
Collections (Visual Basic)

For many applications, you want to create and manage groups of related objects. There are two ways to group objects: by

creating arrays of objects, and by creating collections of objects.

Arrays are most useful for creating and working with a fixed number of strongly-typed objects. For information about arrays,

see Arrays in Visual Basic.

Collections provide a more flexible way to work with groups of objects. Unlike arrays, the group of objects you work with

can grow and shrink dynamically as the needs of the application change. For some collections, you can assign a key to any

object that you put into the collection so that you can quickly retrieve the object by using the key.

A collection is a class, so you must declare an instance of the class before you can add elements to that collection.

If your collection contains elements of only one data type, you can use one of the classes in the System.Collections.Generic

namespace. A generic collection enforces type safety so that no other data type can be added to it. When you retrieve an

element from a generic collection, you do not have to determine its data type or convert it.

Note

For the examples in this topic, include Imports statements for the System.Collections.Generic and System.Linq

namespaces.

In this topic

Using a Simple Collection

e76533a9-5033-4a0b-b003-9c2be60d185b#BKMK_KindsOfCollections

System.Collections.Generic Classes

System.Collections.Concurrent Classes

System.Collections Classes

Visual Basic Collection Class

Implementing a Collection of Key/Value Pairs

Using LINQ to Access a Collection

Sorting a Collection

Defining a Custom Collection

Visual Studio 2015

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

1 of 14 02.09.2016 16:49

Iterators

Using a Simple Collection
The examples in this section use the generic List(Of T) class, which enables you to work with a strongly typed list of

objects.

The following example creates a list of strings and then iterates through the strings by using a For Each…Next statement.

If the contents of a collection are known in advance, you can use a collection initializer to initialize the collection. For more

information, see Collection Initializers (Visual Basic).

The following example is the same as the previous example, except a collection initializer is used to add elements to the

collection.

You can use a For…Next statement instead of a For Each statement to iterate through a collection. You accomplish this

by accessing the collection elements by the index position. The index of the elements starts at 0 and ends at the element

count minus 1.

The following example iterates through the elements of a collection by using For…Next instead of For Each.

' Create a list of strings.

Dim salmons As New List(Of String)

salmons.Add("chinook")

salmons.Add("coho")

salmons.Add("pink")

salmons.Add("sockeye")

' Iterate through the list.

For Each salmon As String In salmons

 Console.Write(salmon & " ")

Next

'Output: chinook coho pink sockeye

' Create a list of strings by using a

' collection initializer.

Dim salmons As New List(Of String) From

 {"chinook", "coho", "pink", "sockeye"}

For Each salmon As String In salmons

 Console.Write(salmon & " ")

Next

'Output: chinook coho pink sockeye

Dim salmons As New List(Of String) From

VB

VB

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

2 of 14 02.09.2016 16:49

The following example removes an element from the collection by specifying the object to remove.

The following example removes elements from a generic list. Instead of a For Each statement, a For…Next statement that

iterates in descending order is used. This is because the RemoveAt method causes elements after a removed element to

have a lower index value.

For the type of elements in the List(Of T), you can also define your own class. In the following example, the Galaxy class

 {"chinook", "coho", "pink", "sockeye"}

For index = 0 To salmons.Count ‐ 1

 Console.Write(salmons(index) & " ")

Next

'Output: chinook coho pink sockeye

' Create a list of strings by using a

' collection initializer.

Dim salmons As New List(Of String) From

 {"chinook", "coho", "pink", "sockeye"}

' Remove an element in the list by specifying

' the object.

salmons.Remove("coho")

For Each salmon As String In salmons

 Console.Write(salmon & " ")

Next

'Output: chinook pink sockeye

Dim numbers As New List(Of Integer) From

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

' Remove odd numbers.

For index As Integer = numbers.Count ‐ 1 To 0 Step ‐1

If numbers(index) Mod 2 = 1 Then

' Remove the element by specifying

' the zero‐based index in the list.

 numbers.RemoveAt(index)

End If

Next

' Iterate through the list.

