235E+38 † for positive values

String (variable-

length)

String (class) Depends on

implementing

platform

0 to approximately 2 billion Unicode characters

UInteger UInt32 4 bytes 0 through 4,294,967,295 (unsigned)

ULong UInt64 8 bytes 0 through 18,446,744,073,709,551,615 (1.8...E+19 †)

(unsigned)

User-Defined

(structure)

(inherits from

ValueType)

Depends on

implementing

platform

Each member of the structure has a range determined by its

data type and independent of the ranges of the other

members

UShort UInt16 2 bytes 0 through 65,535 (unsigned)

† In scientific notation, "E" refers to a power of 10. So 3.56E+2 signifies 3.56 x 102 or 356, and 3.56E-2 signifies 3.56 / 102 or

0.0356.

Note

For strings containing text, use the StrConv function to convert from one text format to another.

In addition to specifying a data type in a declaration statement, you can force the data type of some programming elements

by using a type character. See Type Characters (Visual Basic).

Memory Consumption
When you declare an elementary data type, it is not safe to assume that its memory consumption is the same as its

nominal storage allocation. This is due to the following considerations:

Storage Assignment. The common language runtime can assign storage based on the current characteristics of

Data Type Summary (Visual Basic) https://msdn.microsoft.com/en-us/library/47zceaw7(d=printer).aspx

2 of 3 02.09.2016 17:08

the platform on which your application is executing. If memory is nearly full, it might pack your declared elements

as closely together as possible. In other cases it might align their memory addresses to natural hardware

boundaries to optimize performance.

Platform Width. Storage assignment on a 64-bit platform is different from assignment on a 32-bit platform.

Composite Data Types

The same considerations apply to each member of a composite data type, such as a structure or an array. You cannot

rely on simply adding together the nominal storage allocations of the type's members. Furthermore, there are other

considerations, such as the following:

Overhead. Some composite types have additional memory requirements. For example, an array uses extra

memory for the array itself and also for each dimension. On a 32-bit platform, this overhead is currently 12

bytes plus 8 bytes for each dimension. On a 64-bit platform this requirement is doubled.

Storage Layout. You cannot safely assume that the order of storage in memory is the same as your order of

declaration. You cannot even make assumptions about byte alignment, such as a 2-byte or 4-byte boundary. If

you are defining a class or structure and you need to control the storage layout of its members, you can apply

the StructLayoutAttribute attribute to the class or structure.

Object Overhead

An Object referring to any elementary or composite data type uses 4 bytes in addition to the data contained in the

data type.

See Also
StrConv

StructLayoutAttribute

Type Conversion Functions (Visual Basic)

Conversion Summary (Visual Basic)

Type Characters (Visual Basic)

Efficient Use of Data Types (Visual Basic)

© 2016 Microsoft

Data Type Summary (Visual Basic) https://msdn.microsoft.com/en-us/library/47zceaw7(d=printer).aspx

3 of 3 02.09.2016 17:08

Numeric Data Types (Visual Basic)

Visual Basic supplies several numeric data types for handling numbers in various representations. Integral types represent

only whole numbers (positive, negative, and zero), and nonintegral types represent numbers with both integer and fractional

parts.

For a table showing a side-by-side comparison of the Visual Basic data types, see Data Type Summary (Visual Basic).

Integral Numeric Types
Integral data types are those that represent only numbers without fractional parts.

The signed integral data types are SByte Data Type (Visual Basic) (8-bit), Short Data Type (Visual Basic) (16-bit), Integer

Data Type (Visual Basic) (32-bit), and Long Data Type (Visual Basic) (64-bit). If a variable always stores integers rather than

fractional numbers, declare it as one of these types.

The unsigned integral types are Byte Data Type (Visual Basic) (8-bit), UShort Data Type (Visual Basic) (16-bit), UInteger

Data Type (32-bit), and ULong Data Type (Visual Basic) (64-bit). If a variable contains binary data, or data of unknown

nature, declare it as one of these types.

Performance

Arithmetic operations are faster with integral types than with other data types. They are fastest with the Integer and

UInteger types in Visual Basic.

Large Integers

If you need to hold an integer larger than the Integer data type can hold, you can use the Long data type instead.

Long variables can hold numbers from -9,223,372,036,854,775,808 through 9,223,372,036,854,775,807. Operations

with Long are slightly slower than with Integer.

If you need even larger values, you can use the Decimal Data Type (Visual Basic). You can hold numbers from

-79,228,162,514,264,337,593,543,950,335 through 79,228,162,514,264,337,593,543,950,335 in a Decimal variable if

you do not use any decimal places. However, operations with Decimal numbers are considerably slower than with any

other numeric data type.

Small Integers

Visual Studio 2015

Numeric Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae55hdtk(d=printer).aspx

1 of 3 02.09.2016 17:10

If you do not need the full range of the Integer data type, you can use the Short data type, which can hold integers

from -32,768 through 32,767. For the smallest integer range, the SByte data type holds integers from -128 through

127. If you have a very large number of variables that hold small integers, the common language runtime can

sometimes store your Short and SByte variables more efficiently and save memory consumption. However, operations

with Short and SByte are somewhat slower than with Integer.

Unsigned Integers

If you know that your variable never needs to hold a negative number, you can use the unsigned types Byte, UShort,

UInteger, and ULong. Each of these data types can hold a positive integer twice as large as its corresponding signed

type (SByte, Short, Integer, and Long). In terms of performance, each unsigned type is exactly as efficient as its

corresponding signed type. In particular, UInteger shares with Integer the distinction of being the most efficient of all

the elementary numeric data types.

Nonintegral Numeric Types
Nonintegral data types are those that represent numbers with both integer and fractional parts.

The nonintegral numeric data types are Decimal (128-bit fixed point), Single Data Type (Visual Basic) (32-bit floating

point), and Double Data Type (Visual Basic) (64-bit floating point). They are all signed types. If a variable can contain a

fraction, declare it as one of these types.

Decimal is not a floating-point data type. Decimal numbers have a binary integer value and an integer scaling factor

that specifies what portion of the value is a decimal fraction.

You can use Decimal variables for money values. The advantage is the precision of the values. The Double data type is

faster and requires less memory, but it is subject to rounding errors. The Decimal data type retains complete accuracy to

28 decimal places.

Floating-point (Single and Double) numbers have larger ranges than Decimal numbers but can be subject to rounding

errors. Floating-point types support fewer significant digits than Decimal but can represent values of greater magnitude.

Nonintegral number values can be expressed as mmmEeee, in which mmm is the mantissa (the significant digits) and eee

is the exponent (a power of 10). The highest positive values of the nonintegral types are

7.9228162514264337593543950335E+28 for Decimal, 3.4028235E+38 for Single, and 1.79769313486231570E+308 for

Double.

Performance

Double is the most efficient of the fractional data types, because the processors on current platforms perform

floating-point operations in double precision. However, operations with Double are not as fast as with the integral

types such as Integer.

Small Magnitudes

For numbers with the smallest possible magnitude (closest to 0), Double variables can hold numbers as small as

Numeric Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae55hdtk(d=printer).aspx

2 of 3 02.09.2016 17:10

-4.94065645841246544E-324 for negative values and 4.94065645841246544E-324 for positive values.

Small Fractional Numbers

If you do not need the full range of the Double data type, you can use the Single data type, which can hold

floating-point numbers from -3.4028235E+38 through 3.4028235E+38. The smallest magnitudes for Single variables

are -1.401298E-45 for negative values and 1.401298E-45 for positive values. If you have a very large number of

variables that hold small floating-point numbers, the common language runtime can sometimes store your Single

variables more efficiently and save memory consumption.

See Also
Elementary Data Types (Visual Basic)

Character Data Types (Visual Basic)

Miscellaneous Data Types (Visual Basic)

Troubleshooting Data Types (Visual Basic)

How to: Call a Windows Function that Takes Unsigned Types (Visual Basic)

© 2016 Microsoft

Numeric Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ae55hdtk(d=printer).aspx

3 of 3 02.09.2016 17:10

Character Data Types (Visual Basic)

Visual Basic provides character data types to deal with printable and displayable characters. While they both deal with

Unicode characters, Char holds a single character whereas String contains an indefinite number of characters.