' A lambda expression is placed in the ForEach method

' of the List(T) object.

numbers.ForEach(

Sub(number) Console.Write(number & " "))

' Output: 0 2 4 6 8

VB

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

3 of 14 02.09.2016 16:49

that is used by the List(Of T) is defined in the code.

Kinds of Collections
Many common collections are provided by the .NET Framework. For a complete list, see System.Collections namespaces.

Each type of collection is designed for a specific purpose.

Some of the common collection classes are described in this section:

System.Collections.Generic classes

System.Collections.Concurrent classes

System.Collections classes

Visual Basic Collection class

System.Collections.Generic Classes

You can create a generic collection by using one of the classes in the System.Collections.Generic namespace. A generic

Private Sub IterateThroughList()

Dim theGalaxies As New List(Of Galaxy) From

 {

New Galaxy With {.Name = "Tadpole", .MegaLightYears = 400},

New Galaxy With {.Name = "Pinwheel", .MegaLightYears = 25},

New Galaxy With {.Name = "Milky Way", .MegaLightYears = 0},

New Galaxy With {.Name = "Andromeda", .MegaLightYears = 3}

 }

For Each theGalaxy In theGalaxies

With theGalaxy

 Console.WriteLine(.Name & " " & .MegaLightYears)

End With

Next

' Output:

' Tadpole 400

' Pinwheel 25

' Milky Way 0

' Andromeda 3

End Sub

Public Class Galaxy

Public Property Name As String

Public Property MegaLightYears As Integer

End Class

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

4 of 14 02.09.2016 16:49

collection is useful when every item in the collection has the same data type. A generic collection enforces strong

typing by allowing only the desired data type to be added.

The following table lists some of the frequently used classes of the System.Collections.Generic namespace:

Class Description

Dictionary(Of TKey, 

TValue)

Represents a collection of key/value pairs that are organized based on the key.

List(Of T) Represents a list of objects that can be accessed by index. Provides methods to search,

sort, and modify lists.

Queue(Of T) Represents a first in, first out (FIFO) collection of objects.

SortedList(Of TKey, 

TValue)

Represents a collection of key/value pairs that are sorted by key based on the associated

IComparer(Of T) implementation.

Stack(Of T) Represents a last in, first out (LIFO) collection of objects.

For additional information, see Commonly Used Collection Types, Selecting a Collection Class, and

System.Collections.Generic.

System.Collections.Concurrent Classes

In the .NET Framework 4 or newer, the collections in the System.Collections.Concurrent namespace provide efficient

thread-safe operations for accessing collection items from multiple threads.

The classes in the System.Collections.Concurrent namespace should be used instead of the corresponding types in the

System.Collections.Generic and System.Collections namespaces whenever multiple threads are accessing the collection

concurrently. For more information, see Thread-Safe Collections and System.Collections.Concurrent.

Some classes included in the System.Collections.Concurrent namespace are BlockingCollection(Of T),

ConcurrentDictionary(Of TKey, TValue), ConcurrentQueue(Of T), and ConcurrentStack(Of T).

System.Collections Classes

The classes in the System.Collections namespace do not store elements as specifically typed objects, but as objects of

type Object.

Whenever possible, you should use the generic collections in the System.Collections.Generic namespace or the

System.Collections.Concurrent namespace instead of the legacy types in the System.Collections namespace.

The following table lists some of the frequently used classes in the System.Collections namespace:

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

5 of 14 02.09.2016 16:49

Class Description

ArrayList Represents an array of objects whose size is dynamically increased as required.

Hashtable Represents a collection of key/value pairs that are organized based on the hash code of the key.

Queue Represents a first in, first out (FIFO) collection of objects.

Stack Represents a last in, first out (LIFO) collection of objects.

The System.Collections.Specialized namespace provides specialized and strongly typed collection classes, such as

string-only collections and linked-list and hybrid dictionaries.

Visual Basic Collection Class

You can use the Visual Basic Collection class to access a collection item by using either a numeric index or a String key.

You can add items to a collection object either with or without specifying a key. If you add an item without a key, you

must use its numeric index to access it.

The Visual Basic Collection class stores all its elements as type Object, so you can add an item of any data type. There

is no safeguard against inappropriate data types being added.

When you use the Visual Basic Collection class, the first item in a collection has an index of 1. This differs from the .NET

Framework collection classes, for which the starting index is 0.

Whenever possible, you should use the generic collections in the System.Collections.Generic namespace or the

System.Collections.Concurrent namespace instead of the Visual Basic Collection class.

For more information, see Collection.

Implementing a Collection of Key/Value Pairs
The Dictionary(Of TKey, TValue) generic collection enables you to access to elements in a collection by using the key of

each element. Each addition to the dictionary consists of a value and its associated key. Retrieving a value by using its key

is fast because the Dictionary class is implemented as a hash table.

The following example creates a Dictionary collection and iterates through the dictionary by using a For Each statement.

Private Sub IterateThroughDictionary()

Dim elements As Dictionary(Of String, Element) = BuildDictionary()

For Each kvp As KeyValuePair(Of String, Element) In elements

Dim theElement As Element = kvp.Value

 Console.WriteLine("key: " & kvp.Key)

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

6 of 14 02.09.2016 16:49

To instead use a collection initializer to build the Dictionary collection, you can replace the BuildDictionary and

AddToDictionary methods with the following method.

With theElement

 Console.WriteLine("values: " & .Symbol & " " &

 .Name & " " & .AtomicNumber)

End With

Next

End Sub

Private Function BuildDictionary() As Dictionary(Of String, Element)

Dim elements As New Dictionary(Of String, Element)

 AddToDictionary(elements, "K", "Potassium", 19)

 AddToDictionary(elements, "Ca", "Calcium", 20)

 AddToDictionary(elements, "Sc", "Scandium", 21)

 AddToDictionary(elements, "Ti", "Titanium", 22)

Return elements

End Function

Private Sub AddToDictionary(ByVal elements As Dictionary(Of String, Element),

ByVal symbol As String, ByVal name As String, ByVal atomicNumber As Integer)

Dim theElement As New Element

 theElement.Symbol = symbol

 theElement.Name = name

 theElement.AtomicNumber = atomicNumber

 elements.Add(Key:=theElement.Symbol, value:=theElement)

End Sub

Public Class Element

Public Property Symbol As String

Public Property Name As String

Public Property AtomicNumber As Integer

End Class

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

7 of 14 02.09.2016 16:49

The following example uses the ContainsKey method and the Item property of Dictionary to quickly find an item by key.

The Item property enables you to access an item in the elements collection by using the elements(symbol) code in

Visual Basic.

The following example instead uses the TryGetValue method quickly find an item by key.

Using LINQ to Access a Collection
LINQ (Language-Integrated Query) can be used to access collections. LINQ queries provide filtering, ordering, and

Private Function BuildDictionary2() As Dictionary(Of String, Element)

Return New Dictionary(Of String, Element) From

 {

 {"K", New Element With

 {.Symbol = "K", .Name = "Potassium", .AtomicNumber = 19}},

 {"Ca", New Element With

 {.Symbol = "Ca", .Name = "Calcium", .AtomicNumber = 20}},

 {"Sc", New Element With

 {.Symbol = "Sc", .Name = "Scandium", .AtomicNumber = 21}},

 {"Ti", New Element With

 {.Symbol = "Ti", .Name = "Titanium", .AtomicNumber = 22}}

 }

End Function

Private Sub FindInDictionary(ByVal symbol As String)

Dim elements As Dictionary(Of String, Element) = BuildDictionary()

If elements.ContainsKey(symbol) = False Then

 Console.WriteLine(symbol & " not found")

Else

Dim theElement = elements(symbol)

 Console.WriteLine("found: " & theElement.Name)

End If

End Sub

Private Sub FindInDictionary2(ByVal symbol As String)

Dim elements As Dictionary(Of String, Element) = BuildDictionary()

Dim theElement As Element = Nothing

If elements.TryGetValue(symbol, theElement) = False Then

 Console.WriteLine(symbol & " not found")

Else

 Console.WriteLine("found: " & theElement.Name)

End If

End Sub

VB

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

8 of 14 02.09.2016 16:49

grouping capabilities. For more information, see Getting Started with LINQ in Visual Basic.