For a table that displays a side-by-side comparison of the Visual Basic data types, see Data Type Summary (Visual Basic).

Char Type
The Char data type is a single two-byte (16-bit) Unicode character. If a variable always stores exactly one character,

declare it as Char. For example:

Each possible value in a Char or String variable is a code point, or character code, in the Unicode character set. Unicode

characters include the basic ASCII character set, various other alphabet letters, accents, currency symbols, fractions,

diacritics, and mathematical and technical symbols.

Note

The Unicode character set reserves the code points D800 through DFFF (55296 through 55551 decimal) for surrogate

pairs, which require two 16-bit values to represent a single code point. A Char variable cannot hold a surrogate pair,

and a String uses two positions to hold such a pair.

For more information, see Char Data Type (Visual Basic).

String Type

Visual Studio 2015

' Initialize the prefix variable to the character 'a'.

Dim prefix As Char = "a"

VB

Character Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/25sb10we(d=printer).aspx

1 of 2 02.09.2016 17:10

The String data type is a sequence of zero or more two-byte (16-bit) Unicode characters. If a variable can contain an

indefinite number of characters, declare it as String. For example:

For more information, see String Data Type (Visual Basic).

See Also
Elementary Data Types (Visual Basic)

Composite Data Types (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

Value Types and Reference Types

Type Conversions in Visual Basic

Troubleshooting Data Types (Visual Basic)

Type Characters (Visual Basic)

© 2016 Microsoft

' Initialize the name variable to "Monday".

Dim name As String = "Monday"

VB

Character Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/25sb10we(d=printer).aspx

2 of 2 02.09.2016 17:10

Miscellaneous Data Types (Visual Basic)

Visual Basic supplies several data types that are not oriented toward numbers or characters. Instead, they deal with

specialized data such as yes/no values, date/time values, and object addresses.

For a table showing a side-by-side comparison of the Visual Basic data types, see Data Type Summary (Visual Basic).

Boolean Type
The Boolean Data Type (Visual Basic) is an unsigned value that is interpreted as either True or False. Its data width

depends on the implementing platform. If a variable can contain only two-state values such as true/false, yes/no, or

on/off, declare it as Boolean.

Date Type
The Date Data Type (Visual Basic) is a 64-bit value that holds both date and time information. Each increment represents

100 nanoseconds of elapsed time since the beginning (12:00 AM) of January 1 of the year 1 in the Gregorian calendar. If a

variable can contain a date value, a time value, or both, declare it as Date.

Object Type
The Object Data Type is a 32-bit address that points to an object instance within your application or in some other

application. An Object variable can refer to any object your application recognizes, or to data of any data type. This

includes both value types, such as Integer, Boolean, and structure instances, and reference types, which are instances of

objects created from classes such as String and Form, and array instances.

If a variable stores a pointer to an instance of a class that you do not know at compile time, or if it can point to data of

various data types, declare it as Object.

The advantage of the Object data type is that you can use it to store data of any data type. The disadvantage is that you

incur extra operations that take more execution time and make your application perform slower. If you use an Object

variable for value types, you incur boxing and unboxing. If you use it for reference types, you incur late binding.

See Also
Type Characters (Visual Basic)

Elementary Data Types (Visual Basic)

Numeric Data Types (Visual Basic)

Character Data Types (Visual Basic)

Troubleshooting Data Types (Visual Basic)

Visual Studio 2015

Miscellaneous Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/y71y6066(d=printer).aspx

1 of 2 02.09.2016 17:09

Early and Late Binding (Visual Basic)

© 2016 Microsoft

Miscellaneous Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/y71y6066(d=printer).aspx

2 of 2 02.09.2016 17:09

Conversion Summary (Visual Basic)

Visual Basic language keywords and run-time library members are organized by purpose and use.

Action Language element

Convert ANSI value to string. Chr, ChrW

Convert string to lowercase or uppercase. Format, LCase,UCase

Convert date to serial number. DateSerial, DateValue

Convert decimal number to other bases. Hex, Oct

Convert number to string. Format, Str

Convert one data type to another. CBool, CByte, CDate, CDbl, CDec, CInt, CLng, CSng, CShort, CStr, CType,

Fix, Int

Convert date to day, month, weekday, or

year.

Day, Month, Weekday, Year

Convert time to hour, minute, or second. Hour, Minute, Second

Convert string to ASCII value. Asc, AscW

Convert string to number. Val

Convert time to serial number. TimeSerial, TimeValue

See Also

Keywords (Visual Basic)

Visual Basic Runtime Library Members

© 2016 Microsoft

Visual Studio 2015

Conversion Summary (Visual Basic) https://msdn.microsoft.com/en-us/library/ewf8xx62(d=printer).aspx

1 of 1 02.09.2016 17:11

Composite Data Types (Visual Basic)

In addition to the elementary data types Visual Basic supplies, you can also assemble items of different types to create

composite data types such as structures, arrays, and classes. You can build composite data types from elementary types and

from other composite types. For example, you can define an array of structure elements, or a structure with array members.

Data Types
A composite type is different from the data type of any of its components. For example, an array of Integer elements is

not of the Integer data type.

An array data type is normally represented using the element type, parentheses, and commas as necessary. For example, a

one-dimensional array of String elements is represented as String(), and a two-dimensional array of Boolean elements is

represented as Boolean(,).

Structure Types
There is no single data type comprising all structures. Instead, each definition of a structure represents a unique data type,

even if two structures define identical elements in the same order. However, if you create two or more instances of the

same structure, Visual Basic considers them to be of the same data type.

Array Types
There is no single data type comprising all arrays. The data type of a particular instance of an array is determined by the

following:

The fact of being an array

The rank (number of dimensions) of the array

The element type of the array

In particular, the length of a given dimension is not part of the instance's data type. The following example illustrates this.

Visual Studio 2015

Dim arrayA() As Byte = New Byte(12) {}

Dim arrayB() As Byte = New Byte(100) {}

Dim arrayC() As Short = New Short(100) {}

Dim arrayD(,) As Short

Dim arrayE(,) As Short = New Short(4, 10) {}

Composite Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/d682h20d(d=printer).aspx

1 of 2 02.09.2016 17:11

In the preceding example, array variables arrayA and arrayB are considered to be of the same data type — Byte() —

even though they are initialized to different lengths. Variables arrayB and arrayC are not of the same type because their

element types are different. Variables arrayC and arrayD are not of the same type because their ranks are different.

Variables arrayD and arrayE have the same type — Short(,) — because their ranks and element types are the same,

even though arrayD is not yet initialized.

For more information on arrays, see Arrays in Visual Basic.

Class Types
There is no single data type comprising all classes. Although one class can inherit from another class, each is a separate

data type. Multiple instances of the same class are of the same data type. If you assign one class instance variable to

another, not only do they have the same data type, they point to the same class instance in memory.

For more information on classes, see Objects and Classes in Visual Basic.

See Also
Data Types in Visual Basic

Elementary Data Types (Visual Basic)

Generic Types in Visual Basic (Visual Basic)

Value Types and Reference Types

Type Conversions in Visual Basic

Structures (Visual Basic)

Troubleshooting Data Types (Visual Basic)

How to: Hold More Than One Value in a Variable (Visual Basic)

© 2016 Microsoft

Composite Data Types (Visual Basic) https://msdn.microsoft.com/en-us/library/d682h20d(d=printer).aspx

2 of 2 02.09.2016 17:11

How to: Hold More Than One Value in a
Variable (Visual Basic)

A variable holds more than one value if you declare it to be of a composite data type.

Composite Data Types (Visual Basic) include structures, arrays, and classes. A variable of a composite data type can hold a

combination of elementary data types and other composite types. Structures and classes can hold code as well as data.

To hold more than one value in a variable

Determine what composite data type you want to use for your variable.1.

If the composite data type is not already defined, define it so that your variable can use it.

Define a structure with a Structure Statement.

Define an array with a Dim Statement (Visual Basic).

Define a class with a Class Statement (Visual Basic).

2.

Declare your variable with a Dim statement.3.

Follow the variable name with an As clause.4.

Follow the As keyword with the name of the appropriate composite data type.5.

See Also

Data Type Summary (Visual Basic)

Type Characters (Visual Basic)

Composite Data Types (Visual Basic)

Structures (Visual Basic)

Arrays in Visual Basic

Objects and Classes in Visual Basic

Value Types and Reference Types

© 2016 Microsoft

Visual Studio 2015

How to: Hold More Than One Value in a Variable (Visual Basic) https://msdn.microsoft.com/en-us/library/axdeky2x(d=printer).aspx

1 of 1 02.09.2016 17:12

Generic Types in Visual Basic (Visual Basic)

A generic type is a single programming element that adapts to perform the same functionality for a variety of data types.

When you define a generic class or procedure, you do not have to define a separate version for each data type for which you

might want to perform that functionality.

An analogy is a screwdriver set with removable heads. You inspect the screw you need to turn and select the correct head for

that screw (slotted, crossed, starred). Once you insert the correct head in the screwdriver handle, you perform the exact same

function with the screwdriver, namely turning the screw.

Screwdriver set as a generic tool

When you define a generic type, you parameterize it with one or more data types. This allows the using code to tailor the

data types to its requirements. Your code can declare several different programming elements from the generic element,

each one acting on a different set of data types. But the declared elements all perform the identical logic, no matter what

data types they are using.

For example, you might want to create and use a queue class that operates on a specific data type such as String. You can

declare such a class from System.Collections.Generic.Queue(Of T), as the following example shows.

You can now use stringQ to work exclusively with String values. Because stringQ is specific for String instead of being

generalized for Object values, you do not have late binding or type conversion. This saves execution time and reduces

run-time errors.

For more information on using a generic type, see How to: Use a Generic Class (Visual Basic).

Example of a Generic Class
The following example shows a skeleton definition of a generic class.

Visual Studio 2015

Public stringQ As New System.Collections.Generic.Queue(Of String)

VB

Generic Types in Visual Basic (Visual Basic) https://msdn.microsoft.com/en-us/library/w256ka79(d=printer).aspx

1 of 5 02.09.2016 17:13

In the preceding skeleton, t is a type parameter, that is, a placeholder for a data type that you supply when you declare

the class. Elsewhere in your code, you can declare various versions of classHolder by supplying various data types for t.

The following example shows two such declarations.

The preceding statements declare constructed classes, in which a specific type replaces the type parameter. This

replacement is propagated throughout the code within the constructed class. The following example shows what the

processNewItem procedure looks like in integerClass.

For a more complete example, see How to: Define a Class That Can Provide Identical Functionality on Different Data Types

(Visual Basic).

Eligible Programming Elements
You can define and use generic classes, structures, interfaces, procedures, and delegates. Note that the .NET Framework

defines several generic classes, structures, and interfaces that represent commonly used generic elements. The

System.Collections.Generic namespace provides dictionaries, lists, queues, and stacks. Before defining your own generic

element, see if it is already available in System.Collections.Generic.

Procedures are not types, but you can define and use generic procedures. See Generic Procedures in Visual Basic.

Advantages of Generic Types
A generic type serves as a basis for declaring several different programming elements, each of which operates on a

specific data type. The alternatives to a generic type are:

Public Class classHolder(Of t)

Public Sub processNewItem(ByVal newItem As t)

Dim tempItem As t

' Insert code that processes an item of data type t.

End Sub

End Class

Public integerClass As New classHolder(Of Integer)

Friend stringClass As New classHolder(Of String)

Public Sub processNewItem(ByVal newItem As Integer)

Dim tempItem As Integer

' Inserted code now processes an Integer item.

End Sub

VB

VB

VB

Generic Types in Visual Basic (Visual Basic) https://msdn.microsoft.com/en-us/library/w256ka79(d=printer).aspx

2 of 5 02.09.2016 17:13

A single type operating on the Object data type.1.

A set of type-specific versions of the type, each version individually coded and operating on one specific data type

such as String, Integer, or a user-defined type such as customer.

2.

A generic type has the following advantages over these alternatives:

Type Safety. Generic types enforce compile-time type checking. Types based on Object accept any data type, and

you must write code to check whether an input data type is acceptable. With generic types, the compiler can catch

type mismatches before run time.

Performance. Generic types do not have to box and unbox data, because each one is specialized for one data

type. Operations based on Object must box input data types to convert them to Object and unbox data destined

for output. Boxing and unboxing reduce performance.

Types based on Object are also late-bound, which means that accessing their members requires extra code at run

time. This also reduces performance.

Code Consolidation. The code in a generic type has to be defined only once. A set of type-specific versions of a

type must replicate the same code in each version, with the only difference being the specific data type for that

version. With generic types, the type-specific versions are all generated from the original generic type.

Code Reuse. Code that does not depend on a particular data type can be reused with various data types if it is

generic. You can often reuse it even with a data type that you did not originally predict.

IDE Support. When you use a constructed type declared from a generic type, the integrated development

environment (IDE) can give you more support while you are developing your code. For example, IntelliSense can

show you the type-specific options for an argument to a constructor or method.

Generic Algorithms. Abstract algorithms that are type-independent are good candidates for generic types. For

example, a generic procedure that sorts items using the IComparable interface can be used with any data type that

implements IComparable.

Constraints
Although the code in a generic type definition should be as type-independent as possible, you might need to require a

certain capability of any data type supplied to your generic type. For example, if you want to compare two items for the

purpose of sorting or collating, their data type must implement the IComparable interface. You can enforce this

requirement by adding a constraint to the type parameter.

Example of a Constraint

The following example shows a skeleton definition of a class with a constraint that requires the type argument to

implement IComparable.

Public Class itemManager(Of t As IComparable)

' Insert code that defines class members.

VB

Generic Types in Visual Basic (Visual Basic) https://msdn.microsoft.com/en-us/library/w256ka79(d=printer).aspx

3 of 5 02.09.2016 17:13

If subsequent code attempts to construct a class from itemManager supplying a type that does not implement

IComparable, the compiler signals an error.

Types of Constraints

Your constraint can specify the following requirements in any combination:

The type argument must implement one or more interfaces

The type argument must be of the type of, or inherit from, at most one class

The type argument must expose a parameterless constructor accessible to the code that creates objects from it

The type argument must be a reference type, or it must be a value type

If you need to impose more than one requirement, you use a comma-separated constraint list inside braces ({ }). To

require an accessible constructor, you include the New Operator (Visual Basic) keyword in the list. To require a reference

type, you include the Class keyword; to require a value type, you include the Structure keyword.

For more information on constraints, see Type List (Visual Basic).

Example of Multiple Constraints

The following example shows a skeleton definition of a generic class with a constraint list on the type parameter. In the

code that creates an instance of this class, the type argument must implement both the IComparable and IDisposable

interfaces, be a reference type, and expose an accessible parameterless constructor.

Important Terms
Generic types introduce and use the following terms:

Generic Type. A definition of a class, structure, interface, procedure, or delegate for which you supply at least one

data type when you declare it.

Type Parameter. In a generic type definition, a placeholder for a data type you supply when you declare the type.

Type Argument. A specific data type that replaces a type parameter when you declare a constructed type from a

End Class

Public Class thisClass(Of t As {IComparable, IDisposable, Class, New})

' Insert code that defines class members.

End Class

VB

Generic Types in Visual Basic (Visual Basic) https://msdn.microsoft.com/en-us/library/w256ka79(d=printer).aspx

4 of 5 02.09.2016 17:13

generic type.

Constraint. A condition on a type parameter that restricts the type argument you can supply for it. A constraint can

require that the type argument must implement a particular interface, be or inherit from a particular class, have an

accessible parameterless constructor, or be a reference type or a value type. You can combine these constraints,

but you can specify at most one class.

Constructed Type. A class, structure, interface, procedure, or delegate declared from a generic type by supplying

type arguments for its type parameters.