The following example runs a LINQ query against a generic List. The LINQ query returns a different collection that

contains the results.

Sorting a Collection
The following example illustrates a procedure for sorting a collection. The example sorts instances of the Car class that are

stored in a List(Of T). The Car class implements the IComparable(Of T) interface, which requires that the CompareTo

method be implemented.

Private Sub ShowLINQ()

Dim elements As List(Of Element) = BuildList()

' LINQ Query.

Dim subset = From theElement In elements

Where theElement.AtomicNumber < 22

Order By theElement.Name

For Each theElement In subset

 Console.WriteLine(theElement.Name & " " & theElement.AtomicNumber)

Next

' Output:

' Calcium 20

' Potassium 19

' Scandium 21

End Sub

Private Function BuildList() As List(Of Element)

Return New List(Of Element) From

 {

 {New Element With

 {.Symbol = "K", .Name = "Potassium", .AtomicNumber = 19}},

 {New Element With

 {.Symbol = "Ca", .Name = "Calcium", .AtomicNumber = 20}},

 {New Element With

 {.Symbol = "Sc", .Name = "Scandium", .AtomicNumber = 21}},

 {New Element With

 {.Symbol = "Ti", .Name = "Titanium", .AtomicNumber = 22}}

 }

End Function

Public Class Element

Public Property Symbol As String

Public Property Name As String

Public Property AtomicNumber As Integer

End Class

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

9 of 14 02.09.2016 16:49

Each call to the CompareTo method makes a single comparison that is used for sorting. User-written code in the

CompareTo method returns a value for each comparison of the current object with another object. The value returned is

less than zero if the current object is less than the other object, greater than zero if the current object is greater than the

other object, and zero if they are equal. This enables you to define in code the criteria for greater than, less than, and

equal.

In the ListCars method, the cars.Sort() statement sorts the list. This call to the Sort method of the List(Of T) causes

the CompareTo method to be called automatically for the Car objects in the List.

Public Sub ListCars()

' Create some new cars.

Dim cars As New List(Of Car) From

 {

New Car With {.Name = "car1", .Color = "blue", .Speed = 20},

New Car With {.Name = "car2", .Color = "red", .Speed = 50},

New Car With {.Name = "car3", .Color = "green", .Speed = 10},

New Car With {.Name = "car4", .Color = "blue", .Speed = 50},

New Car With {.Name = "car5", .Color = "blue", .Speed = 30},

New Car With {.Name = "car6", .Color = "red", .Speed = 60},

New Car With {.Name = "car7", .Color = "green", .Speed = 50}

 }

' Sort the cars by color alphabetically, and then by speed

' in descending order.

 cars.Sort()

' View all of the cars.

For Each thisCar As Car In cars

 Console.Write(thisCar.Color.PadRight(5) & " ")

 Console.Write(thisCar.Speed.ToString & " ")

 Console.Write(thisCar.Name)

 Console.WriteLine()

Next

' Output:

' blue 50 car4

' blue 30 car5

' blue 20 car1

' green 50 car7

' green 10 car3

' red 60 car6

' red 50 car2

End Sub

Public Class Car

Implements IComparable(Of Car)

Public Property Name As String

Public Property Speed As Integer

Public Property Color As String

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

10 of 14 02.09.2016 16:49

Defining a Custom Collection
You can define a collection by implementing the IEnumerable(Of T) or IEnumerable interface. For additional information,

see Enumerating a Collection.

Although you can define a custom collection, it is usually better to instead use the collections that are included in the .NET

Framework, which are described in e76533a9-5033-4a0b-b003-9c2be60d185b#BKMK_KindsOfCollections earlier in this

topic.

The following example defines a custom collection class named AllColors. This class implements the IEnumerable

interface, which requires that the GetEnumerator method be implemented.

The GetEnumerator method returns an instance of the ColorEnumerator class. ColorEnumerator implements the

IEnumerator interface, which requires that the Current property, MoveNext method, and Reset method be implemented.

Public Function CompareTo(ByVal other As Car) As Integer _

Implements System.IComparable(Of Car).CompareTo

' A call to this method makes a single comparison that is

' used for sorting.

' Determine the relative order of the objects being compared.

' Sort by color alphabetically, and then by speed in

' descending order.

' Compare the colors.

Dim compare As Integer

 compare = String.Compare(Me.Color, other.Color, True)

' If the colors are the same, compare the speeds.

If compare = 0 Then

 compare = Me.Speed.CompareTo(other.Speed)

' Use descending order for speed.

 compare = ‐compare

End If

Return compare

End Function

End Class

Public Sub ListColors()

Dim colors As New AllColors()

For Each theColor As Color In colors

 Console.Write(theColor.Name & " ")

Next

 Console.WriteLine()

' Output: red blue green

End Sub

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

11 of 14 02.09.2016 16:49

' Collection class.

Public Class AllColors

Implements System.Collections.IEnumerable

Private _colors() As Color =

 {

New Color With {.Name = "red"},

New Color With {.Name = "blue"},

New Color With {.Name = "green"}

 }

Public Function GetEnumerator() As System.Collections.IEnumerator _

Implements System.Collections.IEnumerable.GetEnumerator

Return New ColorEnumerator(_colors)

' Instead of creating a custom enumerator, you could

' use the GetEnumerator of the array.

'Return _colors.GetEnumerator

End Function

' Custom enumerator.

Private Class ColorEnumerator

Implements System.Collections.IEnumerator

Private _colors() As Color

Private _position As Integer = ‐1

Public Sub New(ByVal colors() As Color)

 _colors = colors

End Sub

Public ReadOnly Property Current() As Object _

Implements System.Collections.IEnumerator.Current

Get

Return _colors(_position)

End Get

End Property

Public Function MoveNext() As Boolean _

Implements System.Collections.IEnumerator.MoveNext

 _position += 1

Return (_position < _colors.Length)

End Function

Public Sub Reset() Implements System.Collections.IEnumerator.Reset

 _position = ‐1

End Sub

End Class

End Class

' Element class.

Public Class Color

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

12 of 14 02.09.2016 16:49

Iterators
An iterator is used to perform a custom iteration over a collection. An iterator can be a method or a get accessor. An

iterator uses a Yield statement to return each element of the collection one at a time.

You call an iterator by using a For Each…Next statement. Each iteration of the For Each loop calls the iterator. When a

Yield statement is reached in the iterator, an expression is returned, and the current location in code is retained. Execution

is restarted from that location the next time that the iterator is called.

For more information, see Iterators (Visual Basic).

The following example uses an iterator method. The iterator method has a Yield statement that is inside a For…Next loop.

In the ListEvenNumbers method, each iteration of the For Each statement body creates a call to the iterator method,

which proceeds to the next Yield statement.

See Also
Collection Initializers (Visual Basic)

Programming Concepts (Visual Basic)

Option Strict Statement

LINQ to Objects (Visual Basic)

Parallel LINQ (PLINQ)

Public Property Name As String

End Class

Public Sub ListEvenNumbers()

For Each number As Integer In EvenSequence(5, 18)

 Console.Write(number & " ")

Next

 Console.WriteLine()

' Output: 6 8 10 12 14 16 18

End Sub

Private Iterator Function EvenSequence(

ByVal firstNumber As Integer, ByVal lastNumber As Integer) _

As IEnumerable(Of Integer)

' Yield even numbers in the range.