See Also
Data Types in Visual Basic

Type Characters (Visual Basic)

Value Types and Reference Types

Type Conversions in Visual Basic

Troubleshooting Data Types (Visual Basic)

Data Type Summary (Visual Basic)

Of Clause (Visual Basic)

As

Object Data Type

Covariance and Contravariance (C# and Visual Basic)

Iterators (C# and Visual Basic)

© 2016 Microsoft

Generic Types in Visual Basic (Visual Basic) https://msdn.microsoft.com/en-us/library/w256ka79(d=printer).aspx

5 of 5 02.09.2016 17:13

How to: Define a Class That Can Provide
Identical Functionality on Different Data
Types (Visual Basic)

You can define a class from which you can create objects that provide identical functionality on different data types. To do

this, you specify one or more type parameters in the definition. The class can then serve as a template for objects that use

various data types. A class defined in this way is called a generic class.

The advantage of defining a generic class is that you define it just once, and your code can use it to create many objects that

use a wide variety of data types. This results in better performance than defining the class with the Object type.

In addition to classes, you can also define and use generic structures, interfaces, procedures, and delegates.

To define a class with a type parameter

Define the class in the normal way.1.

Add (Of typeparameter) immediately after the class name to specify a type parameter.2.

If you have more than one type parameter, make a comma-separated list inside the parentheses. Do not repeat the

Of keyword.

3.

If your code performs operations on a type parameter other than simple assignment, follow that type parameter with

an As clause to add one or more constraints. A constraint guarantees that the type supplied for that type parameter

satisfies a requirement such as the following:

Supports an operation, such as >, that your code performs

Supports a member, such as a method, that your code accesses

Exposes a parameterless constructor

If you do not specify any constraints, the only operations and members your code can use are those supported by the

Object Data Type. For more information, see Type List (Visual Basic).

4.

Identify every class member that is to be declared with a supplied type, and declare it As typeparameter. This applies

to internal storage, procedure parameters, and return values.

5.

Be sure your code uses only operations and methods that are supported by any data type it can supply to itemType.

The following example defines a class that manages a very simple list. It holds the list in the internal array items, and

the using code can declare the data type of the list elements. A parameterized constructor allows the using code to

set the upper bound of items, and the default constructor sets this to 9 (for a total of 10 items).

6.

Visual Studio 2015

VB

How to: Define a Class That Can Provide Identical Functionality on Differ... https://msdn.microsoft.com/en-us/library/4a1b71ta(d=printer).aspx

1 of 4 02.09.2016 17:14

Public Class simpleList(Of itemType)

Private items() As itemType

Private top As Integer

Private nextp As Integer

Public Sub New()

Me.New(9)

End Sub

Public Sub New(ByVal t As Integer)

MyBase.New()

 items = New itemType(t) {}

 top = t

 nextp = 0

End Sub

Public Sub add(ByVal i As itemType)

 insert(i, nextp)

End Sub

Public Sub insert(ByVal i As itemType, ByVal p As Integer)

If p > nextp OrElse p < 0 Then

Throw New System.ArgumentOutOfRangeException("p",

" less than 0 or beyond next available list position")

ElseIf nextp > top Then

Throw New System.ArgumentException("No room to insert at ",

"p")

ElseIf p < nextp Then

For j As Integer = nextp To p + 1 Step ‐1

 items(j) = items(j ‐ 1)

Next j

End If

 items(p) = i

 nextp += 1

End Sub

Public Sub remove(ByVal p As Integer)

If p >= nextp OrElse p < 0 Then

Throw New System.ArgumentOutOfRangeException("p",

" less than 0 or beyond last list item")

ElseIf nextp = 0 Then

Throw New System.ArgumentException("List empty; cannot remove ",

"p")

ElseIf p < nextp ‐ 1 Then

For j As Integer = p To nextp ‐ 2

 items(j) = items(j + 1)

Next j

End If

 nextp ‐= 1

End Sub

Public ReadOnly Property listLength() As Integer

Get

Return nextp

End Get

End Property

Public ReadOnly Property listItem(ByVal p As Integer) As itemType

Get

If p >= nextp OrElse p < 0 Then

How to: Define a Class That Can Provide Identical Functionality on Differ... https://msdn.microsoft.com/en-us/library/4a1b71ta(d=printer).aspx

2 of 4 02.09.2016 17:14

You can declare a class from simpleList to hold a list of Integer values, another class to hold a list of String values,

and another to hold Date values. Except for the data type of the list members, objects created from all these classes

behave identically.

The type argument that the using code supplies to itemType can be an intrinsic type such as Boolean or Double, a

structure, an enumeration, or any type of class, including one that your application defines.

You can test the class simpleList with the following code.

Throw New System.ArgumentOutOfRangeException("p",

" less than 0 or beyond last list item")

End If

Return items(p)

End Get

End Property

End Class

Public Sub useSimpleList()

Dim iList As New simpleList(Of Integer)(2)

Dim sList As New simpleList(Of String)(3)

Dim dList As New simpleList(Of Date)(2)

 iList.add(10)

 iList.add(20)

 iList.add(30)

 sList.add("First")

 sList.add("extra")

 sList.add("Second")

 sList.add("Third")

 sList.remove(1)

 dList.add(#1/1/2003#)

 dList.add(#3/3/2003#)

 dList.insert(#2/2/2003#, 1)

Dim s =

"Simple list of 3 Integer items (reported length " &

CStr(iList.listLength) & "):" &

 vbCrLf & CStr(iList.listItem(0)) &

 vbCrLf & CStr(iList.listItem(1)) &

 vbCrLf & CStr(iList.listItem(2)) &

 vbCrLf &

"Simple list of 4 ‐ 1 String items (reported length " &

CStr(sList.listLength) & "):" &

 vbCrLf & CStr(sList.listItem(0)) &

 vbCrLf & CStr(sList.listItem(1)) &

 vbCrLf & CStr(sList.listItem(2)) &

 vbCrLf &

"Simple list of 2 + 1 Date items (reported length " &

CStr(dList.listLength) & "):" &

 vbCrLf & CStr(dList.listItem(0)) &

 vbCrLf & CStr(dList.listItem(1)) &

 vbCrLf & CStr(dList.listItem(2))

 MsgBox(s)

VB

How to: Define a Class That Can Provide Identical Functionality on Differ... https://msdn.microsoft.com/en-us/library/4a1b71ta(d=printer).aspx

3 of 4 02.09.2016 17:14

See Also
Data Types in Visual Basic

Generic Types in Visual Basic (Visual Basic)

Language Independence and Language-Independent Components

Of Clause (Visual Basic)

Type List (Visual Basic)

How to: Use a Generic Class (Visual Basic)

Object Data Type

© 2016 Microsoft

End Sub

How to: Define a Class That Can Provide Identical Functionality on Differ... https://msdn.microsoft.com/en-us/library/4a1b71ta(d=printer).aspx

4 of 4 02.09.2016 17:14

How to: Use a Generic Class (Visual Basic)

A class that takes type parameters is called a generic class. If you are using a generic class, you can generate a constructed

class from it by supplying a type argument for each of these parameters. You can then declare a variable of the constructed

class type, and you can create an instance of the constructed class and assign it to that variable.

In addition to classes, you can also define and use generic structures, interfaces, procedures, and delegates.

The following procedure takes a generic class defined in the .NET Framework and creates an instance from it.

To use a class that takes a type parameter

At the beginning of your source file, include an Imports Statement (.NET Namespace and Type) to import the

System.Collections.Generic namespace. This allows you to refer to the System.Collections.Generic.Queue(Of T) class

without having to fully qualify it to differentiate it from other queue classes such as System.Collections.Queue.

1.

Create the object in the normal way, but add (Of type) immediately after the class name.

The following example uses the same class (System.Collections.Generic.Queue(Of T)) to create two queue objects that

hold items of different data types. It adds items to the end of each queue and then removes and displays items from

the front of each queue.

2.

Visual Studio 2015

Public Sub usequeue()

Dim queueDouble As New System.Collections.Generic.Queue(Of Double)

Dim queueString As New System.Collections.Generic.Queue(Of String)

 queueDouble.Enqueue(1.1)

 queueDouble.Enqueue(2.2)

 queueDouble.Enqueue(3.3)

 queueDouble.Enqueue(4.4)

 queueString.Enqueue("First string of three")

 queueString.Enqueue("Second string of three")

 queueString.Enqueue("Third string of three")

Dim s As String = "Queue of Double items (reported length " &

CStr(queueDouble.Count) & "):"

For i As Integer = 1 To queueDouble.Count

 s &= vbCrLf & CStr(queueDouble.Dequeue())

Next i

 s &= vbCrLf & "Queue of String items (reported length " &

CStr(queueString.Count) & "):"

For i As Integer = 1 To queueString.Count

 s &= vbCrLf & queueString.Dequeue()

Next i

 MsgBox(s)

End Sub

VB

How to: Use a Generic Class (Visual Basic) https://msdn.microsoft.com/en-us/library/79btc5zc(d=printer).aspx

1 of 2 02.09.2016 17:15

See Also
Data Types in Visual Basic

Generic Types in Visual Basic (Visual Basic)

Language Independence and Language-Independent Components

Of Clause (Visual Basic)

Imports Statement (.NET Namespace and Type)

How to: Define a Class That Can Provide Identical Functionality on Different Data Types (Visual Basic)

Iterators (C# and Visual Basic)

© 2016 Microsoft

How to: Use a Generic Class (Visual Basic) https://msdn.microsoft.com/en-us/library/79btc5zc(d=printer).aspx

2 of 2 02.09.2016 17:15

Generic Procedures in Visual Basic

A generic procedure, also called a generic method, is a procedure defined with at least one type parameter. This allows the

calling code to tailor the data types to its requirements each time it calls the procedure.

A procedure is not generic simply by virtue of being defined inside a generic class or a generic structure. To be generic, the

procedure must take at least one type parameter, in addition to any normal parameters it might take. A generic class or

structure can contain nongeneric procedures, and a nongeneric class, structure, or module can contain generic procedures.

A generic procedure can use its type parameters in its normal parameter list, in its return type if it has one, and in its

procedure code.

Type Inference
You can call a generic procedure without supplying any type arguments at all. If you call it this way, the compiler attempts

to determine the appropriate data types to pass to the procedure's type arguments. This is called type inference. The

following code shows a call in which the compiler infers that it should pass type String to the type parameter t.

If the compiler cannot infer the type arguments from the context of your call, it reports an error. One possible cause of

such an error is an array rank mismatch. For example, suppose you define a normal parameter as an array of a type

parameter. If you call the generic procedure supplying an array of a different rank (number of dimensions), the mismatch

causes type inference to fail. The following code shows a call in which a two-dimensional array is passed to a procedure

that expects a one-dimensional array.

Public Sub demoSub(Of t)(ByVal arg() As t)

End Sub

Public Sub callDemoSub()

Dim twoDimensions(,) As Integer

demoSub(twoDimensions)

End Sub

You can invoke type inference only by omitting all the type arguments. If you supply one type argument, you must supply

them all.

Visual Studio 2015

Public Sub testSub(Of t)(ByVal arg As t)

End Sub

Public Sub callTestSub()

 testSub("Use this string")

End Sub

VB

Generic Procedures in Visual Basic https://msdn.microsoft.com/en-us/library/ms235246(d=printer).aspx

1 of 3 02.09.2016 17:16

Type inference is supported only for generic procedures. You cannot invoke type inference on generic classes, structures,

interfaces, or delegates.

Example

Description

The following example defines a generic Function procedure to find a particular element in an array. It defines one

type parameter and uses it to construct the two parameters in the parameter list.

Code

Comments

The preceding example requires the ability to compare searchValue against each element of searchArray. To

guarantee this ability, it constrains the type parameter T to implement the IComparable(Of T) interface. The code uses

the CompareTo method instead of the = operator, because there is no guarantee that a type argument supplied for T

supports the = operator.

You can test the findElement procedure with the following code.

Public Function findElement(Of T As IComparable) (

ByVal searchArray As T(), ByVal searchValue As T) As Integer

If searchArray.GetLength(0) > 0 Then

For i As Integer = 0 To searchArray.GetUpperBound(0)

If searchArray(i).CompareTo(searchValue) = 0 Then Return i

Next i

End If

Return ‐1

End Function

Public Sub tryFindElement()

Dim stringArray() As String = {"abc", "def", "xyz"}

Dim stringSearch As String = "abc"

Dim integerArray() As Integer = {7, 8, 9}

Dim integerSearch As Integer = 8

Dim dateArray() As Date = {#4/17/1969#, #9/20/1998#, #5/31/2004#}

Dim dateSearch As Date = Microsoft.VisualBasic.DateAndTime.Today

 MsgBox(CStr(findElement(Of String)(stringArray, stringSearch)))

 MsgBox(CStr(findElement(Of Integer)(integerArray, integerSearch)))

VB

VB

Generic Procedures in Visual Basic https://msdn.microsoft.com/en-us/library/ms235246(d=printer).aspx

2 of 3 02.09.2016 17:16

The preceding calls to MsgBox display "0", "1", and "-1" respectively.

See Also
Generic Types in Visual Basic (Visual Basic)

How to: Define a Class That Can Provide Identical Functionality on Different Data Types (Visual Basic)

How to: Use a Generic Class (Visual Basic)

Procedures in Visual Basic

Procedure Parameters and Arguments (Visual Basic)

Type List (Visual Basic)

Parameter List (Visual Basic)

© 2016 Microsoft

 MsgBox(CStr(findElement(Of Date)(dateArray, dateSearch)))

End Sub

Generic Procedures in Visual Basic https://msdn.microsoft.com/en-us/library/ms235246(d=printer).aspx

3 of 3 02.09.2016 17:16

Nullable Value Types (Visual Basic)

Sometimes you work with a value type that does not have a defined value in certain circumstances. For example, a field in a

database might have to distinguish between having an assigned value that is meaningful and not having an assigned value.

Value types can be extended to take either their normal values or a null value. Such an extension is called a nullable type.

Each nullable type is constructed from the generic Nullable(Of T) structure. Consider a database that tracks work-related

activities. The following example constructs a nullable Boolean type and declares a variable of that type. You can write the

declaration in three ways:

The variable ridesBusToWork can hold a value of True, a value of False, or no value at all. Its initial default value is no value

at all, which in this case could mean that the information has not yet been obtained for this person. In contrast, False could

mean that the information has been obtained and the person does not ride the bus to work.

You can declare variables and properties with nullable types, and you can declare an array with elements of a nullable type.

You can declare procedures with nullable types as parameters, and you can return a nullable type from a Function

procedure.

You cannot construct a nullable type on a reference type such as an array, a String, or a class. The underlying type must be a

value type. For more information, see Value Types and Reference Types.

Using a Nullable Type Variable
The most important members of a nullable type are its HasValue and Value properties. For a variable of a nullable type,

HasValue tells you whether the variable contains a defined value. If HasValue is True, you can read the value from Value.

Note that both HasValue and Value are ReadOnly properties.

Default Values

When you declare a variable with a nullable type, its HasValue property has a default value of False. This means that by

default the variable has no defined value, instead of the default value of its underlying value type. In the following

example, the variable numberOfChildren initially has no defined value, even though the default value of the Integer

type is 0.

A null value is useful to indicate an undefined or unknown value. If numberOfChildren had been declared as Integer,

Visual Studio 2015

Dim ridesBusToWork1? As Boolean

Dim ridesBusToWork2 As Boolean?

Dim ridesBusToWork3 As Nullable(Of Boolean)

Dim numberOfChildren? As Integer

VB

VB

Nullable Value Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ms235245(d=printer).aspx

1 of 5 02.09.2016 17:17

there would be no value that could indicate that the information is not currently available.

Storing Values

You store a value in a variable or property of a nullable type in the typical way. The following example assigns a value

to the variable numberOfChildren declared in the previous example.

If a variable or property of a nullable type contains a defined value, you can cause it to revert to its initial state of not

having a value assigned. You do this by setting the variable or property to Nothing, as the following example shows.

Note

Although you can assign Nothing to a variable of a nullable type, you cannot test it for Nothing by using the equal

sign. Comparison that uses the equal sign, someVar = Nothing, always evaluates to Nothing. You can test the

variable's HasValue property for False, or test by using the Is or IsNot operator.

Retrieving Values

To retrieve the value of a variable of a nullable type, you should first test its HasValue property to confirm that it has a

value. If you try to read the value when HasValue is False, Visual Basic throws an InvalidOperationException exception.

The following example shows the recommended way to read the variable numberOfChildren of the previous

examples.