For number = firstNumber To lastNumber

If number Mod 2 = 0 Then

 Yield number

End If

Next

End Function

VB

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

13 of 14 02.09.2016 16:49

Collections and Data Structures

Creating and Manipulating Collections

Selecting a Collection Class

Comparisons and Sorts Within Collections

When to Use Generic Collections

© 2016 Microsoft

Collections (Visual Basic) https://msdn.microsoft.com/en-us/library/mt654012(d=printer).aspx

14 of 14 02.09.2016 16:49

Collection Initializers (Visual Basic)

Collection initializers provide a shortened syntax that enables you to create a collection and populate it with an initial set of

values. Collection initializers are useful when you are creating a collection from a set of known values, for example, a list of

menu options or categories, an initial set of numeric values, a static list of strings such as day or month names, or

geographic locations such as a list of states that is used for validation.

For more information about collections, see Collections (C# and Visual Basic).

You identify a collection initializer by using the From keyword followed by braces ({}). This is similar to the array literal

syntax that is described in Arrays in Visual Basic. The following examples show various ways to use collection initializers to

create collections.

Note

C# also provides collection initializers. C# collection initializers provide the same functionality as Visual Basic collection

initializers. For more information about C# collection initializers, see Object and Collection Initializers (C# Programming

Guide).

Syntax
A collection initializer consists of a list of comma-separated values that are enclosed in braces ({}), preceded by the From

keyword, as shown in the following code.

Visual Studio 2015

' Create an array of type String().

Dim winterMonths = {"December", "January", "February"}

' Create an array of type Integer()

Dim numbers = {1, 2, 3, 4, 5}

' Create a list of menu options. (Requires an extension method

' named Add for List(Of MenuOption)

Dim menuOptions = New List(Of MenuOption) From {{1, "Home"},

 {2, "Products"},

 {3, "News"},

 {4, "Contact Us"}}

Dim names As New List(Of String) From {"Christa", "Brian", "Tim"}

VB

VB

Collection Initializers (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293617(d=printer).aspx

1 of 4 02.09.2016 16:48

When you create a collection, such as a List(Of T) or a Dictionary(Of TKey, TValue), you must supply the collection type

before the collection initializer, as shown in the following code.

Note

You cannot combine both a collection initializer and an object initializer to initialize the same collection object. You

can use object initializers to initialize objects in a collection initializer.

Creating a Collection by Using a Collection Intializer
When you create a collection by using a collection initializer, each value that is supplied in the collection initializer is

passed to the appropriate Add method of the collection. For example, if you create a List(Of T) by using a collection

initializer, each string value in the collection initializer is passed to the Add method. If you want to create a collection by

using a collection initializer, the specified type must be valid collection type. Examples of valid collection types include

classes that implement the IEnumerable(Of T) interface or inherit the CollectionBase class. The specified type must also

expose an Add method that meets the following criteria.

The Add method must be available from the scope in which the collection initializer is being called. The Add

method does not have to be public if you are using the collection initializer in a scenario where non-public

methods of the collection can be accessed.

The Add method must be an instance member or Shared member of the collection class, or an extension method.

An Add method must exist that can be matched, based on overload resolution rules, to the types that are supplied

in the collection initializer.

For example, the following code example shows how to create a List(Of Customer) collection by using a collection

initializer. When the code is run, each Customer object is passed to the Add(Customer) method of the generic list.

The following code example shows equivalent code that does not use a collection initializer.

Public Class AppMenu

Public Property Items As List(Of String) =

New List(Of String) From {"Home", "About", "Contact"}

End Class

Dim customers = New List(Of Customer) From

 {

New Customer("City Power & Light", "http://www.cpandl.com/"),

New Customer("Wide World Importers", "http://www.wideworldimporters.com/"),

New Customer("Lucerne Publishing", "http://www.lucernepublishing.com/")

 }

VB

VB

Collection Initializers (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293617(d=printer).aspx

2 of 4 02.09.2016 16:48

If the collection has an Add method that has parameters that match the constructor for the Customer object, you could

nest parameter values for the Add method within collection initializers, as discussed in the next section. If the collection

does not have such an Add method, you can create one as an extension method. For an example of how to create an Add

method as an extension method for a collection, see How to: Create an Add Extension Method Used by a Collection

Initializer (Visual Basic). For an example of how to create a custom collection that can be used with a collection initializer,

see How to: Create a Collection Used by a Collection Initializer (Visual Basic).

Nesting Collection Initializers
You can nest values within a collection initializer to identify a specific overload of an Add method for the collection that is

being created. The values passed to the Add method must be separated by commas and enclosed in braces ({}), like you

would do in an array literal or collection initializer.

When you create a collection by using nested values, each element of the nested value list is passed as an argument to the

Add method that matches the element types. For example, the following code example creates a Dictionary(Of TKey, 

TValue) in which the keys are of type Integer and the values are of type String. Each of the nested value lists is matched

to the Add method for the Dictionary.

The previous code example is equivalent to the following code.

Only nested value lists from the first level of nesting are sent to the Add method for the collection type. Deeper levels of

nesting are treated as array literals and the nested value lists are not matched to the Add method of any collection.

Related Topics

Title Description

Dim customers = New List(Of Customer)

customers.Add(New Customer("City Power & Light", "http://www.cpandl.com/"))

customers.Add(New Customer("Wide World Importers", "http://www.wideworldimporters.com

/"))

customers.Add(New Customer("Lucerne Publishing", "http://www.lucernepublishing.com/"))

Dim days = New Dictionary(Of Integer, String) From

 {{0, "Sunday"}, {1, "Monday"}}

Dim days = New Dictionary(Of Integer, String)

days.Add(0, "Sunday")

days.Add(1, "Monday")

VB

VB

VB

Collection Initializers (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293617(d=printer).aspx

3 of 4 02.09.2016 16:48

How to: Create an Add Extension Method

Used by a Collection Initializer (Visual Basic)

Shows how to create an extension method called Add that can be

used to populate a collection with values from a collection initializer.

How to: Create a Collection Used by a

Collection Initializer (Visual Basic)

Shows how to enable use of a collection initializer by including an

Add method in a collection class that implements IEnumerable.

See Also
Collections (C# and Visual Basic)

Arrays in Visual Basic

Object Initializers: Named and Anonymous Types (Visual Basic)

New Operator (Visual Basic)

Auto-Implemented Properties (Visual Basic)

How to: Initialize an Array Variable in Visual Basic

Local Type Inference (Visual Basic)

Anonymous Types (Visual Basic)

Introduction to LINQ in Visual Basic

How to: Create a List of Items

© 2016 Microsoft

Collection Initializers (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293617(d=printer).aspx

4 of 4 02.09.2016 16:48

How to: Create an Add Extension Method
Used by a Collection Initializer (Visual Basic)

When you use a collection initializer to create a collection, the Visual Basic compiler searches for an Add method of the

collection type for which the parameters for the Add method match the types of the values in the collection initializer. This

Add method is used to populate the collection with the values from the collection initializer.

If no matching Add method exists and you cannot modify the code for the collection, you can add an extension method

called Add that takes the parameters that are required by the collection initializer. This is typically what you need to do

when you use collection initializers for generic collections.

Example
The following example shows how to add an extension method to the generic List(Of T) type so that a collection initializer

can be used to add objects of type Employee. The extension method enables you to use the shortened collection initializer

syntax.

Visual Studio 2015

Public Class Employee

Public Property Id() As Integer

Public Property Name() As String

End Class

Imports System.Runtime.CompilerServices

Module Module1

 <Extension()>

Sub Add(ByVal list As List(Of Employee), ByVal id As Integer,

ByVal name As String)

 list.Add(New Employee With {.Id = id, .Name = name})

End Sub

End Module

Sub Main()

Dim employees = New List(Of Employee) From {{1, "Adams, Ellen"},

 {2, "Hamilton, James R."},

 {3, "Ihrig, Ryan"}}

VB

VB

VB

How to: Create an Add Extension Method Used by a Collection Initializer... https://msdn.microsoft.com/en-us/library/dd293683(d=printer).aspx