Comparing Nullable Types
When nullable Boolean variables are used in Boolean expressions, the result can be True, False, or Nothing. The

numberOfChildren = 2

numberOfChildren = Nothing

If numberOfChildren.HasValue Then

 MsgBox("There are " & CStr(numberOfChildren) & " children.")

Else

 MsgBox("It is not known how many children there are.")

End If

VB

VB

VB

Nullable Value Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ms235245(d=printer).aspx

2 of 5 02.09.2016 17:17

following is the truth table for And and Or. Because b1 and b2 now have three possible values, there are nine

combinations to evaluate.

b1 b2 b1 And b2 b1 Or b2

Nothing Nothing Nothing Nothing

Nothing True Nothing True

Nothing False False Nothing

True Nothing Nothing True

True True True True

True False False True

False Nothing False Nothing

False True False True

False False False False

When the value of a Boolean variable or expression is Nothing, it is neither true nor false. Consider the following

example.

In this example, b1 And b2 evaluates to Nothing. As a result, the Else clause is executed in each If statement, and the

Dim b1? As Boolean

Dim b2? As Boolean

b1 = True

b2 = Nothing

' The following If statement displays "Expression is not true".

If (b1 And b2) Then

 Console.WriteLine("Expression is true")

Else

 Console.WriteLine("Expression is not true")

End If

' The following If statement displays "Expression is not false".

If Not (b1 And b2) Then

 Console.WriteLine("Expression is false")

Else

 Console.WriteLine("Expression is not false")

End If

VB

Nullable Value Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ms235245(d=printer).aspx

3 of 5 02.09.2016 17:17

output is as follows:

Expression is not true

Expression is not false

Note

AndAlso and OrElse, which use short-circuit evaluation, must evaluate their second operands when the first evaluates

to Nothing.

Propagation
If one or both of the operands of an arithmetic, comparison, shift, or type operation is nullable, the result of the operation

is also nullable. If both operands have values that are not Nothing, the operation is performed on the underlying values

of the operands, as if neither were a nullable type. In the following example, variables compare1 and sum1 are implicitly

typed. If you rest the mouse pointer over them, you will see that the compiler infers nullable types for both of them.

If one or both operands have a value of Nothing, the result will be Nothing.

' Variable n is a nullable type, but both m and n have proper values.

Dim m As Integer = 3

Dim n? As Integer = 2

' The comparison evaluated is 3>2, but compare1 is inferred to be of

' type Boolean?.

Dim compare1 = m > n

' The values summed are 3 and 2, but sum1 is inferred to be of type Integer?.

Dim sum1 = m + n

' The following line displays: 3 * 2 * 5 * True

Console.WriteLine(m & " * " & n & " * " & sum1 & " * " & compare1)

' Change the value of n to Nothing.

n = Nothing

Dim compare2 = m > n

Dim sum2 = m + n

' Because the values of n, compare2, and sum2 are all Nothing, the

' following line displays 3 * * *

Console.WriteLine(m & " * " & n & " * " & sum2 & " * " & compare2)

VB

VB

Nullable Value Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ms235245(d=printer).aspx

4 of 5 02.09.2016 17:17

Using Nullable Types with Data
A database is one of the most important places to use nullable types. Not all database objects currently support nullable

types, but the designer-generated table adapters do. See "TableAdapter Support for Nullable Types" in TableAdapter

Overview.

See Also
InvalidOperationException

HasValue

Using Nullable Types (C# Programming Guide)

Data Types in Visual Basic

Value Types and Reference Types

Troubleshooting Data Types (Visual Basic)

TableAdapter Overview

If Operator (Visual Basic)

Local Type Inference (Visual Basic)

Is Operator (Visual Basic)

IsNot Operator (Visual Basic)

© 2016 Microsoft

Nullable Value Types (Visual Basic) https://msdn.microsoft.com/en-us/library/ms235245(d=printer).aspx

5 of 5 02.09.2016 17:17

Value Types and Reference Types

In Visual Basic, data types are implemented based on their classification. The Visual Basic data types can be classified

according to whether a variable of a particular type stores its own data or a pointer to the data. If it stores its own data it is a

value type; if it holds a pointer to data elsewhere in memory it is a reference type.

Value Types
A data type is a value type if it holds the data within its own memory allocation. Value types include the following:

All numeric data types

Boolean, Char, and Date

All structures, even if their members are reference types

Enumerations, since their underlying type is always SByte, Short, Integer, Long, Byte, UShort, UInteger, or

ULong

Every structure is a value type, even if it contains reference type members. For this reason, value types such as Char and

Integer are implemented by .NET Framework structures.

You can declare a value type by using the reserved keyword, for example, Decimal. You can also use the New keyword to

initialize a value type. This is especially useful if the type has a constructor that takes parameters. An example of this is the

Decimal(Int32, Int32, Int32, Boolean, Byte) constructor, which builds a new Decimal value from the supplied parts.

Reference Types
A reference type contains a pointer to another memory location that holds the data. Reference types include the

following:

String

All arrays, even if their elements are value types

Class types, such as Form

Delegates

A class is a reference type. For this reason, reference types such as Object and String are supported by .NET Framework

classes. Note that every array is a reference type, even if its members are value types.

Since every reference type represents an underlying .NET Framework class, you must use the New Operator (Visual Basic)

Visual Studio 2015

Value Types and Reference Types https://msdn.microsoft.com/en-us/library/t63sy5hs(d=printer).aspx

1 of 2 02.09.2016 17:18

keyword when you initialize it. The following statement initializes an array.

Elements That Are Not Types
The following programming elements do not qualify as types, because you cannot specify any of them as a data type for

a declared element:

Namespaces

Modules

Events

Properties and procedures

Variables, constants, and fields

Working with the Object Data Type
You can assign either a reference type or a value type to a variable of the Object data type. An Object variable always

holds a pointer to the data, never the data itself. However, if you assign a value type to an Object variable, it behaves as if

it holds its own data. For more information, see Object Data Type.

You can find out whether an Object variable is acting as a reference type or a value type by passing it to the IsReference

method in the Information class of the Microsoft.VisualBasic namespace. Information.IsReference returns True if the

content of the Object variable represents a reference type.

See Also
Nullable Value Types (Visual Basic)

Type Conversions in Visual Basic

Structure Statement

Efficient Use of Data Types (Visual Basic)

Object Data Type

Data Types in Visual Basic

© 2016 Microsoft

Dim totals() As Single = New Single(8) {}

Value Types and Reference Types https://msdn.microsoft.com/en-us/library/t63sy5hs(d=printer).aspx

2 of 2 02.09.2016 17:18

Type Conversions in Visual Basic

The process of changing a value from one data type to another type is called conversion. Conversions are either widening or

narrowing, depending on the data capacities of the types involved. They are also implicit or explicit, depending on the syntax

in the source code.

In This Section

Widening and Narrowing Conversions (Visual Basic)

Explains conversions classified by whether the destination type can hold the data.

Implicit and Explicit Conversions (Visual Basic)

Discusses conversions classified by whether Visual Basic performs them automatically.

Conversions Between Strings and Other Types (Visual Basic)

Illustrates converting between strings and numeric, Boolean, or date/time values.

How to: Convert an Object to Another Type in Visual Basic

Shows how to convert an Object variable to any other data type.

Array Conversions (Visual Basic)

Steps you through the process of converting between arrays of different data types.

Related Sections

Data Types in Visual Basic

Introduces the Visual Basic data types and describes how to use them.

Data Type Summary (Visual Basic)

Lists the elementary data types supplied by Visual Basic.

Troubleshooting Data Types (Visual Basic)

Discusses some common problems that can arise when working with data types.

© 2016 Microsoft

Visual Studio 2015

Type Conversions in Visual Basic https://msdn.microsoft.com/en-us/library/hcb26cc8(d=printer).aspx

1 of 1 02.09.2016 17:18

Widening and Narrowing Conversions (Visual
Basic)

An important consideration with a type conversion is whether the result of the conversion is within the range of the

destination data type.

A widening conversion changes a value to a data type that can allow for any possible value of the original data. Widening

conversions preserve the source value but can change its representation. This occurs if you convert from an integral type to

Decimal, or from Char to String.