1 of 2 02.09.2016 16:50

See Also
Collection Initializers (Visual Basic)

How to: Create a Collection Used by a Collection Initializer (Visual Basic)

© 2016 Microsoft

End Sub

How to: Create an Add Extension Method Used by a Collection Initializer... https://msdn.microsoft.com/en-us/library/dd293683(d=printer).aspx

2 of 2 02.09.2016 16:50

How to: Create a Collection Used by a
Collection Initializer (Visual Basic)

When you use a collection initializer to create a collection, the Visual Basic compiler searches for an Add method of the

collection type for which the parameters for the Add method match the types of the values in the collection initializer. This

Add method is used to populate the collection with the values from the collection initializer.

Example
The following example shows an OrderCollection collection that contains a public Add method that a collection initializer

can use to add objects of type Order. The Add method enables you to use the shortened collection initializer syntax.

Visual Studio 2015

Public Class Customer

Public Property Id As Integer

Public Property Name As String

Public Property Orders As OrderCollection

Public Sub New(ByVal id As Integer, ByVal name As String, ByVal orders As

OrderCollection)

Me.Id = id

Me.Name = name

Me.Orders = orders

End Sub

End Class

Public Class Order

Public Property Id As Integer

Public Property CustomerId As Integer

Public Property OrderDate As DateTime

Public Sub New(ByVal id As Integer,

ByVal customerId As Integer,

ByVal orderDate As DateTime)

Me.Id = id

Me.CustomerId = customerId

Me.OrderDate = orderDate

End Sub

End Class

Public Class OrderCollection

Implements IEnumerable(Of Order)

VB

VB

How to: Create a Collection Used by a Collection Initializer (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293646(d=printer).aspx

1 of 3 02.09.2016 16:51

Dim items As New List(Of Order)

Public Property Item(ByVal index As Integer) As Order

Get

Return CType(Me(index), Order)

End Get

Set(ByVal value As Order)

 items(index) = value

End Set

End Property

Public Sub Add(ByVal id As Integer, ByVal customerID As Integer, ByVal orderDate As

DateTime)

 items.Add(New Order(id, customerID, orderDate))

End Sub

Public Function GetEnumerator() As IEnumerator(Of Order) Implements IEnumerable(Of

Order).GetEnumerator

Return items.GetEnumerator()

End Function

Public Function GetEnumerator1() As IEnumerator Implements IEnumerable.GetEnumerator

Return Me.GetEnumerator()

End Function

End Class

Imports System.Runtime.CompilerServices

Module Module1

 <Extension()>

Sub Add(ByVal genericList As List(Of Customer),

ByVal id As Integer,

ByVal name As String,

ByVal orders As OrderCollection)

 genericList.Add(New Customer(id, name, orders))

End Sub

End Module

Dim customerList = New List(Of Customer) From

 {

 {1, "John Rodman", New OrderCollection From {{9, 1, #6/12/2008#},

 {8, 1, #6/11/2008#},

 {5, 1, #5/1/2008#}}},

 {2, "Ariane Berthier", New OrderCollection From {{2, 2, #1/18/2008#},

 {4, 2, #3/8/2008#},

VB

VB

How to: Create a Collection Used by a Collection Initializer (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293646(d=printer).aspx

2 of 3 02.09.2016 16:51

See Also
Collection Initializers (Visual Basic)

How to: Create an Add Extension Method Used by a Collection Initializer (Visual Basic)

© 2016 Microsoft

 {6, 2, #3/18/2008#},

 {7, 2, #5/14/2008#},

 {5, 2, #4/4/2008#}}},

 {3, "Brian Perry", New OrderCollection From {{1, 3, #1/15/2008#},

 {3, 3, #3/8/2008#}}}

 }

How to: Create a Collection Used by a Collection Initializer (Visual Basic) https://msdn.microsoft.com/en-us/library/dd293646(d=printer).aspx

3 of 3 02.09.2016 16:51