A narrowing conversion changes a value to a data type that might not be able to hold some of the possible values. For

example, a fractional value is rounded when it is converted to an integral type, and a numeric type being converted to

Boolean is reduced to either True or False.

Widening Conversions
The following table shows the standard widening conversions.

Data type Widens to data types 1

SByte SByte, Short, Integer, Long, Decimal, Single, Double

Byte Byte, Short, UShort, Integer, UInteger, Long, ULong, Decimal, Single, Double

Short Short, Integer, Long, Decimal, Single, Double

UShort UShort, Integer, UInteger, Long, ULong, Decimal, Single, Double

Integer Integer, Long, Decimal, Single, Double2

UInteger UInteger, Long, ULong, Decimal, Single, Double 2

Long Long, Decimal, Single, Double 2

ULong ULong, Decimal, Single, Double 2

Decimal Decimal, Single, Double 2

Single Single, Double

Visual Studio 2015

Widening and Narrowing Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/k1e94s7e(d=printer).aspx

1 of 4 02.09.2016 17:19

Double Double

Any enumerated type (Enum) Its underlying integral type and any type to which the underlying type widens.

Char Char, String

Char array Char array, String

Any type Object

Any derived type Any base type from which it is derived 3.

Any type Any interface it implements.

Nothing Any data type or object type.

1 By definition, every data type widens to itself.

2 Conversions from Integer, UInteger, Long, ULong, or Decimal to Single or Double might result in loss of precision,

but never in loss of magnitude. In this sense they do not incur information loss.

3 It might seem surprising that a conversion from a derived type to one of its base types is widening. The justification is

that the derived type contains all the members of the base type, so it qualifies as an instance of the base type. In the

opposite direction, the base type does not contain any new members defined by the derived type.

Widening conversions always succeed at run time and never incur data loss. You can always perform them implicitly,

whether the Option Strict Statement sets the type checking switch to On or to Off.

Narrowing Conversions
The standard narrowing conversions include the following:

The reverse directions of the widening conversions in the preceding table (except that every type widens to itself)

Conversions in either direction between Boolean and any numeric type

Conversions from any numeric type to any enumerated type (Enum)

Conversions in either direction between String and any numeric type, Boolean, or Date

Conversions from a data type or object type to a type derived from it

Narrowing conversions do not always succeed at run time, and can fail or incur data loss. An error occurs if the destination

data type cannot receive the value being converted. For example, a numeric conversion can result in an overflow. The

compiler does not allow you to perform narrowing conversions implicitly unless the Option Strict Statement sets the type

checking switch to Off.

Widening and Narrowing Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/k1e94s7e(d=printer).aspx

2 of 4 02.09.2016 17:19

Note

The narrowing-conversion error is suppressed for conversions from the elements in a For Each…Next collection to the

loop control variable. For more information and examples, see the "Narrowing Conversions" section in For Each...Next

Statement (Visual Basic).

When to Use Narrowing Conversions

You use a narrowing conversion when you know the source value can be converted to the destination data type

without error or data loss. For example, if you have a String that you know contains either "True" or "False," you can

use the CBool keyword to convert it to Boolean.

Exceptions During Conversion
Because widening conversions always succeed, they do not throw exceptions. Narrowing conversions, when they fail, most

commonly throw the following exceptions:

InvalidCastException — if no conversion is defined between the two types

OverflowException — (integral types only) if the converted value is too large for the target type

If a class or structure defines a CType Function (Visual Basic) to serve as a conversion operator to or from that class or

structure, that CType can throw any exception it deems appropriate. In addition, that CType might call Visual Basic

functions or .NET Framework methods, which in turn could throw a variety of exceptions.

Changes During Reference Type Conversions
A conversion from a reference type copies only the pointer to the value. The value itself is neither copied nor changed in

any way. The only thing that can change is the data type of the variable holding the pointer. In the following example, the

data type is converted from the derived class to its base class, but the object that both variables now point to is

unchanged.

' Assume class cSquare inherits from class cShape.

Dim shape As cShape

Dim square As cSquare = New cSquare

' The following statement performs a widening

' conversion from a derived class to its base class.

shape = square

Widening and Narrowing Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/k1e94s7e(d=printer).aspx

3 of 4 02.09.2016 17:19

See Also
Data Types in Visual Basic

Type Conversions in Visual Basic

Implicit and Explicit Conversions (Visual Basic)

Conversions Between Strings and Other Types (Visual Basic)

How to: Convert an Object to Another Type in Visual Basic

Array Conversions (Visual Basic)

Data Type Summary (Visual Basic)

Type Conversion Functions (Visual Basic)

© 2016 Microsoft

Widening and Narrowing Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/k1e94s7e(d=printer).aspx

4 of 4 02.09.2016 17:19

Implicit and Explicit Conversions (Visual
Basic)

An implicit conversion does not require any special syntax in the source code. In the following example, Visual Basic implicitly

converts the value of k to a single-precision floating-point value before assigning it to q.

An explicit conversion uses a type conversion keyword. Visual Basic provides several such keywords, which coerce an

expression in parentheses to the desired data type. These keywords act like functions, but the compiler generates the code

inline, so execution is slightly faster than with a function call.

In the following extension of the preceding example, the CInt keyword converts the value of q back to an integer before

assigning it to k.

Conversion Keywords
The following table shows the available conversion keywords.

Type conversion

keyword

Converts an

expression to data

type

Allowable data types of expression to be converted

CBool Boolean Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types), String,

Object

CByte Byte Data Type

(Visual Basic)

Any numeric type (including SByte and enumerated types), Boolean,

String, Object

Visual Studio 2015

Dim k As Integer

Dim q As Double

' Integer widens to Double, so you can do this with Option Strict On.

k = 432

q = k

' q had been assigned the value 432 from k.

q = Math.Sqrt(q)

k = CInt(q)

' k now has the value 21 (rounded square root of 432).

Implicit and Explicit Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/kca3w8x6(d=printer).aspx

1 of 4 02.09.2016 17:20

CChar Char Data Type

(Visual Basic)

String, Object

CDate Date Data Type

(Visual Basic)

String, Object

CDbl Double Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CDec Decimal Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CInt Integer Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CLng Long Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CObj Object Data Type Any type

CSByte SByte Data Type

(Visual Basic)

Any numeric type (including Byte and enumerated types), Boolean,

String, Object

CShort Short Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CSng Single Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CStr String Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, Char, Char array, Date, Object

CType Type specified

following the comma

(,)

When converting to an elementary data type (including an array of an

elementary type), the same types as allowed for the corresponding

conversion keyword

When converting to a composite data type, the interfaces it implements

and the classes from which it inherits

When converting to a class or structure on which you have overloaded

CType, that class or structure

CUInt UInteger Data Type Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CULng ULong Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

CUShort UShort Data Type

(Visual Basic)

Any numeric type (including Byte, SByte, and enumerated types),

Boolean, String, Object

Implicit and Explicit Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/kca3w8x6(d=printer).aspx

2 of 4 02.09.2016 17:20

The CType Function
The CType Function (Visual Basic) operates on two arguments. The first is the expression to be converted, and the second

is the destination data type or object class. Note that the first argument must be an expression, not a type.

CType is an inline function, meaning the compiled code makes the conversion, often without generating a function call.

This improves performance.

For a comparison of CType with the other type conversion keywords, see DirectCast Operator (Visual Basic) and TryCast

Operator (Visual Basic).

Elementary Types

The following example demonstrates the use of CType.

Composite Types

You can use CType to convert values to composite data types as well as to elementary types. You can also use it to

coerce an object class to the type of one of its interfaces, as in the following example.

Array Types

CType can also convert array data types, as in the following example.

k = CType(q, Integer)

' The following statement coerces w to the specific object class Label.

f = CType(w, Label)

' Assume class cZone implements interface iZone.

Dim h As Object

' The first argument to CType must be an expression, not a type.

Dim cZ As cZone

' The following statement coerces a cZone object to its interface iZone.

h = CType(cZ, iZone)

Dim v() As classV

Dim obArray() As Object

' Assume some object array has been assigned to obArray.

' Check for run‐time type compatibility.

If TypeOf obArray Is classV()

 ' obArray can be converted to classV.

 v = CType(obArray, classV())

Implicit and Explicit Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/kca3w8x6(d=printer).aspx

3 of 4 02.09.2016 17:20

For more information and an example, see Array Conversions (Visual Basic).

Types Defining CType

You can define CType on a class or structure you have defined. This allows you to convert values to and from the type

of your class or structure. For more information and an example, see How to: Define a Conversion Operator (Visual

Basic).

Note

Values used with a conversion keyword must be valid for the destination data type, or an error occurs. For example,

if you attempt to convert a Long to an Integer, the value of the Long must be within the valid range for the Integer

data type.

Caution

Specifying CType to convert from one class type to another fails at run time if the source type does not derive from

the destination type. Such a failure throws an InvalidCastException exception.

However, if one of the types is a structure or class you have defined, and if you have defined CType on that structure or

class, a conversion can succeed if it satisfies the requirements of your CType. See How to: Define a Conversion Operator

(Visual Basic).

Performing an explicit conversion is also known as casting an expression to a given data type or object class.

See Also
Type Conversions in Visual Basic

Conversions Between Strings and Other Types (Visual Basic)

How to: Convert an Object to Another Type in Visual Basic

Structures (Visual Basic)

Data Type Summary (Visual Basic)

Type Conversion Functions (Visual Basic)

Troubleshooting Data Types (Visual Basic)

© 2016 Microsoft

End If

Implicit and Explicit Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/kca3w8x6(d=printer).aspx

4 of 4 02.09.2016 17:20

Conversions Between Strings and Other
Types (Visual Basic)

You can convert a numeric, Boolean, or date/time value to a String. You can also convert in the reverse direction — from a

string value to numeric, Boolean, or Date — provided the contents of the string can be interpreted as a valid value of the

destination data type. If they cannot, a run-time error occurs.

The conversions for all these assignments, in either direction, are narrowing conversions. You should use the type conversion

keywords (CBool, CByte, CDate, CDbl, CDec, CInt, CLng, CSByte, CShort, CSng, CStr, CUInt, CULng, CUShort, and CType).

The Format and Val functions give you additional control over conversions between strings and numbers.

If you have defined a class or structure, you can define type conversion operators between String and the type of your class

or structure. For more information, see How to: Define a Conversion Operator (Visual Basic).

Conversion of Numbers to Strings
You can use the Format function to convert a number to a formatted string, which can include not only the appropriate

digits but also formatting symbols such as a currency sign (such as $), thousands separators or digit grouping symbols

(such as ,), and a decimal separator (such as .). Format automatically uses the appropriate symbols according to the

Regional Options settings specified in the Windows Control Panel.

Note that the concatenation (&) operator can convert a number to a string implicitly, as the following example shows.

Conversion of Strings to Numbers
You can use the Val function to explicitly convert the digits in a string to a number. Val reads the string until it encounters

a character other than a digit, space, tab, line feed, or period. The sequences "&O" and "&H" alter the base of the number

system and terminate the scanning. Until it stops reading, Val converts all appropriate characters to a numeric value. For

example, the following statement returns the value 141.825.

Val(" 14 1.825 miles")

When Visual Basic converts a string to a numeric value, it uses the Regional Options settings specified in the Windows

Control Panel to interpret the thousands separator, decimal separator, and currency symbol. This means that a

conversion might succeed under one setting but not another. For example, "$14.20" is acceptable in the English (United

States) locale but not in any French locale.

Visual Studio 2015

' The following statement converts count to a String value.

Str = "The total count is " & count

Conversions Between Strings and Other Types (Visual Basic) https://msdn.microsoft.com/en-us/library/t6hxk86b(d=printer).aspx

1 of 2 02.09.2016 17:21

See Also
Type Conversions in Visual Basic

Widening and Narrowing Conversions (Visual Basic)

Implicit and Explicit Conversions (Visual Basic)

How to: Convert an Object to Another Type in Visual Basic

Array Conversions (Visual Basic)

Data Type Summary (Visual Basic)

Type Conversion Functions (Visual Basic)

Introduction to International Applications Based on the .NET Framework

© 2016 Microsoft

Conversions Between Strings and Other Types (Visual Basic) https://msdn.microsoft.com/en-us/library/t6hxk86b(d=printer).aspx

2 of 2 02.09.2016 17:21

How to: Convert an Object to Another Type
in Visual Basic

You convert an Object variable to another data type by using a conversion keyword such as CType Function (Visual Basic).

Example
The following example converts an Object variable to an Integer and a String.

If you know that the contents of an Object variable are of a particular data type, it is better to convert the variable to that

data type. If you continue to use the Object variable, you incur either boxing and unboxing (for a value type) or late binding

(for a reference type). These operations all take extra execution time and make your performance slower.

Compiling the Code
This example requires:

A reference to the System namespace.

See Also
Object

Type Conversions in Visual Basic

Widening and Narrowing Conversions (Visual Basic)

Implicit and Explicit Conversions (Visual Basic)

Conversions Between Strings and Other Types (Visual Basic)

Array Conversions (Visual Basic)

Structures (Visual Basic)

Data Type Summary (Visual Basic)

Type Conversion Functions (Visual Basic)

© 2016 Microsoft

Visual Studio 2015

Public Sub objectConversion(ByVal anObject As Object)

 Dim anInteger As Integer

 Dim aString As String

 anInteger = CType(anObject, Integer)

 aString = CType(anObject, String)

End Sub

How to: Convert an Object to Another Type in Visual Basic https://msdn.microsoft.com/en-us/library/x53d8wxa(d=printer).aspx

1 of 1 02.09.2016 17:21

Array Conversions (Visual Basic)

You can convert an array type to a different array type provided you meet the following conditions:

Equal Rank. The ranks of the two arrays must be the same, that is, they must have the same number of dimensions.

However, the lengths of the respective dimensions do not need to be the same.

Element Data Type. The data types of the elements of both arrays must be reference types. You cannot convert an

Integer array to a Long array, or even to an Object array, because at least one value type is involved. For more

information, see Value Types and Reference Types.

Convertibility. A conversion, either widening or narrowing, must be possible between the element types of the two

arrays. An example that fails this requirement is an attempted conversion between a String array and an array of a

class derived from System.Attribute. These two types have nothing in common, and no conversion of any kind exists

between them.

A conversion of one array type to another is widening or narrowing depending on whether the conversion of the respective

elements is widening or narrowing. For more information, see Widening and Narrowing Conversions (Visual Basic).

Conversion to an Object Array
When you declare an Object array without initializing it, its element type is Object as long as it remains uninitialized.

When you set it to an array of a specific class, it takes on the type of that class. However, its underlying type is still Object,

and you can subsequently set it to another array of an unrelated class. Since all classes derive from Object, you can

change the array's element type from any class to any other class.

In the following example, no conversion exists between types student and String, but both derive from Object, so all

assignments are valid.

Underlying Type of an Array

If you originally declare an array with a specific class, its underlying element type is that class. If you subsequently set it

to an array of another class, there must be a conversion between the two classes.

Visual Studio 2015

' Assume student has already been defined as a class.

Dim testArray() As Object

' testArray is still an Object array at this point.

Dim names() As String = New String(3) {"Name0", "Name1", "Name2", "Name3"}

testArray = New student(3) {}

' testArray is now of type student().

testArray = names

' testArray is now a String array.

Array Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/tbatye4h(d=printer).aspx

1 of 2 02.09.2016 17:22

In the following example, students is a student array. Since no conversion exists between String and student, the

last statement fails.

See Also
Data Types in Visual Basic

Type Conversions in Visual Basic

Implicit and Explicit Conversions (Visual Basic)

Conversions Between Strings and Other Types (Visual Basic)

How to: Convert an Object to Another Type in Visual Basic

Data Type Summary (Visual Basic)

Type Conversion Functions (Visual Basic)

Arrays in Visual Basic

© 2016 Microsoft

Dim students() As student

Dim names() As String = New String(3) {"Name0", "Name1", "Name2", "Name3"}

students = New Student(3) {}

' The following statement fails at compile time.

students = names

Array Conversions (Visual Basic) https://msdn.microsoft.com/en-us/library/tbatye4h(d=printer).aspx

2 of 2 02.09.2016 17:22

